Setting ->owner as done currently (pde->owner = THIS_MODULE) is racy as correctly noted at bug #12454. Someone can lookup entry with NULL ->owner, thus not pinning enything, and release it later resulting in module refcount underflow. We can keep ->owner and supply it at registration time like ->proc_fops and ->data. But this leaves ->owner as easy-manipulative field (just one C assignment) and somebody will forget to unpin previous/pin current module when switching ->owner. ->proc_fops is declared as "const" which should give some thoughts. ->read_proc/->write_proc were just fixed to not require ->owner for protection. rmmod'ed directories will be empty and return "." and ".." -- no harm. And directories with tricky enough readdir and lookup shouldn't be modular. We definitely don't want such modular code. Removing ->owner will also make PDE smaller. So, let's nuke it. Kudos to Jeff Layton for reminding about this, let's say, oversight. http://bugzilla.kernel.org/show_bug.cgi?id=12454 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
		
			
				
	
	
		
			861 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			861 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * File:         arch/blackfin/mm/sram-alloc.c
 | 
						|
 * Based on:
 | 
						|
 * Author:
 | 
						|
 *
 | 
						|
 * Created:
 | 
						|
 * Description:  SRAM allocator for Blackfin L1 and L2 memory
 | 
						|
 *
 | 
						|
 * Modified:
 | 
						|
 *               Copyright 2004-2008 Analog Devices Inc.
 | 
						|
 *
 | 
						|
 * Bugs:         Enter bugs at http://blackfin.uclinux.org/
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, see the file COPYING, or write
 | 
						|
 * to the Free Software Foundation, Inc.,
 | 
						|
 * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/miscdevice.h>
 | 
						|
#include <linux/ioport.h>
 | 
						|
#include <linux/fcntl.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/poll.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/rtc.h>
 | 
						|
#include <asm/blackfin.h>
 | 
						|
#include <asm/mem_map.h>
 | 
						|
#include "blackfin_sram.h"
 | 
						|
 | 
						|
static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
 | 
						|
static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
 | 
						|
static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
 | 
						|
static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
/* the data structure for L1 scratchpad and DATA SRAM */
 | 
						|
struct sram_piece {
 | 
						|
	void *paddr;
 | 
						|
	int size;
 | 
						|
	pid_t pid;
 | 
						|
	struct sram_piece *next;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
 | 
						|
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
 | 
						|
#endif
 | 
						|
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
 | 
						|
#endif
 | 
						|
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
 | 
						|
static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
 | 
						|
#endif
 | 
						|
 | 
						|
#if L2_LENGTH != 0
 | 
						|
static struct sram_piece free_l2_sram_head, used_l2_sram_head;
 | 
						|
#endif
 | 
						|
 | 
						|
static struct kmem_cache *sram_piece_cache;
 | 
						|
 | 
						|
/* L1 Scratchpad SRAM initialization function */
 | 
						|
static void __init l1sram_init(void)
 | 
						|
{
 | 
						|
	unsigned int cpu;
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | 
						|
		per_cpu(free_l1_ssram_head, cpu).next =
 | 
						|
			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
		if (!per_cpu(free_l1_ssram_head, cpu).next) {
 | 
						|
			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
 | 
						|
		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
 | 
						|
		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
 | 
						|
		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
 | 
						|
 | 
						|
		per_cpu(used_l1_ssram_head, cpu).next = NULL;
 | 
						|
 | 
						|
		/* mutex initialize */
 | 
						|
		spin_lock_init(&per_cpu(l1sram_lock, cpu));
 | 
						|
		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
 | 
						|
			L1_SCRATCH_LENGTH >> 10);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init l1_data_sram_init(void)
 | 
						|
{
 | 
						|
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 | 
						|
	unsigned int cpu;
 | 
						|
#endif
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | 
						|
		per_cpu(free_l1_data_A_sram_head, cpu).next =
 | 
						|
			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
 | 
						|
			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
 | 
						|
			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
 | 
						|
		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
 | 
						|
			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
 | 
						|
		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
 | 
						|
		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
 | 
						|
 | 
						|
		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
 | 
						|
 | 
						|
		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
 | 
						|
			L1_DATA_A_LENGTH >> 10,
 | 
						|
			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | 
						|
		per_cpu(free_l1_data_B_sram_head, cpu).next =
 | 
