 347486bb10
			
		
	
	
	347486bb10
	
	
	
		
			
			Support the Intel 854 Chipset in fbdev. We test and use the patch on a Thomson IP1101 IPTV-Box. On the VGA-Port we get a normal signal. Here is the link to the Mambux-Project: http://www.mambux.de Cc: Keith Packard <keithp@keithp.com> Cc: Dave Airlie <airlied@linux.ie> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Stefan Husemann <shusemann@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2109 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2109 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * intelfb
 | |
|  *
 | |
|  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
 | |
|  *
 | |
|  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
 | |
|  *                   2004 Sylvain Meyer
 | |
|  *
 | |
|  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
 | |
|  * the basic fbdev interfaces, is derived in part from the radeonfb and
 | |
|  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
 | |
|  * provides the code to program the hardware.  Most of it is derived from
 | |
|  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
 | |
|  * under a dual license (GPL and MIT/XFree86 license).
 | |
|  *
 | |
|  * Author: David Dawes
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/fb.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "intelfb.h"
 | |
| #include "intelfbhw.h"
 | |
| 
 | |
| struct pll_min_max {
 | |
| 	int min_m, max_m, min_m1, max_m1;
 | |
| 	int min_m2, max_m2, min_n, max_n;
 | |
| 	int min_p, max_p, min_p1, max_p1;
 | |
| 	int min_vco, max_vco, p_transition_clk, ref_clk;
 | |
| 	int p_inc_lo, p_inc_hi;
 | |
| };
 | |
| 
 | |
| #define PLLS_I8xx 0
 | |
| #define PLLS_I9xx 1
 | |
| #define PLLS_MAX 2
 | |
| 
 | |
| static struct pll_min_max plls[PLLS_MAX] = {
 | |
| 	{ 108, 140, 18, 26,
 | |
| 	  6, 16, 3, 16,
 | |
| 	  4, 128, 0, 31,
 | |
| 	  930000, 1400000, 165000, 48000,
 | |
| 	  4, 2 },		/* I8xx */
 | |
| 
 | |
| 	{ 75, 120, 10, 20,
 | |
| 	  5, 9, 4, 7,
 | |
| 	  5, 80, 1, 8,
 | |
| 	  1400000, 2800000, 200000, 96000,
 | |
| 	  10, 5 }		/* I9xx */
 | |
| };
 | |
| 
 | |
| int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	if (!pdev || !dinfo)
 | |
| 		return 1;
 | |
| 
 | |
| 	switch (pdev->device) {
 | |
| 	case PCI_DEVICE_ID_INTEL_830M:
 | |
| 		dinfo->name = "Intel(R) 830M";
 | |
| 		dinfo->chipset = INTEL_830M;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I8xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_845G:
 | |
| 		dinfo->name = "Intel(R) 845G";
 | |
| 		dinfo->chipset = INTEL_845G;
 | |
| 		dinfo->mobile = 0;
 | |
| 		dinfo->pll_index = PLLS_I8xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_854:
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->name = "Intel(R) 854";
 | |
| 		dinfo->chipset = INTEL_854;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_85XGM:
 | |
| 		tmp = 0;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I8xx;
 | |
| 		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
 | |
| 		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
 | |
| 			INTEL_85X_VARIANT_MASK) {
 | |
| 		case INTEL_VAR_855GME:
 | |
| 			dinfo->name = "Intel(R) 855GME";
 | |
| 			dinfo->chipset = INTEL_855GME;
 | |
| 			return 0;
 | |
| 		case INTEL_VAR_855GM:
 | |
| 			dinfo->name = "Intel(R) 855GM";
 | |
| 			dinfo->chipset = INTEL_855GM;
 | |
| 			return 0;
 | |
| 		case INTEL_VAR_852GME:
 | |
| 			dinfo->name = "Intel(R) 852GME";
 | |
| 			dinfo->chipset = INTEL_852GME;
 | |
| 			return 0;
 | |
| 		case INTEL_VAR_852GM:
 | |
| 			dinfo->name = "Intel(R) 852GM";
 | |
| 			dinfo->chipset = INTEL_852GM;
 | |
| 			return 0;
 | |
| 		default:
 | |
| 			dinfo->name = "Intel(R) 852GM/855GM";
 | |
| 			dinfo->chipset = INTEL_85XGM;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case PCI_DEVICE_ID_INTEL_865G:
 | |
| 		dinfo->name = "Intel(R) 865G";
 | |
| 		dinfo->chipset = INTEL_865G;
 | |
| 		dinfo->mobile = 0;
 | |
| 		dinfo->pll_index = PLLS_I8xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_915G:
 | |
| 		dinfo->name = "Intel(R) 915G";
 | |
| 		dinfo->chipset = INTEL_915G;
 | |
| 		dinfo->mobile = 0;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_915GM:
 | |
| 		dinfo->name = "Intel(R) 915GM";
 | |
| 		dinfo->chipset = INTEL_915GM;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_945G:
 | |
| 		dinfo->name = "Intel(R) 945G";
 | |
| 		dinfo->chipset = INTEL_945G;
 | |
| 		dinfo->mobile = 0;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_945GM:
 | |
| 		dinfo->name = "Intel(R) 945GM";
 | |
| 		dinfo->chipset = INTEL_945GM;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_945GME:
 | |
| 		dinfo->name = "Intel(R) 945GME";
 | |
| 		dinfo->chipset = INTEL_945GME;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_965G:
 | |
| 		dinfo->name = "Intel(R) 965G";
 | |
| 		dinfo->chipset = INTEL_965G;
 | |
| 		dinfo->mobile = 0;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	case PCI_DEVICE_ID_INTEL_965GM:
 | |
| 		dinfo->name = "Intel(R) 965GM";
 | |
| 		dinfo->chipset = INTEL_965GM;
 | |
| 		dinfo->mobile = 1;
 | |
| 		dinfo->pll_index = PLLS_I9xx;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
 | |
| 			 int *stolen_size)
 | |
| {
 | |
| 	struct pci_dev *bridge_dev;
 | |
| 	u16 tmp;
 | |
| 	int stolen_overhead;
 | |
| 
 | |
| 	if (!pdev || !aperture_size || !stolen_size)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Find the bridge device.  It is always 0:0.0 */
 | |
| 	if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
 | |
| 		ERR_MSG("cannot find bridge device\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the fb aperture size and "stolen" memory amount. */
 | |
| 	tmp = 0;
 | |
| 	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
 | |
| 	pci_dev_put(bridge_dev);
 | |
| 
 | |
| 	switch (pdev->device) {
 | |
| 	case PCI_DEVICE_ID_INTEL_915G:
 | |
| 	case PCI_DEVICE_ID_INTEL_915GM:
 | |
| 	case PCI_DEVICE_ID_INTEL_945G:
 | |
| 	case PCI_DEVICE_ID_INTEL_945GM:
 | |
| 	case PCI_DEVICE_ID_INTEL_945GME:
 | |
| 	case PCI_DEVICE_ID_INTEL_965G:
 | |
| 	case PCI_DEVICE_ID_INTEL_965GM:
 | |
| 		/* 915, 945 and 965 chipsets support a 256MB aperture.
 | |
| 		   Aperture size is determined by inspected the
 | |
| 		   base address of the aperture. */
 | |
| 		if (pci_resource_start(pdev, 2) & 0x08000000)
 | |
| 			*aperture_size = MB(128);
 | |
| 		else
 | |
| 			*aperture_size = MB(256);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
 | |
| 			*aperture_size = MB(64);
 | |
| 		else
 | |
| 			*aperture_size = MB(128);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Stolen memory size is reduced by the GTT and the popup.
