 2743f86554
			
		
	
	
	2743f86554
	
	
	
		
			
			If we don't check the current backing device status, balance_dirty_pages can fall into infinite pausing routine. This can be occurred when a lot of directories make a small number of dirty dentry pages including files. Reported-by: Brian Chadwick <brianchad@westnet.com.au> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
		
			
				
	
	
		
			1994 lines
		
	
	
	
		
			47 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1994 lines
		
	
	
	
		
			47 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/f2fs/node.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/swap.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "node.h"
 | |
| #include "segment.h"
 | |
| #include <trace/events/f2fs.h>
 | |
| 
 | |
| #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
 | |
| 
 | |
| static struct kmem_cache *nat_entry_slab;
 | |
| static struct kmem_cache *free_nid_slab;
 | |
| 
 | |
| bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct sysinfo val;
 | |
| 	unsigned long mem_size = 0;
 | |
| 	bool res = false;
 | |
| 
 | |
| 	si_meminfo(&val);
 | |
| 	/* give 25%, 25%, 50% memory for each components respectively */
 | |
| 	if (type == FREE_NIDS) {
 | |
| 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
 | |
| 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
 | |
| 	} else if (type == NAT_ENTRIES) {
 | |
| 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
 | |
| 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
 | |
| 	} else if (type == DIRTY_DENTS) {
 | |
| 		if (sbi->sb->s_bdi->dirty_exceeded)
 | |
| 			return false;
 | |
| 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
 | |
| 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void clear_node_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 | |
| 	unsigned int long flags;
 | |
| 
 | |
| 	if (PageDirty(page)) {
 | |
| 		spin_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		radix_tree_tag_clear(&mapping->page_tree,
 | |
| 				page_index(page),
 | |
| 				PAGECACHE_TAG_DIRTY);
 | |
| 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		dec_page_count(sbi, F2FS_DIRTY_NODES);
 | |
| 	}
 | |
| 	ClearPageUptodate(page);
 | |
| }
 | |
| 
 | |
| static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	pgoff_t index = current_nat_addr(sbi, nid);
 | |
| 	return get_meta_page(sbi, index);
 | |
| }
 | |
| 
 | |
| static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct page *src_page;
 | |
| 	struct page *dst_page;
 | |
| 	pgoff_t src_off;
 | |
| 	pgoff_t dst_off;
 | |
| 	void *src_addr;
 | |
| 	void *dst_addr;
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 
 | |
| 	src_off = current_nat_addr(sbi, nid);
 | |
| 	dst_off = next_nat_addr(sbi, src_off);
 | |
| 
 | |
| 	/* get current nat block page with lock */
 | |
| 	src_page = get_meta_page(sbi, src_off);
 | |
| 
 | |
| 	/* Dirty src_page means that it is already the new target NAT page. */
 | |
| 	if (PageDirty(src_page))
 | |
| 		return src_page;
 | |
| 
 | |
| 	dst_page = grab_meta_page(sbi, dst_off);
 | |
| 
 | |
| 	src_addr = page_address(src_page);
 | |
| 	dst_addr = page_address(dst_page);
 | |
| 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
 | |
| 	set_page_dirty(dst_page);
 | |
| 	f2fs_put_page(src_page, 1);
 | |
| 
 | |
| 	set_to_next_nat(nm_i, nid);
 | |
| 
 | |
| 	return dst_page;
 | |
| }
 | |
| 
 | |
| static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 | |
| {
 | |
| 	return radix_tree_lookup(&nm_i->nat_root, n);
 | |
| }
 | |
| 
 | |
| static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 | |
| 		nid_t start, unsigned int nr, struct nat_entry **ep)
 | |
| {
 | |
| 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 | |
| }
 | |
| 
 | |
| static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 | |
| {
 | |
| 	list_del(&e->list);
 | |
| 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 | |
| 	nm_i->nat_cnt--;
 | |
| 	kmem_cache_free(nat_entry_slab, e);
 | |
| }
 | |
| 
 | |
| int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct nat_entry *e;
 | |
| 	int is_cp = 1;
 | |
| 
 | |
| 	read_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, nid);
 | |
| 	if (e && !e->checkpointed)
 | |
| 		is_cp = 0;
 | |
| 	read_unlock(&nm_i->nat_tree_lock);
 | |
| 	return is_cp;
 | |
| }
 | |
| 
 | |
| bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct nat_entry *e;
 | |
| 	bool fsync_done = false;
 | |
| 
 | |
| 	read_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, nid);
 | |
| 	if (e)
 | |
| 		fsync_done = e->fsync_done;
 | |
| 	read_unlock(&nm_i->nat_tree_lock);
 | |
| 	return fsync_done;
 | |
| }
 | |
| 
 | |
| void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct nat_entry *e;
 | |
| 
 | |
| 	write_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, nid);
 | |
| 	if (e)
 | |
| 		e->fsync_done = false;
 | |
| 	write_unlock(&nm_i->nat_tree_lock);
 | |
| }
 | |
| 
 | |
| static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 | |
| {
 | |
| 	struct nat_entry *new;
 | |
| 
 | |
| 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
 | |
| 		kmem_cache_free(nat_entry_slab, new);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	memset(new, 0, sizeof(struct nat_entry));
 | |
| 	nat_set_nid(new, nid);
 | |
| 	new->checkpointed = true;
 | |
| 	list_add_tail(&new->list, &nm_i->nat_entries);
 | |
| 	nm_i->nat_cnt++;
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
 | |
| 						struct f2fs_nat_entry *ne)
 | |
| {
 | |
| 	struct nat_entry *e;
 | |
| retry:
 | |
| 	write_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, nid);
 | |
| 	if (!e) {
 | |
| 		e = grab_nat_entry(nm_i, nid);
 | |
| 		if (!e) {
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		node_info_from_raw_nat(&e->ni, ne);
 | |
| 	}
 | |
| 	write_unlock(&nm_i->nat_tree_lock);
 | |
| }
 | |
| 
 | |
| static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 | |
| 			block_t new_blkaddr, bool fsync_done)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct nat_entry *e;
 | |
| retry:
 | |
| 	write_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, ni->nid);
 | |
| 	if (!e) {
 | |
| 		e = grab_nat_entry(nm_i, ni->nid);
 | |
| 		if (!e) {
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		e->ni = *ni;
 | |
| 		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
 | |
| 	} else if (new_blkaddr == NEW_ADDR) {
 | |
| 		/*
 | |
| 		 * when nid is reallocated,
 | |
| 		 * previous nat entry can be remained in nat cache.
 | |
| 		 * So, reinitialize it with new information.