						|
			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
 | 
						|
			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
 | 
						|
			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
 | 
						|
		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
 | 
						|
			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
 | 
						|
		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
 | 
						|
		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
 | 
						|
 | 
						|
		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
 | 
						|
 | 
						|
		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
 | 
						|
			L1_DATA_B_LENGTH >> 10,
 | 
						|
			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
 | 
						|
		/* mutex initialize */
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
 | 
						|
		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __init l1_inst_sram_init(void)
 | 
						|
{
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
	unsigned int cpu;
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | 
						|
		per_cpu(free_l1_inst_sram_head, cpu).next =
 | 
						|
			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
 | 
						|
			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
 | 
						|
			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
 | 
						|
		per_cpu(free_l1_inst_sram_head, cpu).next->size =
 | 
						|
			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
 | 
						|
		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
 | 
						|
		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
 | 
						|
 | 
						|
		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
 | 
						|
 | 
						|
		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
 | 
						|
			L1_CODE_LENGTH >> 10,
 | 
						|
			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
 | 
						|
 | 
						|
		/* mutex initialize */
 | 
						|
		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __init l2_sram_init(void)
 | 
						|
{
 | 
						|
#if L2_LENGTH != 0
 | 
						|
	free_l2_sram_head.next =
 | 
						|
		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
	if (!free_l2_sram_head.next) {
 | 
						|
		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	free_l2_sram_head.next->paddr =
 | 
						|
		(void *)L2_START + (_ebss_l2 - _stext_l2);
 | 
						|
	free_l2_sram_head.next->size =
 | 
						|
		L2_LENGTH - (_ebss_l2 - _stext_l2);
 | 
						|
	free_l2_sram_head.next->pid = 0;
 | 
						|
	free_l2_sram_head.next->next = NULL;
 | 
						|
 | 
						|
	used_l2_sram_head.next = NULL;
 | 
						|
 | 
						|
	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
 | 
						|
		L2_LENGTH >> 10,
 | 
						|
		free_l2_sram_head.next->size >> 10);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* mutex initialize */
 | 
						|
	spin_lock_init(&l2_sram_lock);
 | 
						|
}
 | 
						|
 | 
						|
void __init bfin_sram_init(void)
 | 
						|
{
 | 
						|
	sram_piece_cache = kmem_cache_create("sram_piece_cache",
 | 
						|
				sizeof(struct sram_piece),
 | 
						|
				0, SLAB_PANIC, NULL);
 | 
						|
 | 
						|
	l1sram_init();
 | 
						|
	l1_data_sram_init();
 | 
						|
	l1_inst_sram_init();
 | 
						|
	l2_sram_init();
 | 
						|
}
 | 
						|
 | 
						|
/* SRAM allocate function */
 | 
						|
static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
 | 
						|
		struct sram_piece *pused_head)
 | 
						|
{
 | 
						|
	struct sram_piece *pslot, *plast, *pavail;
 | 
						|
 | 
						|
	if (size <= 0 || !pfree_head || !pused_head)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Align the size */
 | 
						|
	size = (size + 3) & ~3;
 | 
						|
 | 
						|
	pslot = pfree_head->next;
 | 
						|
	plast = pfree_head;
 | 
						|
 | 
						|
	/* search an available piece slot */
 | 
						|
	while (pslot != NULL && size > pslot->size) {
 | 
						|
		plast = pslot;
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pslot)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (pslot->size == size) {
 | 
						|
		plast->next = pslot->next;
 | 
						|
		pavail = pslot;
 | 
						|
	} else {
 | 
						|
		pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | 
						|
 | 
						|
		if (!pavail)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		pavail->paddr = pslot->paddr;
 | 
						|
		pavail->size = size;
 | 
						|
		pslot->paddr += size;
 | 
						|
		pslot->size -= size;
 | 
						|
	}
 | 
						|
 | 
						|
	pavail->pid = current->pid;
 | 
						|
 | 
						|
	pslot = pused_head->next;
 | 
						|
	plast = pused_head;
 | 
						|
 | 
						|
	/* insert new piece into used piece list !!! */
 | 
						|
	while (pslot != NULL && pavail->paddr < pslot->paddr) {
 | 
						|
		plast = pslot;
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	pavail->next = pslot;
 | 
						|
	plast->next = pavail;
 | 
						|
 | 
						|
	return pavail->paddr;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate the largest available block.  */
 | 
						|
static void *_sram_alloc_max(struct sram_piece *pfree_head,
 | 
						|
				struct sram_piece *pused_head,
 | 
						|
				unsigned long *psize)
 | 
						|
{
 | 
						|
	struct sram_piece *pslot, *pmax;
 | 
						|
 | 
						|