 | |
| 	   GTT is 1K per MB of aperture size, and popup is 4K. */
 | |
| 	stolen_overhead = (*aperture_size / MB(1)) + 4;
 | |
| 	switch(pdev->device) {
 | |
| 	case PCI_DEVICE_ID_INTEL_830M:
 | |
| 	case PCI_DEVICE_ID_INTEL_845G:
 | |
| 		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
 | |
| 		case INTEL_830_GMCH_GMS_STOLEN_512:
 | |
| 			*stolen_size = KB(512) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_830_GMCH_GMS_STOLEN_1024:
 | |
| 			*stolen_size = MB(1) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_830_GMCH_GMS_STOLEN_8192:
 | |
| 			*stolen_size = MB(8) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_830_GMCH_GMS_LOCAL:
 | |
| 			ERR_MSG("only local memory found\n");
 | |
| 			return 1;
 | |
| 		case INTEL_830_GMCH_GMS_DISABLED:
 | |
| 			ERR_MSG("video memory is disabled\n");
 | |
| 			return 1;
 | |
| 		default:
 | |
| 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 | |
| 				tmp & INTEL_830_GMCH_GMS_MASK);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
 | |
| 		case INTEL_855_GMCH_GMS_STOLEN_1M:
 | |
| 			*stolen_size = MB(1) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_855_GMCH_GMS_STOLEN_4M:
 | |
| 			*stolen_size = MB(4) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_855_GMCH_GMS_STOLEN_8M:
 | |
| 			*stolen_size = MB(8) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_855_GMCH_GMS_STOLEN_16M:
 | |
| 			*stolen_size = MB(16) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_855_GMCH_GMS_STOLEN_32M:
 | |
| 			*stolen_size = MB(32) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_915G_GMCH_GMS_STOLEN_48M:
 | |
| 			*stolen_size = MB(48) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_915G_GMCH_GMS_STOLEN_64M:
 | |
| 			*stolen_size = MB(64) - KB(stolen_overhead);
 | |
| 			return 0;
 | |
| 		case INTEL_855_GMCH_GMS_DISABLED:
 | |
| 			ERR_MSG("video memory is disabled\n");
 | |
| 			return 0;
 | |
| 		default:
 | |
| 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 | |
| 				tmp & INTEL_855_GMCH_GMS_MASK);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	int dvo = 0;
 | |
| 
 | |
| 	if (INREG(LVDS) & PORT_ENABLE)
 | |
| 		dvo |= LVDS_PORT;
 | |
| 	if (INREG(DVOA) & PORT_ENABLE)
 | |
| 		dvo |= DVOA_PORT;
 | |
| 	if (INREG(DVOB) & PORT_ENABLE)
 | |
| 		dvo |= DVOB_PORT;
 | |
| 	if (INREG(DVOC) & PORT_ENABLE)
 | |
| 		dvo |= DVOC_PORT;
 | |
| 
 | |
| 	return dvo;
 | |
| }
 | |
| 
 | |
| const char * intelfbhw_dvo_to_string(int dvo)
 | |
| {
 | |
| 	if (dvo & DVOA_PORT)
 | |
| 		return "DVO port A";
 | |
| 	else if (dvo & DVOB_PORT)
 | |
| 		return "DVO port B";
 | |
| 	else if (dvo & DVOC_PORT)
 | |
| 		return "DVO port C";
 | |
| 	else if (dvo & LVDS_PORT)
 | |
| 		return "LVDS port";
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| int intelfbhw_validate_mode(struct intelfb_info *dinfo,
 | |
| 			    struct fb_var_screeninfo *var)
 | |
| {
 | |
| 	int bytes_per_pixel;
 | |
| 	int tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_validate_mode\n");
 | |
| #endif
 | |
| 
 | |
| 	bytes_per_pixel = var->bits_per_pixel / 8;
 | |
| 	if (bytes_per_pixel == 3)
 | |
| 		bytes_per_pixel = 4;
 | |
| 
 | |
| 	/* Check if enough video memory. */
 | |
| 	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
 | |
| 	if (tmp > dinfo->fb.size) {
 | |
| 		WRN_MSG("Not enough video ram for mode "
 | |
| 			"(%d KByte vs %d KByte).\n",
 | |
| 			BtoKB(tmp), BtoKB(dinfo->fb.size));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if x/y limits are OK. */
 | |
| 	if (var->xres - 1 > HACTIVE_MASK) {
 | |
| 		WRN_MSG("X resolution too large (%d vs %d).\n",
 | |
| 			var->xres, HACTIVE_MASK + 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (var->yres - 1 > VACTIVE_MASK) {
 | |
| 		WRN_MSG("Y resolution too large (%d vs %d).\n",
 | |
| 			var->yres, VACTIVE_MASK + 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (var->xres < 4) {
 | |
| 		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (var->yres < 4) {
 | |
| 		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for doublescan modes. */
 | |
| 	if (var->vmode & FB_VMODE_DOUBLE) {
 | |
| 		WRN_MSG("Mode is double-scan.\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
 | |
| 		WRN_MSG("Odd number of lines in interlaced mode\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if clock is OK. */
 | |
| 	tmp = 1000000000 / var->pixclock;
 | |
| 	if (tmp < MIN_CLOCK) {
 | |
| 		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
 | |
| 			(tmp + 500) / 1000, MIN_CLOCK / 1000);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (tmp > MAX_CLOCK) {
 | |
| 		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
 | |
| 			(tmp + 500) / 1000, MAX_CLOCK / 1000);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 | |
| {
 | |
| 	struct intelfb_info *dinfo = GET_DINFO(info);
 | |
| 	u32 offset, xoffset, yoffset;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_pan_display\n");
 | |
| #endif
 | |
| 
 | |
| 	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
 | |
| 	yoffset = var->yoffset;
 | |
| 
 | |
| 	if ((xoffset + var->xres > var->xres_virtual) ||
 | |
| 	    (yoffset + var->yres > var->yres_virtual))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	offset = (yoffset * dinfo->pitch) +
 | |
| 		 (xoffset * var->bits_per_pixel) / 8;
 | |
| 
 | |
| 	offset += dinfo->fb.offset << 12;
 | |
| 
 | |
| 	dinfo->vsync.pan_offset = offset;
 | |
| 	if ((var->activate & FB_ACTIVATE_VBL) &&
 | |
| 	    !intelfbhw_enable_irq(dinfo))
 | |
| 		dinfo->vsync.pan_display = 1;
 | |
| 	else {
 | |
| 		dinfo->vsync.pan_display = 0;
 | |
| 		OUTREG(DSPABASE, offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Blank the screen. */
 | |
| void intelfbhw_do_blank(int blank, struct fb_info *info)
 | |
| {
 | |
| 	struct intelfb_info *dinfo = GET_DINFO(info);
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
 | |
| #endif
 | |
| 
 | |
| 	/* Turn plane A on or off */
 | |
| 	tmp = INREG(DSPACNTR);
 | |
| 	if (blank)
 | |
| 		tmp &= ~DISPPLANE_PLANE_ENABLE;
 | |
| 	else
 | |
| 		tmp |= DISPPLANE_PLANE_ENABLE;
 | |
| 	OUTREG(DSPACNTR, tmp);
 | |
| 	/* Flush */
 | |
| 	tmp = INREG(DSPABASE);
 | |
| 	OUTREG(DSPABASE, tmp);
 | |
| 
 | |
| 	/* Turn off/on the HW cursor */
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
 | |
| #endif
 | |
| 	if (dinfo->cursor_on) {
 | |
| 		if (blank)
 | |
| 			intelfbhw_cursor_hide(dinfo);
 | |
| 		else
 | |
| 			intelfbhw_cursor_show(dinfo);
 | |
| 		dinfo->cursor_on = 1;
 | |
| 	}
 | |
| 	dinfo->cursor_blanked = blank;
 | |
| 
 | |
| 	/* Set DPMS level */
 | |
| 	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
 | |
| 	switch (blank) {
 | |
| 	case FB_BLANK_UNBLANK:
 | |
| 	case FB_BLANK_NORMAL:
 | |
| 		tmp |= ADPA_DPMS_D0;
 | |
| 		break;
 | |
| 	case FB_BLANK_VSYNC_SUSPEND:
 | |
| 		tmp |= ADPA_DPMS_D1;
 | |
| 		break;
 | |
| 	case FB_BLANK_HSYNC_SUSPEND:
 | |
| 		tmp |= ADPA_DPMS_D2;
 | |
| 		break;
 | |
| 	case FB_BLANK_POWERDOWN:
 | |
| 		tmp |= ADPA_DPMS_D3;
 | |
| 		break;
 | |
| 	}
 | |