 | |
| 		 */
 | |
| 		e->ni = *ni;
 | |
| 		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
 | |
| 	}
 | |
| 
 | |
| 	/* sanity check */
 | |
| 	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
 | |
| 	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
 | |
| 			new_blkaddr == NULL_ADDR);
 | |
| 	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
 | |
| 			new_blkaddr == NEW_ADDR);
 | |
| 	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
 | |
| 			nat_get_blkaddr(e) != NULL_ADDR &&
 | |
| 			new_blkaddr == NEW_ADDR);
 | |
| 
 | |
| 	/* increament version no as node is removed */
 | |
| 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 | |
| 		unsigned char version = nat_get_version(e);
 | |
| 		nat_set_version(e, inc_node_version(version));
 | |
| 	}
 | |
| 
 | |
| 	/* change address */
 | |
| 	nat_set_blkaddr(e, new_blkaddr);
 | |
| 	__set_nat_cache_dirty(nm_i, e);
 | |
| 
 | |
| 	/* update fsync_mark if its inode nat entry is still alive */
 | |
| 	e = __lookup_nat_cache(nm_i, ni->ino);
 | |
| 	if (e)
 | |
| 		e->fsync_done = fsync_done;
 | |
| 	write_unlock(&nm_i->nat_tree_lock);
 | |
| }
 | |
| 
 | |
| int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 
 | |
| 	if (available_free_memory(sbi, NAT_ENTRIES))
 | |
| 		return 0;
 | |
| 
 | |
| 	write_lock(&nm_i->nat_tree_lock);
 | |
| 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 | |
| 		struct nat_entry *ne;
 | |
| 		ne = list_first_entry(&nm_i->nat_entries,
 | |
| 					struct nat_entry, list);
 | |
| 		__del_from_nat_cache(nm_i, ne);
 | |
| 		nr_shrink--;
 | |
| 	}
 | |
| 	write_unlock(&nm_i->nat_tree_lock);
 | |
| 	return nr_shrink;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function returns always success
 | |
|  */
 | |
| void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	nid_t start_nid = START_NID(nid);
 | |
| 	struct f2fs_nat_block *nat_blk;
 | |
| 	struct page *page = NULL;
 | |
| 	struct f2fs_nat_entry ne;
 | |
| 	struct nat_entry *e;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 | |
| 	ni->nid = nid;
 | |
| 
 | |
| 	/* Check nat cache */
 | |
| 	read_lock(&nm_i->nat_tree_lock);
 | |
| 	e = __lookup_nat_cache(nm_i, nid);
 | |
| 	if (e) {
 | |
| 		ni->ino = nat_get_ino(e);
 | |
| 		ni->blk_addr = nat_get_blkaddr(e);
 | |
| 		ni->version = nat_get_version(e);
 | |
| 	}
 | |
| 	read_unlock(&nm_i->nat_tree_lock);
 | |
| 	if (e)
 | |
| 		return;
 | |
| 
 | |
| 	/* Check current segment summary */
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
 | |
| 	if (i >= 0) {
 | |
| 		ne = nat_in_journal(sum, i);
 | |
| 		node_info_from_raw_nat(ni, &ne);
 | |
| 	}
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	if (i >= 0)
 | |
| 		goto cache;
 | |
| 
 | |
| 	/* Fill node_info from nat page */
 | |
| 	page = get_current_nat_page(sbi, start_nid);
 | |
| 	nat_blk = (struct f2fs_nat_block *)page_address(page);
 | |
| 	ne = nat_blk->entries[nid - start_nid];
 | |
| 	node_info_from_raw_nat(ni, &ne);
 | |
| 	f2fs_put_page(page, 1);
 | |
| cache:
 | |
| 	/* cache nat entry */
 | |
| 	cache_nat_entry(NM_I(sbi), nid, &ne);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The maximum depth is four.
 | |
|  * Offset[0] will have raw inode offset.
 | |
|  */
 | |
| static int get_node_path(struct f2fs_inode_info *fi, long block,
 | |
| 				int offset[4], unsigned int noffset[4])
 | |
| {
 | |
| 	const long direct_index = ADDRS_PER_INODE(fi);
 | |
| 	const long direct_blks = ADDRS_PER_BLOCK;
 | |
| 	const long dptrs_per_blk = NIDS_PER_BLOCK;
 | |
| 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 | |
| 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 | |
| 	int n = 0;
 | |
| 	int level = 0;
 | |
| 
 | |
| 	noffset[0] = 0;
 | |
| 
 | |
| 	if (block < direct_index) {
 | |
| 		offset[n] = block;
 | |
| 		goto got;
 | |
| 	}
 | |
| 	block -= direct_index;
 | |
| 	if (block < direct_blks) {
 | |
| 		offset[n++] = NODE_DIR1_BLOCK;
 | |
| 		noffset[n] = 1;
 | |
| 		offset[n] = block;
 | |
| 		level = 1;
 | |
| 		goto got;
 | |
| 	}
 | |
| 	block -= direct_blks;
 | |
| 	if (block < direct_blks) {
 | |
| 		offset[n++] = NODE_DIR2_BLOCK;
 | |
| 		noffset[n] = 2;
 | |
| 		offset[n] = block;
 | |
| 		level = 1;
 | |
| 		goto got;
 | |
| 	}
 | |
| 	block -= direct_blks;
 | |
| 	if (block < indirect_blks) {
 | |
| 		offset[n++] = NODE_IND1_BLOCK;
 | |
| 		noffset[n] = 3;
 | |
| 		offset[n++] = block / direct_blks;
 | |
| 		noffset[n] = 4 + offset[n - 1];
 | |
| 		offset[n] = block % direct_blks;
 | |
| 		level = 2;
 | |
| 		goto got;
 | |
| 	}
 | |
| 	block -= indirect_blks;
 | |
| 	if (block < indirect_blks) {
 | |
| 		offset[n++] = NODE_IND2_BLOCK;
 | |
| 		noffset[n] = 4 + dptrs_per_blk;
 | |
| 		offset[n++] = block / direct_blks;
 | |
| 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 | |
| 		offset[n] = block % direct_blks;
 | |
| 		level = 2;
 | |
| 		goto got;
 | |
| 	}
 | |
| 	block -= indirect_blks;
 | |
| 	if (block < dindirect_blks) {
 | |
| 		offset[n++] = NODE_DIND_BLOCK;
 | |
| 		noffset[n] = 5 + (dptrs_per_blk * 2);
 | |
| 		offset[n++] = block / indirect_blks;
 | |
| 		noffset[n] = 6 + (dptrs_per_blk * 2) +
 | |
| 			      offset[n - 1] * (dptrs_per_blk + 1);
 | |
| 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 | |
| 		noffset[n] = 7 + (dptrs_per_blk * 2) +
 | |
| 			      offset[n - 2] * (dptrs_per_blk + 1) +
 | |
| 			      offset[n - 1];
 | |
| 		offset[n] = block % direct_blks;
 | |
| 		level = 3;
 | |
| 		goto got;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| got:
 | |
| 	return level;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should call f2fs_put_dnode(dn).
 | |
|  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 | |
|  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 | |
|  * In the case of RDONLY_NODE, we don't need to care about mutex.