	if (!pfree_head || !pused_head)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pmax = pslot = pfree_head->next;
 | 
						|
 | 
						|
	/* search an available piece slot */
 | 
						|
	while (pslot != NULL) {
 | 
						|
		if (pslot->size > pmax->size)
 | 
						|
			pmax = pslot;
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pmax)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	*psize = pmax->size;
 | 
						|
 | 
						|
	return _sram_alloc(*psize, pfree_head, pused_head);
 | 
						|
}
 | 
						|
 | 
						|
/* SRAM free function */
 | 
						|
static int _sram_free(const void *addr,
 | 
						|
			struct sram_piece *pfree_head,
 | 
						|
			struct sram_piece *pused_head)
 | 
						|
{
 | 
						|
	struct sram_piece *pslot, *plast, *pavail;
 | 
						|
 | 
						|
	if (!pfree_head || !pused_head)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* search the relevant memory slot */
 | 
						|
	pslot = pused_head->next;
 | 
						|
	plast = pused_head;
 | 
						|
 | 
						|
	/* search an available piece slot */
 | 
						|
	while (pslot != NULL && pslot->paddr != addr) {
 | 
						|
		plast = pslot;
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pslot)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	plast->next = pslot->next;
 | 
						|
	pavail = pslot;
 | 
						|
	pavail->pid = 0;
 | 
						|
 | 
						|
	/* insert free pieces back to the free list */
 | 
						|
	pslot = pfree_head->next;
 | 
						|
	plast = pfree_head;
 | 
						|
 | 
						|
	while (pslot != NULL && addr > pslot->paddr) {
 | 
						|
		plast = pslot;
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
 | 
						|
		plast->size += pavail->size;
 | 
						|
		kmem_cache_free(sram_piece_cache, pavail);
 | 
						|
	} else {
 | 
						|
		pavail->next = plast->next;
 | 
						|
		plast->next = pavail;
 | 
						|
		plast = pavail;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pslot && plast->paddr + plast->size == pslot->paddr) {
 | 
						|
		plast->size += pslot->size;
 | 
						|
		plast->next = pslot->next;
 | 
						|
		kmem_cache_free(sram_piece_cache, pslot);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int sram_free(const void *addr)
 | 
						|
{
 | 
						|
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
	if (addr >= (void *)get_l1_code_start()
 | 
						|
		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
 | 
						|
		return l1_inst_sram_free(addr);
 | 
						|
	else
 | 
						|
#endif
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
	if (addr >= (void *)get_l1_data_a_start()
 | 
						|
		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
 | 
						|
		return l1_data_A_sram_free(addr);
 | 
						|
	else
 | 
						|
#endif
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
	if (addr >= (void *)get_l1_data_b_start()
 | 
						|
		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
 | 
						|
		return l1_data_B_sram_free(addr);
 | 
						|
	else
 | 
						|
#endif
 | 
						|
#if L2_LENGTH != 0
 | 
						|
	if (addr >= (void *)L2_START
 | 
						|
		 && addr < (void *)(L2_START + L2_LENGTH))
 | 
						|
		return l2_sram_free(addr);
 | 
						|
	else
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sram_free);
 | 
						|
 | 
						|
void *l1_data_A_sram_alloc(size_t size)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr = NULL;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_A_sram_head, cpu));
 | 
						|
#endif
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
 | 
						|
		 (long unsigned int)addr, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_A_sram_alloc);
 | 
						|
 | 
						|
int l1_data_A_sram_free(const void *addr)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_A_sram_head, cpu));
 | 
						|
#else
 | 
						|
	ret = -1;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_A_sram_free);
 | 
						|
 | 
						|
void *l1_data_B_sram_alloc(size_t size)
 | 
						|
{
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
 | 
						|
	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_B_sram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
 | 
						|
		 (long unsigned int)addr, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
#else
 | 
						|
	return NULL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_B_sram_alloc);
 | 
						|
 | 
						|
int l1_data_B_sram_free(const void *addr)
 | 
						|
{
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
 | 
						|
	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_B_sram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return ret;
 | 
						|
#else
 | 
						|
	return -1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_B_sram_free);
 | 
						|
 | 
						|
void *l1_data_sram_alloc(size_t size)
 | 
						|
{
 | 
						|
	void *addr = l1_data_A_sram_alloc(size);
 | 
						|
 | 
						|
	if (!addr)
 | 
						|
		addr = l1_data_B_sram_alloc(size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_sram_alloc);
 | 
						|
 | 
						|
void *l1_data_sram_zalloc(size_t size)
 | 
						|
{
 | 
						|
	void *addr = l1_data_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr)
 | 
						|
		memset(addr, 0x00, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_sram_zalloc);
 | 
						|
 | 
						|
int l1_data_sram_free(const void *addr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	ret = l1_data_A_sram_free(addr);