| 	OUTREG(ADPA, tmp);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
 | |
| 			 unsigned red, unsigned green, unsigned blue,
 | |
| 			 unsigned transp)
 | |
| {
 | |
| 	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
 | |
| 			  PALETTE_A : PALETTE_B;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
 | |
| 		regno, red, green, blue);
 | |
| #endif
 | |
| 
 | |
| 	OUTREG(palette_reg + (regno << 2),
 | |
| 	       (red << PALETTE_8_RED_SHIFT) |
 | |
| 	       (green << PALETTE_8_GREEN_SHIFT) |
 | |
| 	       (blue << PALETTE_8_BLUE_SHIFT));
 | |
| }
 | |
| 
 | |
| 
 | |
| int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
 | |
| 			    struct intelfb_hwstate *hw, int flag)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_read_hw_state\n");
 | |
| #endif
 | |
| 
 | |
| 	if (!hw || !dinfo)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Read in as much of the HW state as possible. */
 | |
| 	hw->vga0_divisor = INREG(VGA0_DIVISOR);
 | |
| 	hw->vga1_divisor = INREG(VGA1_DIVISOR);
 | |
| 	hw->vga_pd = INREG(VGAPD);
 | |
| 	hw->dpll_a = INREG(DPLL_A);
 | |
| 	hw->dpll_b = INREG(DPLL_B);
 | |
| 	hw->fpa0 = INREG(FPA0);
 | |
| 	hw->fpa1 = INREG(FPA1);
 | |
| 	hw->fpb0 = INREG(FPB0);
 | |
| 	hw->fpb1 = INREG(FPB1);
 | |
| 
 | |
| 	if (flag == 1)
 | |
| 		return flag;
 | |
| 
 | |
| #if 0
 | |
| 	/* This seems to be a problem with the 852GM/855GM */
 | |
| 	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
 | |
| 		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
 | |
| 		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (flag == 2)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->htotal_a = INREG(HTOTAL_A);
 | |
| 	hw->hblank_a = INREG(HBLANK_A);
 | |
| 	hw->hsync_a = INREG(HSYNC_A);
 | |
| 	hw->vtotal_a = INREG(VTOTAL_A);
 | |
| 	hw->vblank_a = INREG(VBLANK_A);
 | |
| 	hw->vsync_a = INREG(VSYNC_A);
 | |
| 	hw->src_size_a = INREG(SRC_SIZE_A);
 | |
| 	hw->bclrpat_a = INREG(BCLRPAT_A);
 | |
| 	hw->htotal_b = INREG(HTOTAL_B);
 | |
| 	hw->hblank_b = INREG(HBLANK_B);
 | |
| 	hw->hsync_b = INREG(HSYNC_B);
 | |
| 	hw->vtotal_b = INREG(VTOTAL_B);
 | |
| 	hw->vblank_b = INREG(VBLANK_B);
 | |
| 	hw->vsync_b = INREG(VSYNC_B);
 | |
| 	hw->src_size_b = INREG(SRC_SIZE_B);
 | |
| 	hw->bclrpat_b = INREG(BCLRPAT_B);
 | |
| 
 | |
| 	if (flag == 3)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->adpa = INREG(ADPA);
 | |
| 	hw->dvoa = INREG(DVOA);
 | |
| 	hw->dvob = INREG(DVOB);
 | |
| 	hw->dvoc = INREG(DVOC);
 | |
| 	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
 | |
| 	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
 | |
| 	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
 | |
| 	hw->lvds = INREG(LVDS);
 | |
| 
 | |
| 	if (flag == 4)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->pipe_a_conf = INREG(PIPEACONF);
 | |
| 	hw->pipe_b_conf = INREG(PIPEBCONF);
 | |
| 	hw->disp_arb = INREG(DISPARB);
 | |
| 
 | |
| 	if (flag == 5)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
 | |
| 	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
 | |
| 	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
 | |
| 	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
 | |
| 
 | |
| 	if (flag == 6)
 | |
| 		return flag;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
 | |
| 		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
 | |
| 	}
 | |
| 
 | |
| 	if (flag == 7)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->cursor_size = INREG(CURSOR_SIZE);
 | |
| 
 | |
| 	if (flag == 8)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->disp_a_ctrl = INREG(DSPACNTR);
 | |
| 	hw->disp_b_ctrl = INREG(DSPBCNTR);
 | |
| 	hw->disp_a_base = INREG(DSPABASE);
 | |
| 	hw->disp_b_base = INREG(DSPBBASE);
 | |
| 	hw->disp_a_stride = INREG(DSPASTRIDE);
 | |
| 	hw->disp_b_stride = INREG(DSPBSTRIDE);
 | |
| 
 | |
| 	if (flag == 9)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->vgacntrl = INREG(VGACNTRL);
 | |
| 
 | |
| 	if (flag == 10)
 | |
| 		return flag;
 | |
| 
 | |
| 	hw->add_id = INREG(ADD_ID);
 | |
| 
 | |
| 	if (flag == 11)
 | |
| 		return flag;
 | |
| 
 | |
| 	for (i = 0; i < 7; i++) {
 | |
| 		hw->swf0x[i] = INREG(SWF00 + (i << 2));
 | |
| 		hw->swf1x[i] = INREG(SWF10 + (i << 2));
 | |
| 		if (i < 3)
 | |
| 			hw->swf3x[i] = INREG(SWF30 + (i << 2));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		hw->fence[i] = INREG(FENCE + (i << 2));
 | |
| 
 | |
| 	hw->instpm = INREG(INSTPM);
 | |
| 	hw->mem_mode = INREG(MEM_MODE);
 | |
| 	hw->fw_blc_0 = INREG(FW_BLC_0);
 | |
| 	hw->fw_blc_1 = INREG(FW_BLC_1);
 | |
| 
 | |
| 	hw->hwstam = INREG16(HWSTAM);
 | |
| 	hw->ier = INREG16(IER);
 | |
| 	hw->iir = INREG16(IIR);
 | |
| 	hw->imr = INREG16(IMR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int calc_vclock3(int index, int m, int n, int p)
 | |
| {
 | |
| 	if (p == 0 || n == 0)
 | |
| 		return 0;
 | |
| 	return plls[index].ref_clk * m / n / p;
 | |
| }
 | |
| 
 | |
| static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
 | |
| 		       int lvds)
 | |
| {
 | |
| 	struct pll_min_max *pll = &plls[index];
 | |
| 	u32 m, vco, p;
 | |
| 
 | |
| 	m = (5 * (m1 + 2)) + (m2 + 2);
 | |
| 	n += 2;
 | |
| 	vco = pll->ref_clk * m / n;
 | |
| 
 | |
| 	if (index == PLLS_I8xx)
 | |
| 		p = ((p1 + 2) * (1 << (p2 + 1)));
 | |
| 	else
 | |
| 		p = ((p1) * (p2 ? 5 : 10));
 | |
| 	return vco / p;
 | |
| }
 | |
| 
 | |
| #if REGDUMP
 | |
| static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
 | |
| 			       int *o_p1, int *o_p2)
 | |
| {
 | |
| 	int p1, p2;
 | |
| 
 | |
| 	if (IS_I9XX(dinfo)) {
 | |
| 		if (dpll & DPLL_P1_FORCE_DIV2)
 | |
| 			p1 = 1;
 | |
| 		else
 | |
| 			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
 | |
| 
 | |
| 		p1 = ffs(p1);
 | |
| 
 | |
| 		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
 | |
| 	} else {
 | |
| 		if (dpll & DPLL_P1_FORCE_DIV2)
 | |
| 			p1 = 0;
 | |
| 		else
 | |
| 			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
 | |
| 		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
 | |
| 	}
 | |
| 
 | |
| 	*o_p1 = p1;
 | |
| 	*o_p2 = p2;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
 | |
| 			      struct intelfb_hwstate *hw)
 | |
| {
 | |
| #if REGDUMP
 | |
| 	int i, m1, m2, n, p1, p2;
 | |
| 	int index = dinfo->pll_index;
 | |
| 	DBG_MSG("intelfbhw_print_hw_state\n");
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return;
 | |
| 	/* Read in as much of the HW state as possible. */
 | |
| 	printk("hw state dump start\n");
 | |
| 	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
 | |
| 	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
 | |
| 	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
 | |
| 	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 
 | |
| 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 | |
| 
 | |
| 	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 | |
| 	       m1, m2, n, p1, p2);
 | |
| 	printk("	VGA0: clock is %d\n",
 | |
| 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
 | |
| 
 | |
| 	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 