 | |
|  */
 | |
| int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct page *npage[4];
 | |
| 	struct page *parent;
 | |
| 	int offset[4];
 | |
| 	unsigned int noffset[4];
 | |
| 	nid_t nids[4];
 | |
| 	int level, i;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
 | |
| 
 | |
| 	nids[0] = dn->inode->i_ino;
 | |
| 	npage[0] = dn->inode_page;
 | |
| 
 | |
| 	if (!npage[0]) {
 | |
| 		npage[0] = get_node_page(sbi, nids[0]);
 | |
| 		if (IS_ERR(npage[0]))
 | |
| 			return PTR_ERR(npage[0]);
 | |
| 	}
 | |
| 	parent = npage[0];
 | |
| 	if (level != 0)
 | |
| 		nids[1] = get_nid(parent, offset[0], true);
 | |
| 	dn->inode_page = npage[0];
 | |
| 	dn->inode_page_locked = true;
 | |
| 
 | |
| 	/* get indirect or direct nodes */
 | |
| 	for (i = 1; i <= level; i++) {
 | |
| 		bool done = false;
 | |
| 
 | |
| 		if (!nids[i] && mode == ALLOC_NODE) {
 | |
| 			/* alloc new node */
 | |
| 			if (!alloc_nid(sbi, &(nids[i]))) {
 | |
| 				err = -ENOSPC;
 | |
| 				goto release_pages;
 | |
| 			}
 | |
| 
 | |
| 			dn->nid = nids[i];
 | |
| 			npage[i] = new_node_page(dn, noffset[i], NULL);
 | |
| 			if (IS_ERR(npage[i])) {
 | |
| 				alloc_nid_failed(sbi, nids[i]);
 | |
| 				err = PTR_ERR(npage[i]);
 | |
| 				goto release_pages;
 | |
| 			}
 | |
| 
 | |
| 			set_nid(parent, offset[i - 1], nids[i], i == 1);
 | |
| 			alloc_nid_done(sbi, nids[i]);
 | |
| 			done = true;
 | |
| 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 | |
| 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 | |
| 			if (IS_ERR(npage[i])) {
 | |
| 				err = PTR_ERR(npage[i]);
 | |
| 				goto release_pages;
 | |
| 			}
 | |
| 			done = true;
 | |
| 		}
 | |
| 		if (i == 1) {
 | |
| 			dn->inode_page_locked = false;
 | |
| 			unlock_page(parent);
 | |
| 		} else {
 | |
| 			f2fs_put_page(parent, 1);
 | |
| 		}
 | |
| 
 | |
| 		if (!done) {
 | |
| 			npage[i] = get_node_page(sbi, nids[i]);
 | |
| 			if (IS_ERR(npage[i])) {
 | |
| 				err = PTR_ERR(npage[i]);
 | |
| 				f2fs_put_page(npage[0], 0);
 | |
| 				goto release_out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i < level) {
 | |
| 			parent = npage[i];
 | |
| 			nids[i + 1] = get_nid(parent, offset[i], false);
 | |
| 		}
 | |
| 	}
 | |
| 	dn->nid = nids[level];
 | |
| 	dn->ofs_in_node = offset[level];
 | |
| 	dn->node_page = npage[level];
 | |
| 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 | |
| 	return 0;
 | |
| 
 | |
| release_pages:
 | |
| 	f2fs_put_page(parent, 1);
 | |
| 	if (i > 1)
 | |
| 		f2fs_put_page(npage[0], 0);
 | |
| release_out:
 | |
| 	dn->inode_page = NULL;
 | |
| 	dn->node_page = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void truncate_node(struct dnode_of_data *dn)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct node_info ni;
 | |
| 
 | |
| 	get_node_info(sbi, dn->nid, &ni);
 | |
| 	if (dn->inode->i_blocks == 0) {
 | |
| 		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
 | |
| 		goto invalidate;
 | |
| 	}
 | |
| 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
 | |
| 
 | |
| 	/* Deallocate node address */
 | |
| 	invalidate_blocks(sbi, ni.blk_addr);
 | |
| 	dec_valid_node_count(sbi, dn->inode);
 | |
| 	set_node_addr(sbi, &ni, NULL_ADDR, false);
 | |
| 
 | |
| 	if (dn->nid == dn->inode->i_ino) {
 | |
| 		remove_orphan_inode(sbi, dn->nid);
 | |
| 		dec_valid_inode_count(sbi);
 | |
| 	} else {
 | |
| 		sync_inode_page(dn);
 | |
| 	}
 | |
| invalidate:
 | |
| 	clear_node_page_dirty(dn->node_page);
 | |
| 	F2FS_SET_SB_DIRT(sbi);
 | |
| 
 | |
| 	f2fs_put_page(dn->node_page, 1);
 | |
| 
 | |
| 	invalidate_mapping_pages(NODE_MAPPING(sbi),
 | |
| 			dn->node_page->index, dn->node_page->index);
 | |
| 
 | |
| 	dn->node_page = NULL;
 | |
| 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 | |
| }
 | |
| 
 | |
| static int truncate_dnode(struct dnode_of_data *dn)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (dn->nid == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* get direct node */
 | |
| 	page = get_node_page(sbi, dn->nid);
 | |
| 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 | |
| 		return 1;
 | |
| 	else if (IS_ERR(page))
 | |
| 		return PTR_ERR(page);
 | |
| 
 | |
| 	/* Make dnode_of_data for parameter */
 | |
| 	dn->node_page = page;
 | |
| 	dn->ofs_in_node = 0;
 | |
| 	truncate_data_blocks(dn);
 | |
| 	truncate_node(dn);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 | |
| 						int ofs, int depth)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct dnode_of_data rdn = *dn;
 | |
| 	struct page *page;
 | |
| 	struct f2fs_node *rn;
 | |
| 	nid_t child_nid;
 | |
| 	unsigned int child_nofs;
 | |
| 	int freed = 0;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (dn->nid == 0)
 | |
| 		return NIDS_PER_BLOCK + 1;
 | |
| 
 | |
| 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 | |
| 
 | |
| 	page = get_node_page(sbi, dn->nid);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 | |
| 		return PTR_ERR(page);
 | |
| 	}
 | |
| 
 | |
| 	rn = F2FS_NODE(page);
 | |
| 	if (depth < 3) {
 | |
| 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 | |
| 			child_nid = le32_to_cpu(rn->in.nid[i]);
 | |
| 			if (child_nid == 0)
 | |
| 				continue;
 | |
| 			rdn.nid = child_nid;
 | |
| 			ret = truncate_dnode(&rdn);
 | |
| 			if (ret < 0)
 | |
| 				goto out_err;
 | |
| 			set_nid(page, i, 0, false);
 | |
| 		}
 | |
| 	} else {
 | |
| 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 | |
| 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 | |
| 			child_nid = le32_to_cpu(rn->in.nid[i]);
 | |
| 			if (child_nid == 0) {
 | |
| 				child_nofs += NIDS_PER_BLOCK + 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			rdn.nid = child_nid;
 | |
| 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 | |
| 			if (ret == (NIDS_PER_BLOCK + 1)) {
 | |
| 				set_nid(page, i, 0, false);
 | |
| 				child_nofs += ret;
 | |
| 			} else if (ret < 0 && ret != -ENOENT) {
 | |
| 				goto out_err;
 | |
| 			}
 | |
| 		}
 | |
| 		freed = child_nofs;
 | |
| 	}
 | |
| 
 | |
| 	if (!ofs) {
 | |
| 		/* remove current indirect node */
 | |
| 		dn->node_page = page;
 | |
| 		truncate_node(dn);
 | |
| 		freed++;
 | |
| 	} else {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 | |
| 	return freed;
 | |
| 
 | |
| out_err:
 | |
| 	f2fs_put_page(page, 1);
 | |
| 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int truncate_partial_nodes(struct dnode_of_data *dn,
 | |
| 			struct f2fs_inode *ri, int *offset, int depth)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct page *pages[2];
 | |
| 	nid_t nid[3];
 | |
| 	nid_t child_nid;
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 	int idx = depth - 2;
 | |
| 
 | |
| 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 | |
| 	if (!nid[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	/* get indirect nodes in the path */
 | |
| 	for (i = 0; i < idx + 1; i++) {
 | |
| 		/* refernece count'll be increased */
 | |
| 		pages[i] = get_node_page(sbi, nid[i]);
 | |
| 		if (IS_ERR(pages[i])) {
 | |
| 			err = PTR_ERR(pages[i]);
 | |
| 			idx = i - 1;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 | |
| 	}
 | |
| 
 | |
| 	/* free direct nodes linked to a partial indirect node */
 | |
| 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 | |
| 		child_nid = get_nid(pages[idx], i, false);
 | |
| 		if (!child_nid)
 | |
| 			continue;
 | |
| 		dn->nid = child_nid;
 | |
| 		err = truncate_dnode(dn);
 | |
| 		if (err < 0)
 | |
| 			goto fail;
 | |
| 		set_nid(pages[idx], i, 0, false);
 | |
| 	}
 | |
| 
 | |
| 	if (offset[idx + 1] == 0) {
 | |
| 		dn->node_page = pages[idx];
 | |
| 		dn->nid = nid[idx];
 | |
| 		truncate_node(dn);
 | |
| 	} else {
 | |
| 		f2fs_put_page(pages[idx], 1);
 | |
| 	}
 | |
| 	offset[idx]++;
 | |
| 	offset[idx + 1] = 0;
 | |
| 	idx--;
 | |
| fail:
 | |
| 	for (i = idx; i >= 0; i--)
 | |
| 		f2fs_put_page(pages[i], 1);
 | |
| 
 | |
| 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All the block addresses of data and nodes should be nullified.