 | 
						|
	if (ret == -1)
 | 
						|
		ret = l1_data_B_sram_free(addr);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_data_sram_free);
 | 
						|
 | 
						|
void *l1_inst_sram_alloc(size_t size)
 | 
						|
{
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | 
						|
 | 
						|
	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_inst_sram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
 | 
						|
		 (long unsigned int)addr, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
#else
 | 
						|
	return NULL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_inst_sram_alloc);
 | 
						|
 | 
						|
int l1_inst_sram_free(const void *addr)
 | 
						|
{
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | 
						|
 | 
						|
	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_inst_sram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return ret;
 | 
						|
#else
 | 
						|
	return -1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l1_inst_sram_free);
 | 
						|
 | 
						|
/* L1 Scratchpad memory allocate function */
 | 
						|
void *l1sram_alloc(size_t size)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
 | 
						|
	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
 | 
						|
			&per_cpu(used_l1_ssram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
/* L1 Scratchpad memory allocate function */
 | 
						|
void *l1sram_alloc_max(size_t *psize)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
 | 
						|
	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
 | 
						|
			&per_cpu(used_l1_ssram_head, cpu), psize);
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
/* L1 Scratchpad memory free function */
 | 
						|
int l1sram_free(const void *addr)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
 | 
						|
	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
 | 
						|
			&per_cpu(used_l1_ssram_head, cpu));
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void *l2_sram_alloc(size_t size)
 | 
						|
{
 | 
						|
#if L2_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	void *addr;
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&l2_sram_lock, flags);
 | 
						|
 | 
						|
	addr = _sram_alloc(size, &free_l2_sram_head,
 | 
						|
			&used_l2_sram_head);
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&l2_sram_lock, flags);
 | 
						|
 | 
						|
	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
 | 
						|
		 (long unsigned int)addr, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
#else
 | 
						|
	return NULL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l2_sram_alloc);
 | 
						|
 | 
						|
void *l2_sram_zalloc(size_t size)
 | 
						|
{
 | 
						|
	void *addr = l2_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr)
 | 
						|
		memset(addr, 0x00, size);
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l2_sram_zalloc);
 | 
						|
 | 
						|
int l2_sram_free(const void *addr)
 | 
						|
{
 | 
						|
#if L2_LENGTH != 0
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_lock_irqsave(&l2_sram_lock, flags);
 | 
						|
 | 
						|
	ret = _sram_free(addr, &free_l2_sram_head,
 | 
						|
			&used_l2_sram_head);
 | 
						|
 | 
						|
	/* add mutex operation */
 | 
						|
	spin_unlock_irqrestore(&l2_sram_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
#else
 | 
						|
	return -1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(l2_sram_free);
 | 
						|
 | 
						|
int sram_free_with_lsl(const void *addr)
 | 
						|
{
 | 
						|
	struct sram_list_struct *lsl, **tmp;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
 | 
						|
	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
 | 
						|
		if ((*tmp)->addr == addr)
 | 
						|
			goto found;
 | 
						|
	return -1;
 | 
						|
found:
 | 
						|
	lsl = *tmp;
 | 
						|
	sram_free(addr);
 | 
						|
	*tmp = lsl->next;
 | 
						|
	kfree(lsl);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sram_free_with_lsl);
 | 
						|
 | 
						|
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
 | 
						|
{
 | 
						|
	void *addr = NULL;
 | 
						|
	struct sram_list_struct *lsl = NULL;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
 | 
						|
	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
 | 
						|
	if (!lsl)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (flags & L1_INST_SRAM)
 | 
						|
		addr = l1_inst_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr == NULL && (flags & L1_DATA_A_SRAM))
 | 
						|
		addr = l1_data_A_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr == NULL && (flags & L1_DATA_B_SRAM))
 | 
						|
		addr = l1_data_B_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr == NULL && (flags & L2_SRAM))
 | 
						|
		addr = l2_sram_alloc(size);
 | 
						|
 | 
						|
	if (addr == NULL) {
 | 
						|
		kfree(lsl);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	lsl->addr = addr;
 | 
						|
	lsl->length = size;
 | 
						|
	lsl->next = mm->context.sram_list;
 | 
						|
	mm->context.sram_list = lsl;
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sram_alloc_with_lsl);
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
/* Once we get a real allocator, we'll throw all of this away.