 | |
| 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 | |
| 	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 | |
| 	       m1, m2, n, p1, p2);
 | |
| 	printk("	VGA1: clock is %d\n",
 | |
| 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
 | |
| 
 | |
| 	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
 | |
| 	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
 | |
| 	printk("	FPA0:			0x%08x\n", hw->fpa0);
 | |
| 	printk("	FPA1:			0x%08x\n", hw->fpa1);
 | |
| 	printk("	FPB0:			0x%08x\n", hw->fpb0);
 | |
| 	printk("	FPB1:			0x%08x\n", hw->fpb1);
 | |
| 
 | |
| 	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 
 | |
| 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 | |
| 
 | |
| 	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 | |
| 	       m1, m2, n, p1, p2);
 | |
| 	printk("	PLLA0: clock is %d\n",
 | |
| 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
 | |
| 
 | |
| 	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 | |
| 
 | |
| 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 | |
| 
 | |
| 	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 | |
| 	       m1, m2, n, p1, p2);
 | |
| 	printk("	PLLA1: clock is %d\n",
 | |
| 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
 | |
| 
 | |
| #if 0
 | |
| 	printk("	PALETTE_A:\n");
 | |
| 	for (i = 0; i < PALETTE_8_ENTRIES)
 | |
| 		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
 | |
| 	printk("	PALETTE_B:\n");
 | |
| 	for (i = 0; i < PALETTE_8_ENTRIES)
 | |
| 		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
 | |
| #endif
 | |
| 
 | |
| 	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
 | |
| 	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
 | |
| 	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
 | |
| 	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
 | |
| 	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
 | |
| 	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
 | |
| 	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
 | |
| 	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
 | |
| 	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
 | |
| 	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
 | |
| 	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
 | |
| 	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
 | |
| 	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
 | |
| 	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
 | |
| 	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
 | |
| 	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
 | |
| 
 | |
| 	printk("	ADPA:			0x%08x\n", hw->adpa);
 | |
| 	printk("	DVOA:			0x%08x\n", hw->dvoa);
 | |
| 	printk("	DVOB:			0x%08x\n", hw->dvob);
 | |
| 	printk("	DVOC:			0x%08x\n", hw->dvoc);
 | |
| 	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
 | |
| 	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
 | |
| 	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
 | |
| 	printk("	LVDS:			0x%08x\n", hw->lvds);
 | |
| 
 | |
| 	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
 | |
| 	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
 | |
| 	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
 | |
| 
 | |
| 	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
 | |
| 	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
 | |
| 	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
 | |
| 	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
 | |
| 
 | |
| 	printk("	CURSOR_A_PALETTE:	");
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		printk("0x%08x", hw->cursor_a_palette[i]);
 | |
| 		if (i < 3)
 | |
| 			printk(", ");
 | |
| 	}
 | |
| 	printk("\n");
 | |
| 	printk("	CURSOR_B_PALETTE:	");
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		printk("0x%08x", hw->cursor_b_palette[i]);
 | |
| 		if (i < 3)
 | |
| 			printk(", ");
 | |
| 	}
 | |
| 	printk("\n");
 | |
| 
 | |
| 	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
 | |
| 
 | |
| 	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
 | |
| 	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
 | |
| 	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
 | |
| 	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
 | |
| 	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
 | |
| 	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
 | |
| 
 | |
| 	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
 | |
| 	printk("	ADD_ID:			0x%08x\n", hw->add_id);
 | |
| 
 | |
| 	for (i = 0; i < 7; i++) {
 | |
| 		printk("	SWF0%d			0x%08x\n", i,
 | |
| 			hw->swf0x[i]);
 | |
| 	}
 | |
| 	for (i = 0; i < 7; i++) {
 | |
| 		printk("	SWF1%d			0x%08x\n", i,
 | |
| 			hw->swf1x[i]);
 | |
| 	}
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		printk("	SWF3%d			0x%08x\n", i,
 | |
| 		       hw->swf3x[i]);
 | |
| 	}
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		printk("	FENCE%d			0x%08x\n", i,
 | |
| 		       hw->fence[i]);
 | |
| 
 | |
| 	printk("	INSTPM			0x%08x\n", hw->instpm);
 | |
| 	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
 | |
| 	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
 | |
| 	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
 | |
| 
 | |
| 	printk("	HWSTAM			0x%04x\n", hw->hwstam);
 | |
| 	printk("	IER			0x%04x\n", hw->ier);
 | |
| 	printk("	IIR			0x%04x\n", hw->iir);
 | |
| 	printk("	IMR			0x%04x\n", hw->imr);
 | |
| 	printk("hw state dump end\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Split the M parameter into M1 and M2. */
 | |
| static int splitm(int index, unsigned int m, unsigned int *retm1,
 | |
| 		  unsigned int *retm2)
 | |
| {
 | |
| 	int m1, m2;
 | |
| 	int testm;
 | |
| 	struct pll_min_max *pll = &plls[index];
 | |
| 
 | |
| 	/* no point optimising too much - brute force m */
 | |
| 	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
 | |
| 		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
 | |
| 			testm = (5 * (m1 + 2)) + (m2 + 2);
 | |
| 			if (testm == m) {
 | |
| 				*retm1 = (unsigned int)m1;
 | |
| 				*retm2 = (unsigned int)m2;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Split the P parameter into P1 and P2. */
 | |
| static int splitp(int index, unsigned int p, unsigned int *retp1,
 | |
| 		  unsigned int *retp2)
 | |
| {
 | |
| 	int p1, p2;
 | |
| 	struct pll_min_max *pll = &plls[index];
 | |
| 
 | |
| 	if (index == PLLS_I9xx) {
 | |
| 		p2 = (p % 10) ? 1 : 0;
 | |
| 
 | |
| 		p1 = p / (p2 ? 5 : 10);
 | |
| 
 | |
| 		*retp1 = (unsigned int)p1;
 | |
| 		*retp2 = (unsigned int)p2;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (p % 4 == 0)
 | |
| 		p2 = 1;
 | |
| 	else
 | |
| 		p2 = 0;
 | |
| 	p1 = (p / (1 << (p2 + 1))) - 2;
 | |
| 	if (p % 4 == 0 && p1 < pll->min_p1) {
 | |
| 		p2 = 0;
 | |
| 		p1 = (p / (1 << (p2 + 1))) - 2;
 | |
| 	}
 | |
| 	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
 | |
| 	    (p1 + 2) * (1 << (p2 + 1)) != p) {
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		*retp1 = (unsigned int)p1;
 | |