 | |
|  */
 | |
| int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	int err = 0, cont = 1;
 | |
| 	int level, offset[4], noffset[4];
 | |
| 	unsigned int nofs = 0;
 | |
| 	struct f2fs_inode *ri;
 | |
| 	struct dnode_of_data dn;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 | |
| 
 | |
| 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
 | |
| restart:
 | |
| 	page = get_node_page(sbi, inode->i_ino);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 | |
| 		return PTR_ERR(page);
 | |
| 	}
 | |
| 
 | |
| 	set_new_dnode(&dn, inode, page, NULL, 0);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	ri = F2FS_INODE(page);
 | |
| 	switch (level) {
 | |
| 	case 0:
 | |
| 	case 1:
 | |
| 		nofs = noffset[1];
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		nofs = noffset[1];
 | |
| 		if (!offset[level - 1])
 | |
| 			goto skip_partial;
 | |
| 		err = truncate_partial_nodes(&dn, ri, offset, level);
 | |
| 		if (err < 0 && err != -ENOENT)
 | |
| 			goto fail;
 | |
| 		nofs += 1 + NIDS_PER_BLOCK;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		nofs = 5 + 2 * NIDS_PER_BLOCK;
 | |
| 		if (!offset[level - 1])
 | |
| 			goto skip_partial;
 | |
| 		err = truncate_partial_nodes(&dn, ri, offset, level);
 | |
| 		if (err < 0 && err != -ENOENT)
 | |
| 			goto fail;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| skip_partial:
 | |
| 	while (cont) {
 | |
| 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 | |
| 		switch (offset[0]) {
 | |
| 		case NODE_DIR1_BLOCK:
 | |
| 		case NODE_DIR2_BLOCK:
 | |
| 			err = truncate_dnode(&dn);
 | |
| 			break;
 | |
| 
 | |
| 		case NODE_IND1_BLOCK:
 | |
| 		case NODE_IND2_BLOCK:
 | |
| 			err = truncate_nodes(&dn, nofs, offset[1], 2);
 | |
| 			break;
 | |
| 
 | |
| 		case NODE_DIND_BLOCK:
 | |
| 			err = truncate_nodes(&dn, nofs, offset[1], 3);
 | |
| 			cont = 0;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 		if (err < 0 && err != -ENOENT)
 | |
| 			goto fail;
 | |
| 		if (offset[1] == 0 &&
 | |
| 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 | |
| 			lock_page(page);
 | |
| 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 | |
| 				f2fs_put_page(page, 1);
 | |
| 				goto restart;
 | |
| 			}
 | |
| 			f2fs_wait_on_page_writeback(page, NODE);
 | |
| 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 | |
| 			set_page_dirty(page);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		offset[1] = 0;
 | |
| 		offset[0]++;
 | |
| 		nofs += err;
 | |
| 	}
 | |
| fail:
 | |
| 	f2fs_put_page(page, 0);
 | |
| 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 | |
| 	return err > 0 ? 0 : err;
 | |
| }
 | |
| 
 | |
| int truncate_xattr_node(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 | |
| 	struct dnode_of_data dn;
 | |
| 	struct page *npage;
 | |
| 
 | |
| 	if (!nid)
 | |
| 		return 0;
 | |
| 
 | |
| 	npage = get_node_page(sbi, nid);
 | |
| 	if (IS_ERR(npage))
 | |
| 		return PTR_ERR(npage);
 | |
| 
 | |
| 	F2FS_I(inode)->i_xattr_nid = 0;
 | |
| 
 | |
| 	/* need to do checkpoint during fsync */
 | |
| 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 | |
| 
 | |
| 	set_new_dnode(&dn, inode, page, npage, nid);
 | |
| 
 | |
| 	if (page)
 | |
| 		dn.inode_page_locked = true;
 | |
| 	truncate_node(&dn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 | |
|  * f2fs_unlock_op().
 | |
|  */
 | |
| void remove_inode_page(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct page *page;
 | |
| 	nid_t ino = inode->i_ino;
 | |
| 	struct dnode_of_data dn;
 | |
| 
 | |
| 	page = get_node_page(sbi, ino);
 | |
| 	if (IS_ERR(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (truncate_xattr_node(inode, page)) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* 0 is possible, after f2fs_new_inode() is failed */
 | |
| 	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
 | |
| 	set_new_dnode(&dn, inode, page, page, ino);
 | |
| 	truncate_node(&dn);
 | |
| }
 | |
| 
 | |
| struct page *new_inode_page(struct inode *inode, const struct qstr *name)
 | |
| {
 | |
| 	struct dnode_of_data dn;
 | |
| 
 | |
| 	/* allocate inode page for new inode */
 | |
| 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 | |
| 
 | |
| 	/* caller should f2fs_put_page(page, 1); */
 | |
| 	return new_node_page(&dn, 0, NULL);
 | |
| }
 | |
| 
 | |
| struct page *new_node_page(struct dnode_of_data *dn,
 | |
| 				unsigned int ofs, struct page *ipage)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 | |
| 	struct node_info old_ni, new_ni;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
 | |
| 	if (!page)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
 | |
| 		err = -ENOSPC;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	get_node_info(sbi, dn->nid, &old_ni);
 | |
| 
 | |
| 	/* Reinitialize old_ni with new node page */
 | |
| 	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
 | |
| 	new_ni = old_ni;
 | |
| 	new_ni.ino = dn->inode->i_ino;
 | |
| 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 | |
| 
 | |
| 	f2fs_wait_on_page_writeback(page, NODE);
 | |
| 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
 | |
| 	set_cold_node(dn->inode, page);
 | |
| 	SetPageUptodate(page);
 | |
| 	set_page_dirty(page);
 | |
| 
 | |
| 	if (f2fs_has_xattr_block(ofs))
 | |
| 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
 | |
| 
 | |
| 	dn->node_page = page;
 | |
| 	if (ipage)
 | |
| 		update_inode(dn->inode, ipage);
 | |
| 	else
 | |
| 		sync_inode_page(dn);
 | |
| 	if (ofs == 0)
 | |
| 		inc_valid_inode_count(sbi);
 | |
| 
 | |
| 	return page;
 | |
| 
 | |
| fail:
 | |
| 	clear_node_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should do after getting the following values.
 | |
|  * 0: f2fs_put_page(page, 0)
 | |
|  * LOCKED_PAGE: f2fs_put_page(page, 1)
 | |
|  * error: nothing
 | |
|  */
 | |
| static int read_node_page(struct page *page, int rw)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
 | |
| 	struct node_info ni;
 | |
| 
 | |
| 	get_node_info(sbi, page->index, &ni);
 | |
| 
 | |
| 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	if (PageUptodate(page))
 | |
| 		return LOCKED_PAGE;
 | |
| 
 | |
| 	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Readahead a node page
 | |
|  */
 | |
| void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct page *apage;
 | |
| 	int err;
 | |
| 
 | |
| 	apage = find_get_page(NODE_MAPPING(sbi), nid);
 | |
| 	if (apage && PageUptodate(apage)) {
 | |
| 		f2fs_put_page(apage, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 	f2fs_put_page(apage, 0);
 | |
| 
 | |
| 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
 | |
| 	if (!apage)
 | |
| 		return;
 | |
| 
 | |
| 	err = read_node_page(apage, READA);
 | |
| 	if (err == 0)
 | |
| 		f2fs_put_page(apage, 0);
 | |
| 	else if (err == LOCKED_PAGE)
 | |
| 		f2fs_put_page(apage, 1);
 | |
| }
 | |
| 
 | |
| struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
 | |
| 	if (!page)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = read_node_page(page, READ_SYNC);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 	else if (err == LOCKED_PAGE)
 | |
| 		goto got_it;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| got_it:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a locked page for the desired node page.