 | 
						|
 * Until then, we need some sort of visibility into the L1 alloc.
 | 
						|
 */
 | 
						|
/* Need to keep line of output the same.  Currently, that is 44 bytes
 | 
						|
 * (including newline).
 | 
						|
 */
 | 
						|
static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
 | 
						|
		struct sram_piece *pfree_head,
 | 
						|
		struct sram_piece *pused_head)
 | 
						|
{
 | 
						|
	struct sram_piece *pslot;
 | 
						|
 | 
						|
	if (!pfree_head || !pused_head)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	*len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
 | 
						|
 | 
						|
	/* search the relevant memory slot */
 | 
						|
	pslot = pused_head->next;
 | 
						|
 | 
						|
	while (pslot != NULL) {
 | 
						|
		*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
 | 
						|
			pslot->paddr, pslot->paddr + pslot->size,
 | 
						|
			pslot->size, pslot->pid, "ALLOCATED");
 | 
						|
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	pslot = pfree_head->next;
 | 
						|
 | 
						|
	while (pslot != NULL) {
 | 
						|
		*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
 | 
						|
			pslot->paddr, pslot->paddr + pslot->size,
 | 
						|
			pslot->size, pslot->pid, "FREE");
 | 
						|
 | 
						|
		pslot = pslot->next;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static int sram_proc_read(char *buf, char **start, off_t offset, int count,
 | 
						|
		int *eof, void *data)
 | 
						|
{
 | 
						|
	int len = 0;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | 
						|
		if (_sram_proc_read(buf, &len, count, "Scratchpad",
 | 
						|
			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
 | 
						|
			goto not_done;
 | 
						|
#if L1_DATA_A_LENGTH != 0
 | 
						|
		if (_sram_proc_read(buf, &len, count, "L1 Data A",
 | 
						|
			&per_cpu(free_l1_data_A_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_A_sram_head, cpu)))
 | 
						|
			goto not_done;
 | 
						|
#endif
 | 
						|
#if L1_DATA_B_LENGTH != 0
 | 
						|
		if (_sram_proc_read(buf, &len, count, "L1 Data B",
 | 
						|
			&per_cpu(free_l1_data_B_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_data_B_sram_head, cpu)))
 | 
						|
			goto not_done;
 | 
						|
#endif
 | 
						|
#if L1_CODE_LENGTH != 0
 | 
						|
		if (_sram_proc_read(buf, &len, count, "L1 Instruction",
 | 
						|
			&per_cpu(free_l1_inst_sram_head, cpu),
 | 
						|
			&per_cpu(used_l1_inst_sram_head, cpu)))
 | 
						|
			goto not_done;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
#if L2_LENGTH != 0
 | 
						|
	if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
 | 
						|
		&used_l2_sram_head))
 | 
						|
		goto not_done;
 | 
						|
#endif
 | 
						|
	*eof = 1;
 | 
						|
 not_done:
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static int __init sram_proc_init(void)
 | 
						|
{
 | 
						|
	struct proc_dir_entry *ptr;
 | 
						|
	ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
 | 
						|
	if (!ptr) {
 | 
						|
		printk(KERN_WARNING "unable to create /proc/sram\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	ptr->read_proc = sram_proc_read;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(sram_proc_init);
 | 
						|
#endif
 |