| 		*retp2 = (unsigned int)p2;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
 | |
| 			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
 | |
| {
 | |
| 	u32 m1, m2, n, p1, p2, n1, testm;
 | |
| 	u32 f_vco, p, p_best = 0, m, f_out = 0;
 | |
| 	u32 err_max, err_target, err_best = 10000000;
 | |
| 	u32 n_best = 0, m_best = 0, f_best, f_err;
 | |
| 	u32 p_min, p_max, p_inc, div_max;
 | |
| 	struct pll_min_max *pll = &plls[index];
 | |
| 
 | |
| 	/* Accept 0.5% difference, but aim for 0.1% */
 | |
| 	err_max = 5 * clock / 1000;
 | |
| 	err_target = clock / 1000;
 | |
| 
 | |
| 	DBG_MSG("Clock is %d\n", clock);
 | |
| 
 | |
| 	div_max = pll->max_vco / clock;
 | |
| 
 | |
| 	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
 | |
| 	p_min = p_inc;
 | |
| 	p_max = ROUND_DOWN_TO(div_max, p_inc);
 | |
| 	if (p_min < pll->min_p)
 | |
| 		p_min = pll->min_p;
 | |
| 	if (p_max > pll->max_p)
 | |
| 		p_max = pll->max_p;
 | |
| 
 | |
| 	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
 | |
| 
 | |
| 	p = p_min;
 | |
| 	do {
 | |
| 		if (splitp(index, p, &p1, &p2)) {
 | |
| 			WRN_MSG("cannot split p = %d\n", p);
 | |
| 			p += p_inc;
 | |
| 			continue;
 | |
| 		}
 | |
| 		n = pll->min_n;
 | |
| 		f_vco = clock * p;
 | |
| 
 | |
| 		do {
 | |
| 			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
 | |
| 			if (m < pll->min_m)
 | |
| 				m = pll->min_m + 1;
 | |
| 			if (m > pll->max_m)
 | |
| 				m = pll->max_m - 1;
 | |
| 			for (testm = m - 1; testm <= m; testm++) {
 | |
| 				f_out = calc_vclock3(index, testm, n, p);
 | |
| 				if (splitm(index, testm, &m1, &m2)) {
 | |
| 					WRN_MSG("cannot split m = %d\n",
 | |
| 						testm);
 | |
| 					continue;
 | |
| 				}
 | |
| 				if (clock > f_out)
 | |
| 					f_err = clock - f_out;
 | |
| 				else/* slightly bias the error for bigger clocks */
 | |
| 					f_err = f_out - clock + 1;
 | |
| 
 | |
| 				if (f_err < err_best) {
 | |
| 					m_best = testm;
 | |
| 					n_best = n;
 | |
| 					p_best = p;
 | |
| 					f_best = f_out;
 | |
| 					err_best = f_err;
 | |
| 				}
 | |
| 			}
 | |
| 			n++;
 | |
| 		} while ((n <= pll->max_n) && (f_out >= clock));
 | |
| 		p += p_inc;
 | |
| 	} while ((p <= p_max));
 | |
| 
 | |
| 	if (!m_best) {
 | |
| 		WRN_MSG("cannot find parameters for clock %d\n", clock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	m = m_best;
 | |
| 	n = n_best;
 | |
| 	p = p_best;
 | |
| 	splitm(index, m, &m1, &m2);
 | |
| 	splitp(index, p, &p1, &p2);
 | |
| 	n1 = n - 2;
 | |
| 
 | |
| 	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
 | |
| 		"f: %d (%d), VCO: %d\n",
 | |
| 		m, m1, m2, n, n1, p, p1, p2,
 | |
| 		calc_vclock3(index, m, n, p),
 | |
| 		calc_vclock(index, m1, m2, n1, p1, p2, 0),
 | |
| 		calc_vclock3(index, m, n, p) * p);
 | |
| 	*retm1 = m1;
 | |
| 	*retm2 = m2;
 | |
| 	*retn = n1;
 | |
| 	*retp1 = p1;
 | |
| 	*retp2 = p2;
 | |
| 	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __inline__ int check_overflow(u32 value, u32 limit,
 | |
| 				     const char *description)
 | |
| {
 | |
| 	if (value > limit) {
 | |
| 		WRN_MSG("%s value %d exceeds limit %d\n",
 | |
| 			description, value, limit);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* It is assumed that hw is filled in with the initial state information. */
 | |
| int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
 | |
| 			 struct intelfb_hwstate *hw,
 | |
| 			 struct fb_var_screeninfo *var)
 | |
| {
 | |
| 	int pipe = PIPE_A;
 | |
| 	u32 *dpll, *fp0, *fp1;
 | |
| 	u32 m1, m2, n, p1, p2, clock_target, clock;
 | |
| 	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
 | |
| 	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
 | |
| 	u32 vsync_pol, hsync_pol;
 | |
| 	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
 | |
| 	u32 stride_alignment;
 | |
| 
 | |
| 	DBG_MSG("intelfbhw_mode_to_hw\n");
 | |
| 
 | |
| 	/* Disable VGA */
 | |
| 	hw->vgacntrl |= VGA_DISABLE;
 | |
| 
 | |
| 	/* Check whether pipe A or pipe B is enabled. */
 | |
| 	if (hw->pipe_a_conf & PIPECONF_ENABLE)
 | |
| 		pipe = PIPE_A;
 | |
| 	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
 | |
| 		pipe = PIPE_B;
 | |
| 
 | |
| 	/* Set which pipe's registers will be set. */
 | |
| 	if (pipe == PIPE_B) {
 | |
| 		dpll = &hw->dpll_b;
 | |
| 		fp0 = &hw->fpb0;
 | |
| 		fp1 = &hw->fpb1;
 | |
| 		hs = &hw->hsync_b;
 | |
| 		hb = &hw->hblank_b;
 | |
| 		ht = &hw->htotal_b;
 | |
| 		vs = &hw->vsync_b;
 | |
| 		vb = &hw->vblank_b;
 | |
| 		vt = &hw->vtotal_b;
 | |
| 		ss = &hw->src_size_b;
 | |
| 		pipe_conf = &hw->pipe_b_conf;
 | |
| 	} else {
 | |
| 		dpll = &hw->dpll_a;
 | |
| 		fp0 = &hw->fpa0;
 | |
| 		fp1 = &hw->fpa1;
 | |
| 		hs = &hw->hsync_a;
 | |
| 		hb = &hw->hblank_a;
 | |
| 		ht = &hw->htotal_a;
 | |
| 		vs = &hw->vsync_a;
 | |
| 		vb = &hw->vblank_a;
 | |
| 		vt = &hw->vtotal_a;
 | |
| 		ss = &hw->src_size_a;
 | |
| 		pipe_conf = &hw->pipe_a_conf;
 | |
| 	}
 | |
| 
 | |
| 	/* Use ADPA register for sync control. */
 | |
| 	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
 | |
| 
 | |
| 	/* sync polarity */
 | |
| 	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
 | |
| 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
 | |
| 	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
 | |
| 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
 | |
| 	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
 | |
| 		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
 | |
| 	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
 | |
| 		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
 | |
| 
 | |
| 	/* Connect correct pipe to the analog port DAC */
 | |
| 	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
 | |
| 	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
 | |
| 
 | |
| 	/* Set DPMS state to D0 (on) */
 | |
| 	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
 | |
| 	hw->adpa |= ADPA_DPMS_D0;
 | |
| 
 | |
| 	hw->adpa |= ADPA_DAC_ENABLE;
 | |
| 
 | |
| 	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
 | |
| 	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
 | |
| 	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
 | |
| 
 | |
| 	/* Desired clock in kHz */
 | |
| 	clock_target = 1000000000 / var->pixclock;
 | |
| 
 | |
| 	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
 | |
| 			    &n, &p1, &p2, &clock)) {
 | |
| 		WRN_MSG("calc_pll_params failed\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for overflow. */
 | |
| 	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
 | |
| 		return 1;
 | |
| 	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
 | |
| 		return 1;
 | |
| 	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
 | |
| 		return 1;
 | |
| 	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
 | |
| 		return 1;
 | |
| 	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
 | |
| 		return 1;
 | |
| 
 | |
| 	*dpll &= ~DPLL_P1_FORCE_DIV2;
 | |
| 	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
 | |
| 		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
 | |
| 
 | |