 | |
|  * And, readahead MAX_RA_NODE number of node pages.
 | |
|  */
 | |
| struct page *get_node_page_ra(struct page *parent, int start)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
 | |
| 	struct blk_plug plug;
 | |
| 	struct page *page;
 | |
| 	int err, i, end;
 | |
| 	nid_t nid;
 | |
| 
 | |
| 	/* First, try getting the desired direct node. */
 | |
| 	nid = get_nid(parent, start, false);
 | |
| 	if (!nid)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| repeat:
 | |
| 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
 | |
| 	if (!page)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = read_node_page(page, READ_SYNC);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 	else if (err == LOCKED_PAGE)
 | |
| 		goto page_hit;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	/* Then, try readahead for siblings of the desired node */
 | |
| 	end = start + MAX_RA_NODE;
 | |
| 	end = min(end, NIDS_PER_BLOCK);
 | |
| 	for (i = start + 1; i < end; i++) {
 | |
| 		nid = get_nid(parent, i, false);
 | |
| 		if (!nid)
 | |
| 			continue;
 | |
| 		ra_node_page(sbi, nid);
 | |
| 	}
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| page_hit:
 | |
| 	if (unlikely(!PageUptodate(page))) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| void sync_inode_page(struct dnode_of_data *dn)
 | |
| {
 | |
| 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
 | |
| 		update_inode(dn->inode, dn->node_page);
 | |
| 	} else if (dn->inode_page) {
 | |
| 		if (!dn->inode_page_locked)
 | |
| 			lock_page(dn->inode_page);
 | |
| 		update_inode(dn->inode, dn->inode_page);
 | |
| 		if (!dn->inode_page_locked)
 | |
| 			unlock_page(dn->inode_page);
 | |
| 	} else {
 | |
| 		update_inode_page(dn->inode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
 | |
| 					struct writeback_control *wbc)
 | |
| {
 | |
| 	pgoff_t index, end;
 | |
| 	struct pagevec pvec;
 | |
| 	int step = ino ? 2 : 0;
 | |
| 	int nwritten = 0, wrote = 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 
 | |
| next_step:
 | |
| 	index = 0;
 | |
| 	end = LONG_MAX;
 | |
| 
 | |
| 	while (index <= end) {
 | |
| 		int i, nr_pages;
 | |
| 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
 | |
| 				PAGECACHE_TAG_DIRTY,
 | |
| 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * flushing sequence with step:
 | |
| 			 * 0. indirect nodes
 | |
| 			 * 1. dentry dnodes
 | |
| 			 * 2. file dnodes
 | |
| 			 */
 | |
| 			if (step == 0 && IS_DNODE(page))
 | |
| 				continue;
 | |
| 			if (step == 1 && (!IS_DNODE(page) ||
 | |
| 						is_cold_node(page)))
 | |
| 				continue;
 | |
| 			if (step == 2 && (!IS_DNODE(page) ||
 | |
| 						!is_cold_node(page)))
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * If an fsync mode,
 | |
| 			 * we should not skip writing node pages.
 | |
| 			 */
 | |
| 			if (ino && ino_of_node(page) == ino)
 | |
| 				lock_page(page);
 | |
| 			else if (!trylock_page(page))
 | |
| 				continue;
 | |
| 
 | |
| 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 | |
| continue_unlock:
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (ino && ino_of_node(page) != ino)
 | |
| 				goto continue_unlock;
 | |
| 
 | |
| 			if (!PageDirty(page)) {
 | |
| 				/* someone wrote it for us */
 | |
| 				goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			if (!clear_page_dirty_for_io(page))
 | |
| 				goto continue_unlock;
 | |
| 
 | |
| 			/* called by fsync() */
 | |
| 			if (ino && IS_DNODE(page)) {
 | |
| 				int mark = !is_checkpointed_node(sbi, ino);
 | |
| 				set_fsync_mark(page, 1);
 | |
| 				if (IS_INODE(page))
 | |
| 					set_dentry_mark(page, mark);
 | |
| 				nwritten++;
 | |
| 			} else {
 | |
| 				set_fsync_mark(page, 0);
 | |
| 				set_dentry_mark(page, 0);
 | |
| 			}
 | |
| 			NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
 | |
| 			wrote++;
 | |
| 
 | |
| 			if (--wbc->nr_to_write == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (wbc->nr_to_write == 0) {
 | |
| 			step = 2;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (step < 2) {
 | |
| 		step++;
 | |
| 		goto next_step;
 | |
| 	}
 | |
| 
 | |
| 	if (wrote)
 | |
| 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
 | |
| 	return nwritten;
 | |
| }
 | |
| 
 | |
| int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	pgoff_t index = 0, end = LONG_MAX;
 | |
| 	struct pagevec pvec;
 | |
| 	int ret2 = 0, ret = 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 
 | |
| 	while (index <= end) {
 | |
| 		int i, nr_pages;
 | |
| 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
 | |
| 				PAGECACHE_TAG_WRITEBACK,
 | |
| 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/* until radix tree lookup accepts end_index */
 | |
| 			if (unlikely(page->index > end))
 | |
| 				continue;
 | |
| 
 | |
| 			if (ino && ino_of_node(page) == ino) {
 | |
| 				f2fs_wait_on_page_writeback(page, NODE);
 | |
| 				if (TestClearPageError(page))
 | |
| 					ret = -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
 | |
| 		ret2 = -ENOSPC;
 | |
| 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
 | |
| 		ret2 = -EIO;
 | |
| 	if (!ret)
 | |
| 		ret = ret2;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int f2fs_write_node_page(struct page *page,
 | |
| 				struct writeback_control *wbc)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
 | |
| 	nid_t nid;
 | |
| 	block_t new_addr;
 | |
| 	struct node_info ni;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.type = NODE,
 | |
| 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
 | |
| 	};
 | |
| 
 | |
| 	trace_f2fs_writepage(page, NODE);
 | |
| 
 | |
| 	if (unlikely(sbi->por_doing))
 | |
| 		goto redirty_out;
 | |
| 
 | |
| 	f2fs_wait_on_page_writeback(page, NODE);
 | |
| 
 | |
| 	/* get old block addr of this node page */
 | |
| 	nid = nid_of_node(page);
 | |
| 	f2fs_bug_on(page->index != nid);
 | |
| 
 | |
| 	get_node_info(sbi, nid, &ni);
 | |
| 
 | |
| 	/* This page is already truncated */
 | |
| 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 | |
| 		dec_page_count(sbi, F2FS_DIRTY_NODES);
 | |
| 		unlock_page(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (wbc->for_reclaim)
 | |
| 		goto redirty_out;
 | |
| 
 | |
| 	mutex_lock(&sbi->node_write);
 | |
| 	set_page_writeback(page);
 | |
| 	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
 | |
| 	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
 | |
| 	dec_page_count(sbi, F2FS_DIRTY_NODES);
 | |
| 	mutex_unlock(&sbi->node_write);
 | |
| 	unlock_page(page);
 | |
| 	return 0;
 | |
| 
 | |
| redirty_out:
 | |
| 	redirty_page_for_writepage(wbc, page);
 | |
| 	return AOP_WRITEPAGE_ACTIVATE;
 | |
| }
 | |
| 
 | |
| static int f2fs_write_node_pages(struct address_space *mapping,
 | |
| 			    struct writeback_control *wbc)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 | |
| 	long diff;
 | |
| 
 | |
| 	trace_f2fs_writepages(mapping->host, wbc, NODE);
 | |
| 
 | |
| 	/* balancing f2fs's metadata in background */
 | |
| 	f2fs_balance_fs_bg(sbi);
 | |
| 
 | |
| 	/* collect a number of dirty node pages and write together */