| 	if (IS_I9XX(dinfo)) {
 | |
| 		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
 | |
| 		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
 | |
| 	} else
 | |
| 		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
 | |
| 
 | |
| 	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
 | |
| 	       (m1 << FP_M1_DIVISOR_SHIFT) |
 | |
| 	       (m2 << FP_M2_DIVISOR_SHIFT);
 | |
| 	*fp1 = *fp0;
 | |
| 
 | |
| 	hw->dvob &= ~PORT_ENABLE;
 | |
| 	hw->dvoc &= ~PORT_ENABLE;
 | |
| 
 | |
| 	/* Use display plane A. */
 | |
| 	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
 | |
| 	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
 | |
| 	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
 | |
| 	switch (intelfb_var_to_depth(var)) {
 | |
| 	case 8:
 | |
| 		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
 | |
| 		break;
 | |
| 	case 15:
 | |
| 		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		hw->disp_a_ctrl |= DISPPLANE_16BPP;
 | |
| 		break;
 | |
| 	case 24:
 | |
| 		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
 | |
| 		break;
 | |
| 	}
 | |
| 	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
 | |
| 	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
 | |
| 
 | |
| 	/* Set CRTC registers. */
 | |
| 	hactive = var->xres;
 | |
| 	hsync_start = hactive + var->right_margin;
 | |
| 	hsync_end = hsync_start + var->hsync_len;
 | |
| 	htotal = hsync_end + var->left_margin;
 | |
| 	hblank_start = hactive;
 | |
| 	hblank_end = htotal;
 | |
| 
 | |
| 	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
 | |
| 		hactive, hsync_start, hsync_end, htotal, hblank_start,
 | |
| 		hblank_end);
 | |
| 
 | |
| 	vactive = var->yres;
 | |
| 	if (var->vmode & FB_VMODE_INTERLACED)
 | |
| 		vactive--; /* the chip adds 2 halflines automatically */
 | |
| 	vsync_start = vactive + var->lower_margin;
 | |
| 	vsync_end = vsync_start + var->vsync_len;
 | |
| 	vtotal = vsync_end + var->upper_margin;
 | |
| 	vblank_start = vactive;
 | |
| 	vblank_end = vtotal;
 | |
| 	vblank_end = vsync_end + 1;
 | |
| 
 | |
| 	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
 | |
| 		vactive, vsync_start, vsync_end, vtotal, vblank_start,
 | |
| 		vblank_end);
 | |
| 
 | |
| 	/* Adjust for register values, and check for overflow. */
 | |
| 	hactive--;
 | |
| 	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
 | |
| 		return 1;
 | |
| 	hsync_start--;
 | |
| 	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
 | |
| 		return 1;
 | |
| 	hsync_end--;
 | |
| 	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
 | |
| 		return 1;
 | |
| 	htotal--;
 | |
| 	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
 | |
| 		return 1;
 | |
| 	hblank_start--;
 | |
| 	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
 | |
| 		return 1;
 | |
| 	hblank_end--;
 | |
| 	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
 | |
| 		return 1;
 | |
| 
 | |
| 	vactive--;
 | |
| 	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
 | |
| 		return 1;
 | |
| 	vsync_start--;
 | |
| 	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
 | |
| 		return 1;
 | |
| 	vsync_end--;
 | |
| 	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
 | |
| 		return 1;
 | |
| 	vtotal--;
 | |
| 	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
 | |
| 		return 1;
 | |
| 	vblank_start--;
 | |
| 	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
 | |
| 		return 1;
 | |
| 	vblank_end--;
 | |
| 	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
 | |
| 		return 1;
 | |
| 
 | |
| 	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
 | |
| 	*hb = (hblank_start << HBLANKSTART_SHIFT) |
 | |
| 	      (hblank_end << HSYNCEND_SHIFT);
 | |
| 	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
 | |
| 
 | |
| 	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
 | |
| 	*vb = (vblank_start << VBLANKSTART_SHIFT) |
 | |
| 	      (vblank_end << VSYNCEND_SHIFT);
 | |
| 	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
 | |
| 	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
 | |
| 	      (vactive << SRC_SIZE_VERT_SHIFT);
 | |
| 
 | |
| 	hw->disp_a_stride = dinfo->pitch;
 | |
| 	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
 | |
| 
 | |
| 	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
 | |
| 			  var->xoffset * var->bits_per_pixel / 8;
 | |
| 
 | |
| 	hw->disp_a_base += dinfo->fb.offset << 12;
 | |
| 
 | |
| 	/* Check stride alignment. */
 | |
| 	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
 | |
| 					    STRIDE_ALIGNMENT;
 | |
| 	if (hw->disp_a_stride % stride_alignment != 0) {
 | |
| 		WRN_MSG("display stride %d has bad alignment %d\n",
 | |
| 			hw->disp_a_stride, stride_alignment);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the palette to 8-bit mode. */
 | |
| 	*pipe_conf &= ~PIPECONF_GAMMA;
 | |
| 
 | |
| 	if (var->vmode & FB_VMODE_INTERLACED)
 | |
| 		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
 | |
| 	else
 | |
| 		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Program a (non-VGA) video mode. */
 | |
| int intelfbhw_program_mode(struct intelfb_info *dinfo,
 | |
| 			   const struct intelfb_hwstate *hw, int blank)
 | |
| {
 | |
| 	int pipe = PIPE_A;
 | |
| 	u32 tmp;
 | |
| 	const u32 *dpll, *fp0, *fp1, *pipe_conf;
 | |
| 	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
 | |
| 	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
 | |
| 	u32 hsync_reg, htotal_reg, hblank_reg;
 | |
| 	u32 vsync_reg, vtotal_reg, vblank_reg;
 | |
| 	u32 src_size_reg;
 | |
| 	u32 count, tmp_val[3];
 | |
| 
 | |
| 	/* Assume single pipe, display plane A, analog CRT. */
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_program_mode\n");
 | |
| #endif
 | |
| 
 | |
| 	/* Disable VGA */
 | |
| 	tmp = INREG(VGACNTRL);
 | |
| 	tmp |= VGA_DISABLE;
 | |
| 	OUTREG(VGACNTRL, tmp);
 | |
| 
 | |
| 	/* Check whether pipe A or pipe B is enabled. */
 | |
| 	if (hw->pipe_a_conf & PIPECONF_ENABLE)
 | |
| 		pipe = PIPE_A;
 | |
| 	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
 | |
| 		pipe = PIPE_B;
 | |
| 
 | |
| 	dinfo->pipe = pipe;
 | |
| 
 | |
| 	if (pipe == PIPE_B) {
 | |
| 		dpll = &hw->dpll_b;
 | |
| 		fp0 = &hw->fpb0;
 | |
| 		fp1 = &hw->fpb1;
 | |
| 		pipe_conf = &hw->pipe_b_conf;
 | |
| 		hs = &hw->hsync_b;
 | |
| 		hb = &hw->hblank_b;
 | |
| 		ht = &hw->htotal_b;
 | |
| 		vs = &hw->vsync_b;
 | |
| 		vb = &hw->vblank_b;
 | |
| 		vt = &hw->vtotal_b;
 | |
| 		ss = &hw->src_size_b;
 | |
| 		dpll_reg = DPLL_B;
 | |
| 		fp0_reg = FPB0;
 | |
| 		fp1_reg = FPB1;
 | |
| 		pipe_conf_reg = PIPEBCONF;
 | |
| 		pipe_stat_reg = PIPEBSTAT;
 | |
| 		hsync_reg = HSYNC_B;
 | |
| 		htotal_reg = HTOTAL_B;
 | |
| 		hblank_reg = HBLANK_B;
 | |
| 		vsync_reg = VSYNC_B;
 | |
| 		vtotal_reg = VTOTAL_B;
 | |
| 		vblank_reg = VBLANK_B;
 | |
| 		src_size_reg = SRC_SIZE_B;
 | |
| 	} else {
 | |
| 		dpll = &hw->dpll_a;
 | |
| 		fp0 = &hw->fpa0;
 | |
| 		fp1 = &hw->fpa1;
 | |
| 		pipe_conf = &hw->pipe_a_conf;
 | |
| 		hs = &hw->hsync_a;
 | |
| 		hb = &hw->hblank_a;
 | |
| 		ht = &hw->htotal_a;
 | |
| 		vs = &hw->vsync_a;
 | |
| 		vb = &hw->vblank_a;
 | |
| 		vt = &hw->vtotal_a;
 | |
| 		ss = &hw->src_size_a;
 | |
| 		dpll_reg = DPLL_A;
 | |
| 		fp0_reg = FPA0;
 | |
| 		fp1_reg = FPA1;
 | |
| 		pipe_conf_reg = PIPEACONF;
 | |
| 		pipe_stat_reg = PIPEASTAT;
 | |
| 		hsync_reg = HSYNC_A;
 | |
| 		htotal_reg = HTOTAL_A;
 | |
| 		hblank_reg = HBLANK_A;
 | |
| 		vsync_reg = VSYNC_A;
 | |
| 		vtotal_reg = VTOTAL_A;
 | |
| 		vblank_reg = VBLANK_A;
 | |
| 		src_size_reg = SRC_SIZE_A;
 | |
| 	}
 | |
| 
 | |
| 	/* turn off pipe */
 | |
| 	tmp = INREG(pipe_conf_reg);
 | |
| 	tmp &= ~PIPECONF_ENABLE;
 | |
| 	OUTREG(pipe_conf_reg, tmp);
 | |
| 
 | |
| 	count = 0;
 | |
| 	do {
 | |
| 		tmp_val[count % 3] = INREG(PIPEA_DSL);
 | |
| 		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
 | |
| 			break;
 | |
| 		count++;
 | |
| 		udelay(1);
 | |
| 		if (count % 200 == 0) {
 | |
| 			tmp = INREG(pipe_conf_reg);
 | |
| 			tmp &= ~PIPECONF_ENABLE;
 | |
| 			OUTREG(pipe_conf_reg, tmp);
 | |
| 		}
 | |
| 	} while (count < 2000);
 | |
| 
 | |
| 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
 | |
| 
 | |
| 	/* Disable planes A and B. */
 | |
| 	tmp = INREG(DSPACNTR);
 | |
| 	tmp &= ~DISPPLANE_PLANE_ENABLE;
 | |
| 	OUTREG(DSPACNTR, tmp);
 | |
| 	tmp = INREG(DSPBCNTR);
 | |
| 	tmp &= ~DISPPLANE_PLANE_ENABLE;
 | |
| 	OUTREG(DSPBCNTR, tmp);
 | |
| 
 | |
| 	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
 | |
| 	mdelay(20);
 | |
| 
 | |
| 	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
 | |
| 	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
 | |
| 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
 | |
| 
 | |
| 	/* Disable Sync */
 | |
| 	tmp = INREG(ADPA);
 | |
| 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
 | |
| 	tmp |= ADPA_DPMS_D3;
 | |
| 	OUTREG(ADPA, tmp);
 | |
| 
 | |
| 	/* do some funky magic - xyzzy */
 | |
| 	OUTREG(0x61204, 0xabcd0000);
 | |
| 
 | |
| 	/* turn off PLL */
 | |
| 	tmp = INREG(dpll_reg);
 | |
| 	tmp &= ~DPLL_VCO_ENABLE;
 | |
| 	OUTREG(dpll_reg, tmp);
 | |
| 
 | |
| 	/* Set PLL parameters */
 | |
| 	OUTREG(fp0_reg, *fp0);
 | |
| 	OUTREG(fp1_reg, *fp1);
 | |
| 
 | |
| 	/* Enable PLL */
 | |
| 	OUTREG(dpll_reg, *dpll);
 | |
| 
 | |
| 	/* Set DVOs B/C */
 | |
| 	OUTREG(DVOB, hw->dvob);
 | |
| 	OUTREG(DVOC, hw->dvoc);
 | |
| 
 | |
| 	/* undo funky magic */
 | |
| 	OUTREG(0x61204, 0x00000000);
 | |
| 
 | |
| 	/* Set ADPA */
 | |
| 	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
 | |
| 	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
 | |
| 
 | |
| 	/* Set pipe parameters */
 | |
| 	OUTREG(hsync_reg, *hs);
 | |
| 	OUTREG(hblank_reg, *hb);
 | |
| 	OUTREG(htotal_reg, *ht);
 | |
| 	OUTREG(vsync_reg, *vs);
 | |
| 	OUTREG(vblank_reg, *vb);
 | |
| 	OUTREG(vtotal_reg, *vt);
 | |
| 	OUTREG(src_size_reg, *ss);
 | |
| 
 | |
| 	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
 | |
| 					  FB_VMODE_ODD_FLD_FIRST)) {
 | |
| 	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
 | |
| 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
 | |
| 		break;
 | |
| 	case FB_VMODE_INTERLACED: /* even lines first */
 | |
| 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
 | |
| 		break;
 | |
| 	default:		/* non-interlaced */
 | |
| 		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
 | |
| 	}
 | |
| 	/* Enable pipe */
 | |
| 	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
 | |
| 
 | |
| 	/* Enable sync */
 | |
| 	tmp = INREG(ADPA);
 | |
| 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
 | |
| 	tmp |= ADPA_DPMS_D0;
 | |
| 	OUTREG(ADPA, tmp);
 | |
| 
 | |
| 	/* setup display plane */
 | |
| 	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
 | |
| 		/*
 | |
| 		 *      i830M errata: the display plane must be enabled
 | |
| 		 *      to allow writes to the other bits in the plane
 | |
| 		 *      control register.
 | |
| 		 */
 | |
| 		tmp = INREG(DSPACNTR);
 | |
| 		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
 | |
| 			tmp |= DISPPLANE_PLANE_ENABLE;
 | |
| 			OUTREG(DSPACNTR, tmp);
 | |
| 			OUTREG(DSPACNTR,
 | |
| 			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
 | |
| 			mdelay(1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
 | |
| 	OUTREG(DSPASTRIDE, hw->disp_a_stride);
 | |
| 	OUTREG(DSPABASE, hw->disp_a_base);
 | |
| 
 | |
| 	/* Enable plane */
 | |
| 	if (!blank) {
 | |
| 		tmp = INREG(DSPACNTR);
 | |
| 		tmp |= DISPPLANE_PLANE_ENABLE;
 | |
| 		OUTREG(DSPACNTR, tmp);
 | |
| 		OUTREG(DSPABASE, hw->disp_a_base);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* forward declarations */
 | |
| static void refresh_ring(struct intelfb_info *dinfo);
 | |
| static void reset_state(struct intelfb_info *dinfo);
 | |
| static void do_flush(struct intelfb_info *dinfo);
 | |
| 
 | |
| static  u32 get_ring_space(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u32 ring_space;
 | |
| 
 | |
| 	if (dinfo->ring_tail >= dinfo->ring_head)
 | |
| 		ring_space = dinfo->ring.size -
 | |
| 			(dinfo->ring_tail - dinfo->ring_head);
 | |
| 	else
 | |
| 		ring_space = dinfo->ring_head - dinfo->ring_tail;
 | |
| 
 | |
| 	if (ring_space > RING_MIN_FREE)
 | |
| 		ring_space -= RING_MIN_FREE;
 | |
| 	else
 | |
| 		ring_space = 0;
 | |
| 
 | |
| 	return ring_space;
 | |
| }
 | |
| 
 | |
| static int wait_ring(struct intelfb_info *dinfo, int n)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	unsigned long end;
 | |
| 	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("wait_ring: %d\n", n);
 | |
| #endif
 | |
| 
 | |
| 	end = jiffies + (HZ * 3);
 | |
| 	while (dinfo->ring_space < n) {
 | |
| 		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
 | |
| 		dinfo->ring_space = get_ring_space(dinfo);
 | |
| 
 | |
| 		if (dinfo->ring_head != last_head) {
 | |
| 			end = jiffies + (HZ * 3);
 | |
| 			last_head = dinfo->ring_head;
 | |
| 		}
 | |
| 		i++;
 | |
| 		if (time_before(end, jiffies)) {
 | |
| 			if (!i) {
 | |
| 				/* Try again */
 | |
| 				reset_state(dinfo);
 | |
| 				refresh_ring(dinfo);
 | |
| 				do_flush(dinfo);
 | |
| 				end = jiffies + (HZ * 3);
 | |
| 				i = 1;
 | |
| 			} else {
 | |
| 				WRN_MSG("ring buffer : space: %d wanted %d\n",
 | |
| 					dinfo->ring_space, n);
 | |
| 				WRN_MSG("lockup - turning off hardware "
 | |
| 					"acceleration\n");
 | |
| 				dinfo->ring_lockup = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void do_flush(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	START_RING(2);
 | |
| 	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
 | |
| 	OUT_RING(MI_NOOP);
 | |
| 	ADVANCE_RING();
 | |
| }
 | |
| 
 | |
| void intelfbhw_do_sync(struct intelfb_info *dinfo)
 | |
| {
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_do_sync\n");
 | |
| #endif
 | |
| 
 | |
| 	if (!dinfo->accel)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Send a flush, then wait until the ring is empty.  This is what
 | |
| 	 * the XFree86 driver does, and actually it doesn't seem a lot worse
 | |
| 	 * than the recommended method (both have problems).