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 | |
| 		goto skip_write;
 | |
| 
 | |
| 	diff = nr_pages_to_write(sbi, NODE, wbc);
 | |
| 	wbc->sync_mode = WB_SYNC_NONE;
 | |
| 	sync_node_pages(sbi, 0, wbc);
 | |
| 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 | |
| 	return 0;
 | |
| 
 | |
| skip_write:
 | |
| 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int f2fs_set_node_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 | |
| 
 | |
| 	trace_f2fs_set_page_dirty(page, NODE);
 | |
| 
 | |
| 	SetPageUptodate(page);
 | |
| 	if (!PageDirty(page)) {
 | |
| 		__set_page_dirty_nobuffers(page);
 | |
| 		inc_page_count(sbi, F2FS_DIRTY_NODES);
 | |
| 		SetPagePrivate(page);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
 | |
| 				      unsigned int length)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	if (PageDirty(page))
 | |
| 		dec_page_count(sbi, F2FS_DIRTY_NODES);
 | |
| 	ClearPagePrivate(page);
 | |
| }
 | |
| 
 | |
| static int f2fs_release_node_page(struct page *page, gfp_t wait)
 | |
| {
 | |
| 	ClearPagePrivate(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure of the f2fs node operations
 | |
|  */
 | |
| const struct address_space_operations f2fs_node_aops = {
 | |
| 	.writepage	= f2fs_write_node_page,
 | |
| 	.writepages	= f2fs_write_node_pages,
 | |
| 	.set_page_dirty	= f2fs_set_node_page_dirty,
 | |
| 	.invalidatepage	= f2fs_invalidate_node_page,
 | |
| 	.releasepage	= f2fs_release_node_page,
 | |
| };
 | |
| 
 | |
| static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
 | |
| 						nid_t n)
 | |
| {
 | |
| 	return radix_tree_lookup(&nm_i->free_nid_root, n);
 | |
| }
 | |
| 
 | |
| static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
 | |
| 						struct free_nid *i)
 | |
| {
 | |
| 	list_del(&i->list);
 | |
| 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
 | |
| }
 | |
| 
 | |
| static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct free_nid *i;
 | |
| 	struct nat_entry *ne;
 | |
| 	bool allocated = false;
 | |
| 
 | |
| 	if (!available_free_memory(sbi, FREE_NIDS))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* 0 nid should not be used */
 | |
| 	if (unlikely(nid == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (build) {
 | |
| 		/* do not add allocated nids */
 | |
| 		read_lock(&nm_i->nat_tree_lock);
 | |
| 		ne = __lookup_nat_cache(nm_i, nid);
 | |
| 		if (ne &&
 | |
| 			(!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
 | |
| 			allocated = true;
 | |
| 		read_unlock(&nm_i->nat_tree_lock);
 | |
| 		if (allocated)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
 | |
| 	i->nid = nid;
 | |
| 	i->state = NID_NEW;
 | |
| 
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
 | |
| 		spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 		kmem_cache_free(free_nid_slab, i);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	list_add_tail(&i->list, &nm_i->free_nid_list);
 | |
| 	nm_i->fcnt++;
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
 | |
| {
 | |
| 	struct free_nid *i;
 | |
| 	bool need_free = false;
 | |
| 
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	i = __lookup_free_nid_list(nm_i, nid);
 | |
| 	if (i && i->state == NID_NEW) {
 | |
| 		__del_from_free_nid_list(nm_i, i);
 | |
| 		nm_i->fcnt--;
 | |
| 		need_free = true;
 | |
| 	}
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	if (need_free)
 | |
| 		kmem_cache_free(free_nid_slab, i);
 | |
| }
 | |
| 
 | |
| static void scan_nat_page(struct f2fs_sb_info *sbi,
 | |
| 			struct page *nat_page, nid_t start_nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
 | |
| 	block_t blk_addr;
 | |
| 	int i;
 | |
| 
 | |
| 	i = start_nid % NAT_ENTRY_PER_BLOCK;
 | |
| 
 | |
| 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 | |
| 
 | |
| 		if (unlikely(start_nid >= nm_i->max_nid))
 | |
| 			break;
 | |
| 
 | |
| 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
 | |
| 		f2fs_bug_on(blk_addr == NEW_ADDR);
 | |
| 		if (blk_addr == NULL_ADDR) {
 | |
| 			if (add_free_nid(sbi, start_nid, true) < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void build_free_nids(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	int i = 0;
 | |
| 	nid_t nid = nm_i->next_scan_nid;
 | |
| 
 | |
| 	/* Enough entries */
 | |
| 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
 | |
| 		return;
 | |
| 
 | |
| 	/* readahead nat pages to be scanned */
 | |
| 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct page *page = get_current_nat_page(sbi, nid);
 | |
| 
 | |
| 		scan_nat_page(sbi, page, nid);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 
 | |
| 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
 | |
| 		if (unlikely(nid >= nm_i->max_nid))
 | |
| 			nid = 0;
 | |
| 
 | |
| 		if (i++ == FREE_NID_PAGES)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* go to the next free nat pages to find free nids abundantly */
 | |
| 	nm_i->next_scan_nid = nid;
 | |
| 
 | |
| 	/* find free nids from current sum_pages */
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	for (i = 0; i < nats_in_cursum(sum); i++) {
 | |
| 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
 | |
| 		nid = le32_to_cpu(nid_in_journal(sum, i));
 | |
| 		if (addr == NULL_ADDR)
 | |
| 			add_free_nid(sbi, nid, true);
 | |
| 		else
 | |
| 			remove_free_nid(nm_i, nid);
 | |
| 	}
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If this function returns success, caller can obtain a new nid
 | |
|  * from second parameter of this function.
 | |
|  * The returned nid could be used ino as well as nid when inode is created.
 | |
|  */
 | |
| bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct free_nid *i = NULL;
 | |
| retry:
 | |
| 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
 | |
| 		return false;
 | |
| 
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	/* We should not use stale free nids created by build_free_nids */
 | |
| 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
 | |
| 		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
 | |
| 		list_for_each_entry(i, &nm_i->free_nid_list, list)
 | |
| 			if (i->state == NID_NEW)
 | |
| 				break;
 | |
| 
 | |
| 		f2fs_bug_on(i->state != NID_NEW);
 | |
| 		*nid = i->nid;
 | |
| 		i->state = NID_ALLOC;
 | |
| 		nm_i->fcnt--;
 | |
| 		spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	/* Let's scan nat pages and its caches to get free nids */
 | |
| 	mutex_lock(&nm_i->build_lock);
 | |
| 	build_free_nids(sbi);
 | |
| 	mutex_unlock(&nm_i->build_lock);
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_nid() should be called prior to this function.
 | |
|  */
 | |
| void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct free_nid *i;
 | |
| 
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	i = __lookup_free_nid_list(nm_i, nid);
 | |
| 	f2fs_bug_on(!i || i->state != NID_ALLOC);
 | |
| 	__del_from_free_nid_list(nm_i, i);
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	kmem_cache_free(free_nid_slab, i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_nid() should be called prior to this function.
 | |
|  */
 | |
| void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct free_nid *i;
 | |
| 	bool need_free = false;
 | |
| 
 | |
| 	if (!nid)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	i = __lookup_free_nid_list(nm_i, nid);
 | |
| 	f2fs_bug_on(!i || i->state != NID_ALLOC);
 | |
| 	if (!available_free_memory(sbi, FREE_NIDS)) {
 | |
| 		__del_from_free_nid_list(nm_i, i);
 | |
| 		need_free = true;
 | |
| 	} else {
 | |
| 		i->state = NID_NEW;
 | |
| 		nm_i->fcnt++;
 | |
| 	}
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	if (need_free)
 | |
| 		kmem_cache_free(free_nid_slab, i);
 | |
| }
 | |
| 
 | |
| void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 		struct f2fs_summary *sum, struct node_info *ni,
 | |
| 		block_t new_blkaddr)
 | |
| {
 | |
| 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
 | |
| 	set_node_addr(sbi, ni, new_blkaddr, false);
 | |
| 	clear_node_page_dirty(page);
 | |
| }
 | |
| 
 | |
| static void recover_inline_xattr(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	void *src_addr, *dst_addr;
 | |
| 	size_t inline_size;
 | |
| 	struct page *ipage;
 | |
| 	struct f2fs_inode *ri;
 | |
| 
 | |
| 	if (!f2fs_has_inline_xattr(inode))
 | |
| 		return;
 | |
| 
 | |
| 	if (!IS_INODE(page))
 | |
| 		return;
 | |
| 
 | |
| 	ri = F2FS_INODE(page);
 | |
| 	if (!(ri->i_inline & F2FS_INLINE_XATTR))
 | |
| 		return;
 | |
| 
 | |
| 	ipage = get_node_page(sbi, inode->i_ino);
 | |
| 	f2fs_bug_on(IS_ERR(ipage));
 | |
| 
 | |
| 	dst_addr = inline_xattr_addr(ipage);
 | |
| 	src_addr = inline_xattr_addr(page);
 | |
| 	inline_size = inline_xattr_size(inode);
 | |
| 
 | |
| 	f2fs_wait_on_page_writeback(ipage, NODE);
 | |
| 	memcpy(dst_addr, src_addr, inline_size);
 | |
| 
 | |
| 	update_inode(inode, ipage);
 | |
| 	f2fs_put_page(ipage, 1);
 | |
| }
 | |
| 
 | |
| bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
 | |
| 	nid_t new_xnid = nid_of_node(page);
 | |
| 	struct node_info ni;
 | |
| 
 | |
| 	recover_inline_xattr(inode, page);
 | |
| 
 | |
| 	if (!f2fs_has_xattr_block(ofs_of_node(page)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* 1: invalidate the previous xattr nid */
 | |
| 	if (!prev_xnid)
 | |
| 		goto recover_xnid;
 | |
| 
 | |
| 	/* Deallocate node address */
 | |
| 	get_node_info(sbi, prev_xnid, &ni);
 | |
| 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
 | |
| 	invalidate_blocks(sbi, ni.blk_addr);
 | |
| 	dec_valid_node_count(sbi, inode);
 | |
| 	set_node_addr(sbi, &ni, NULL_ADDR, false);
 | |
| 
 | |
| recover_xnid:
 | |
| 	/* 2: allocate new xattr nid */
 | |
| 	if (unlikely(!inc_valid_node_count(sbi, inode)))
 | |
| 		f2fs_bug_on(1);
 | |
| 
 | |
| 	remove_free_nid(NM_I(sbi), new_xnid);
 | |
| 	get_node_info(sbi, new_xnid, &ni);
 | |
| 	ni.ino = inode->i_ino;
 | |
| 	set_node_addr(sbi, &ni, NEW_ADDR, false);
 | |
| 	F2FS_I(inode)->i_xattr_nid = new_xnid;
 | |
| 
 | |
| 	/* 3: update xattr blkaddr */
 | |
| 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
 | |
| 	set_node_addr(sbi, &ni, blkaddr, false);
 | |
| 
 | |
| 	update_inode_page(inode);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
 | |
| {
 | |
| 	struct f2fs_inode *src, *dst;
 | |
| 	nid_t ino = ino_of_node(page);
 | |
| 	struct node_info old_ni, new_ni;
 | |
| 	struct page *ipage;
 | |
| 
 | |
| 	get_node_info(sbi, ino, &old_ni);
 | |
| 
 | |
| 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
 | |
| 	if (!ipage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Should not use this inode  from free nid list */
 | |
| 	remove_free_nid(NM_I(sbi), ino);
 | |
| 
 | |
| 	SetPageUptodate(ipage);
 | |
| 	fill_node_footer(ipage, ino, ino, 0, true);
 | |
| 
 | |
| 	src = F2FS_INODE(page);
 | |
| 	dst = F2FS_INODE(ipage);
 | |
| 
 | |
| 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
 | |
| 	dst->i_size = 0;
 | |
| 	dst->i_blocks = cpu_to_le64(1);
 | |
| 	dst->i_links = cpu_to_le32(1);
 | |
| 	dst->i_xattr_nid = 0;
 | |
| 
 | |
| 	new_ni = old_ni;
 | |
| 	new_ni.ino = ino;
 | |
| 
 | |
| 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
 | |
| 		WARN_ON(1);
 | |
| 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 | |
| 	inc_valid_inode_count(sbi);
 | |
| 	f2fs_put_page(ipage, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ra_sum_pages() merge contiguous pages into one bio and submit.
 | |
|  * these pre-readed pages are alloced in bd_inode's mapping tree.
 | |
|  */
 | |
| static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
 | |
| 				int start, int nrpages)
 | |
| {
 | |
| 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	int i, page_idx = start;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.type = META,
 | |
| 		.rw = READ_SYNC | REQ_META | REQ_PRIO
 | |
| 	};
 | |
| 
 | |
| 	for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
 | |
| 		/* alloc page in bd_inode for reading node summary info */
 | |
| 		pages[i] = grab_cache_page(mapping, page_idx);
 | |
| 		if (!pages[i])
 | |
| 			break;
 | |
| 		f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
 | |
| 	}
 | |
| 
 | |
| 	f2fs_submit_merged_bio(sbi, META, READ);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| int restore_node_summary(struct f2fs_sb_info *sbi,
 | |
| 			unsigned int segno, struct f2fs_summary_block *sum)
 | |
| {
 | |
| 	struct f2fs_node *rn;
 | |
| 	struct f2fs_summary *sum_entry;
 | |
| 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
 | |
| 	block_t addr;
 | |
| 	int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
 | |
| 	struct page *pages[bio_blocks];
 | |
| 	int i, idx, last_offset, nrpages, err = 0;
 | |
| 
 | |
| 	/* scan the node segment */
 | |
| 	last_offset = sbi->blocks_per_seg;
 | |
| 	addr = START_BLOCK(sbi, segno);
 | |
| 	sum_entry = &sum->entries[0];
 | |
| 
 | |
| 	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
 | |
| 		nrpages = min(last_offset - i, bio_blocks);
 | |
| 
 | |
| 		/* read ahead node pages */
 | |
| 		nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
 | |
| 		if (!nrpages)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		for (idx = 0; idx < nrpages; idx++) {
 | |
| 			if (err)
 | |
| 				goto skip;
 | |
| 
 | |
| 			lock_page(pages[idx]);
 | |
| 			if (unlikely(!PageUptodate(pages[idx]))) {
 | |
| 				err = -EIO;
 | |
| 			} else {
 | |
| 				rn = F2FS_NODE(pages[idx]);
 | |
| 				sum_entry->nid = rn->footer.nid;
 | |
| 				sum_entry->version = 0;
 | |
| 				sum_entry->ofs_in_node = 0;
 | |
| 				sum_entry++;
 | |
| 			}
 | |
| 			unlock_page(pages[idx]);
 | |
| skip:
 | |
| 			page_cache_release(pages[idx]);
 | |
| 		}
 | |
| 
 | |
| 		invalidate_mapping_pages(inode->i_mapping, addr,
 | |
| 							addr + nrpages);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
 | |
| 		mutex_unlock(&curseg->curseg_mutex);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nats_in_cursum(sum); i++) {
 | |
| 		struct nat_entry *ne;
 | |
| 		struct f2fs_nat_entry raw_ne;
 | |
| 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
 | |
| 
 | |
| 		raw_ne = nat_in_journal(sum, i);
 | |
| retry:
 | |
| 		write_lock(&nm_i->nat_tree_lock);
 | |
| 		ne = __lookup_nat_cache(nm_i, nid);
 | |
| 		if (ne) {
 | |
| 			__set_nat_cache_dirty(nm_i, ne);
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ne = grab_nat_entry(nm_i, nid);
 | |
| 		if (!ne) {
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		node_info_from_raw_nat(&ne->ni, &raw_ne);
 | |
| 		__set_nat_cache_dirty(nm_i, ne);
 | |
| 		write_unlock(&nm_i->nat_tree_lock);
 | |
| 	}
 | |
| 	update_nats_in_cursum(sum, -i);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called during the checkpointing process.
 | |
|  */
 | |
| void flush_nat_entries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	struct nat_entry *ne, *cur;
 | |
| 	struct page *page = NULL;
 | |
| 	struct f2fs_nat_block *nat_blk = NULL;
 | |
| 	nid_t start_nid = 0, end_nid = 0;
 | |
| 	bool flushed;
 | |
| 
 | |
| 	flushed = flush_nats_in_journal(sbi);
 | |
| 
 | |
| 	if (!flushed)
 | |
| 		mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	/* 1) flush dirty nat caches */
 | |
| 	list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
 | |
| 		nid_t nid;
 | |
| 		struct f2fs_nat_entry raw_ne;
 | |
| 		int offset = -1;
 | |
| 
 | |
| 		if (nat_get_blkaddr(ne) == NEW_ADDR)
 | |
| 			continue;
 | |
| 
 | |
| 		nid = nat_get_nid(ne);
 | |
| 
 | |
| 		if (flushed)
 | |
| 			goto to_nat_page;
 | |
| 
 | |
| 		/* if there is room for nat enries in curseg->sumpage */
 | |
| 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
 | |
| 		if (offset >= 0) {
 | |
| 			raw_ne = nat_in_journal(sum, offset);
 | |
| 			goto flush_now;
 | |
| 		}
 | |
| to_nat_page:
 | |
| 		if (!page || (start_nid > nid || nid > end_nid)) {
 | |
| 			if (page) {
 | |
| 				f2fs_put_page(page, 1);
 | |
| 				page = NULL;
 | |
| 			}
 | |
| 			start_nid = START_NID(nid);
 | |
| 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * get nat block with dirty flag, increased reference
 | |
| 			 * count, mapped and lock
 | |
| 			 */
 | |
| 			page = get_next_nat_page(sbi, start_nid);
 | |
| 			nat_blk = page_address(page);
 | |
| 		}
 | |
| 
 | |
| 		f2fs_bug_on(!nat_blk);
 | |
| 		raw_ne = nat_blk->entries[nid - start_nid];
 | |
| flush_now:
 | |
| 		raw_nat_from_node_info(&raw_ne, &ne->ni);
 | |
| 
 | |
| 		if (offset < 0) {
 | |
| 			nat_blk->entries[nid - start_nid] = raw_ne;
 | |
| 		} else {
 | |
| 			nat_in_journal(sum, offset) = raw_ne;
 | |
| 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
 | |
| 		}
 | |
| 
 | |
| 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
 | |
| 				add_free_nid(sbi, nid, false) <= 0) {
 | |
| 			write_lock(&nm_i->nat_tree_lock);
 | |
| 			__del_from_nat_cache(nm_i, ne);
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 		} else {
 | |
| 			write_lock(&nm_i->nat_tree_lock);
 | |
| 			__clear_nat_cache_dirty(nm_i, ne);
 | |
| 			write_unlock(&nm_i->nat_tree_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!flushed)
 | |
| 		mutex_unlock(&curseg->curseg_mutex);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static int init_node_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	unsigned char *version_bitmap;
 | |
| 	unsigned int nat_segs, nat_blocks;
 | |
| 
 | |
| 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
 | |
| 
 | |
| 	/* segment_count_nat includes pair segment so divide to 2. */
 | |
| 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
 | |
| 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
 | |
| 
 | |
| 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
 | |
| 
 | |
| 	/* not used nids: 0, node, meta, (and root counted as valid node) */
 | |
| 	nm_i->available_nids = nm_i->max_nid - 3;
 | |
| 	nm_i->fcnt = 0;
 | |
| 	nm_i->nat_cnt = 0;
 | |
| 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
 | |
| 
 | |
| 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
 | |
| 	INIT_LIST_HEAD(&nm_i->free_nid_list);
 | |
| 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
 | |
| 	INIT_LIST_HEAD(&nm_i->nat_entries);
 | |
| 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
 | |
| 
 | |
| 	mutex_init(&nm_i->build_lock);
 | |
| 	spin_lock_init(&nm_i->free_nid_list_lock);
 | |
| 	rwlock_init(&nm_i->nat_tree_lock);
 | |
| 
 | |
| 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
 | |
| 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
 | |
| 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 | |
| 	if (!version_bitmap)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!nm_i->nat_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int build_node_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 | |
| 	if (!sbi->nm_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = init_node_manager(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	build_free_nids(sbi);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void destroy_node_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	struct free_nid *i, *next_i;
 | |
| 	struct nat_entry *natvec[NATVEC_SIZE];
 | |
| 	nid_t nid = 0;
 | |
| 	unsigned int found;
 | |
| 
 | |
| 	if (!nm_i)
 | |
| 		return;
 | |
| 
 | |
| 	/* destroy free nid list */
 | |
| 	spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
 | |
| 		f2fs_bug_on(i->state == NID_ALLOC);
 | |
| 		__del_from_free_nid_list(nm_i, i);
 | |
| 		nm_i->fcnt--;
 | |
| 		spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 		kmem_cache_free(free_nid_slab, i);
 | |
| 		spin_lock(&nm_i->free_nid_list_lock);
 | |
| 	}
 | |
| 	f2fs_bug_on(nm_i->fcnt);
 | |
| 	spin_unlock(&nm_i->free_nid_list_lock);
 | |
| 
 | |
| 	/* destroy nat cache */
 | |
| 	write_lock(&nm_i->nat_tree_lock);
 | |
| 	while ((found = __gang_lookup_nat_cache(nm_i,
 | |
| 					nid, NATVEC_SIZE, natvec))) {
 | |
| 		unsigned idx;
 | |
| 		nid = nat_get_nid(natvec[found - 1]) + 1;
 | |
| 		for (idx = 0; idx < found; idx++)
 | |
| 			__del_from_nat_cache(nm_i, natvec[idx]);
 | |
| 	}
 | |
| 	f2fs_bug_on(nm_i->nat_cnt);
 | |
| 	write_unlock(&nm_i->nat_tree_lock);
 | |
| 
 | |
| 	kfree(nm_i->nat_bitmap);
 | |
| 	sbi->nm_info = NULL;
 | |
| 	kfree(nm_i);
 | |
| }
 | |
| 
 | |
| int __init create_node_manager_caches(void)
 | |
| {
 | |
| 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
 | |
| 			sizeof(struct nat_entry));
 | |
| 	if (!nat_entry_slab)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
 | |
| 			sizeof(struct free_nid));
 | |
| 	if (!free_nid_slab) {
 | |
| 		kmem_cache_destroy(nat_entry_slab);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void destroy_node_manager_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(free_nid_slab);
 | |
| 	kmem_cache_destroy(nat_entry_slab);
 | |
| }
 |