 | |
| 	 */
 | |
| 	do_flush(dinfo);
 | |
| 	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
 | |
| 	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
 | |
| }
 | |
| 
 | |
| static void refresh_ring(struct intelfb_info *dinfo)
 | |
| {
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("refresh_ring\n");
 | |
| #endif
 | |
| 
 | |
| 	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
 | |
| 	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
 | |
| 	dinfo->ring_space = get_ring_space(dinfo);
 | |
| }
 | |
| 
 | |
| static void reset_state(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("reset_state\n");
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0; i < FENCE_NUM; i++)
 | |
| 		OUTREG(FENCE + (i << 2), 0);
 | |
| 
 | |
| 	/* Flush the ring buffer if it's enabled. */
 | |
| 	tmp = INREG(PRI_RING_LENGTH);
 | |
| 	if (tmp & RING_ENABLE) {
 | |
| #if VERBOSE > 0
 | |
| 		DBG_MSG("reset_state: ring was enabled\n");
 | |
| #endif
 | |
| 		refresh_ring(dinfo);
 | |
| 		intelfbhw_do_sync(dinfo);
 | |
| 		DO_RING_IDLE();
 | |
| 	}
 | |
| 
 | |
| 	OUTREG(PRI_RING_LENGTH, 0);
 | |
| 	OUTREG(PRI_RING_HEAD, 0);
 | |
| 	OUTREG(PRI_RING_TAIL, 0);
 | |
| 	OUTREG(PRI_RING_START, 0);
 | |
| }
 | |
| 
 | |
| /* Stop the 2D engine, and turn off the ring buffer. */
 | |
| void intelfbhw_2d_stop(struct intelfb_info *dinfo)
 | |
| {
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
 | |
| 		dinfo->accel, dinfo->ring_active);
 | |
| #endif
 | |
| 
 | |
| 	if (!dinfo->accel)
 | |
| 		return;
 | |
| 
 | |
| 	dinfo->ring_active = 0;
 | |
| 	reset_state(dinfo);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable the ring buffer, and initialise the 2D engine.
 | |
|  * It is assumed that the graphics engine has been stopped by previously
 | |
|  * calling intelfb_2d_stop().
 | |
|  */
 | |
| void intelfbhw_2d_start(struct intelfb_info *dinfo)
 | |
| {
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
 | |
| 		dinfo->accel, dinfo->ring_active);
 | |
| #endif
 | |
| 
 | |
| 	if (!dinfo->accel)
 | |
| 		return;
 | |
| 
 | |
| 	/* Initialise the primary ring buffer. */
 | |
| 	OUTREG(PRI_RING_LENGTH, 0);
 | |
| 	OUTREG(PRI_RING_TAIL, 0);
 | |
| 	OUTREG(PRI_RING_HEAD, 0);
 | |
| 
 | |
| 	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
 | |
| 	OUTREG(PRI_RING_LENGTH,
 | |
| 		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
 | |
| 		RING_NO_REPORT | RING_ENABLE);
 | |
| 	refresh_ring(dinfo);
 | |
| 	dinfo->ring_active = 1;
 | |
| }
 | |
| 
 | |
| /* 2D fillrect (solid fill or invert) */
 | |
| void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
 | |
| 			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
 | |
| {
 | |
| 	u32 br00, br09, br13, br14, br16;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
 | |
| 		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
 | |
| #endif
 | |
| 
 | |
| 	br00 = COLOR_BLT_CMD;
 | |
| 	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
 | |
| 	br13 = (rop << ROP_SHIFT) | pitch;
 | |
| 	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
 | |
| 	br16 = color;
 | |
| 
 | |
| 	switch (bpp) {
 | |
| 	case 8:
 | |
| 		br13 |= COLOR_DEPTH_8;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		br13 |= COLOR_DEPTH_16;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		br13 |= COLOR_DEPTH_32;
 | |
| 		br00 |= WRITE_ALPHA | WRITE_RGB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	START_RING(6);
 | |
| 	OUT_RING(br00);
 | |
| 	OUT_RING(br13);
 | |
| 	OUT_RING(br14);
 | |
| 	OUT_RING(br09);
 | |
| 	OUT_RING(br16);
 | |
| 	OUT_RING(MI_NOOP);
 | |
| 	ADVANCE_RING();
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
 | |
| 		dinfo->ring_tail, dinfo->ring_space);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
 | |
| 		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
 | |
| {
 | |
| 	u32 br00, br09, br11, br12, br13, br22, br23, br26;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
 | |
| 		curx, cury, dstx, dsty, w, h, pitch, bpp);
 | |
| #endif
 | |
| 
 | |
| 	br00 = XY_SRC_COPY_BLT_CMD;
 | |
| 	br09 = dinfo->fb_start;
 | |
| 	br11 = (pitch << PITCH_SHIFT);
 | |
| 	br12 = dinfo->fb_start;
 | |
| 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
 | |
| 	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
 | |
| 	br23 = ((dstx + w) << WIDTH_SHIFT) |
 | |
| 	       ((dsty + h) << HEIGHT_SHIFT);
 | |
| 	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
 | |
| 
 | |
| 	switch (bpp) {
 | |
| 	case 8:
 | |
| 		br13 |= COLOR_DEPTH_8;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		br13 |= COLOR_DEPTH_16;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		br13 |= COLOR_DEPTH_32;
 | |
| 		br00 |= WRITE_ALPHA | WRITE_RGB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	START_RING(8);
 | |
| 	OUT_RING(br00);
 | |
| 	OUT_RING(br13);
 | |
| 	OUT_RING(br22);
 | |
| 	OUT_RING(br23);
 | |
| 	OUT_RING(br09);
 | |
| 	OUT_RING(br26);
 | |
| 	OUT_RING(br11);
 | |
| 	OUT_RING(br12);
 | |
| 	ADVANCE_RING();
 | |
| }
 | |
| 
 | |
| int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
 | |
| 			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
 | |
| 			   u32 bpp)
 | |
| {
 | |
| 	int nbytes, ndwords, pad, tmp;
 | |
| 	u32 br00, br09, br13, br18, br19, br22, br23;
 | |
| 	int dat, ix, iy, iw;
 | |
| 	int i, j;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
 | |
| #endif
 | |
| 
 | |
| 	/* size in bytes of a padded scanline */
 | |
| 	nbytes = ROUND_UP_TO(w, 16) / 8;
 | |
| 
 | |
| 	/* Total bytes of padded scanline data to write out. */
 | |
| 	nbytes = nbytes * h;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the glyph data exceeds the immediate mode limit.
 | |
| 	 * It would take a large font (1K pixels) to hit this limit.
 | |
| 	 */
 | |
| 	if (nbytes > MAX_MONO_IMM_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Src data is packaged a dword (32-bit) at a time. */
 | |
| 	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ring has to be padded to a quad word. But because the command starts
 | |
| 	   with 7 bytes, pad only if there is an even number of ndwords
 | |
| 	 */
 | |
| 	pad = !(ndwords % 2);
 | |
| 
 | |
| 	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
 | |
| 	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
 | |
| 	br09 = dinfo->fb_start;
 | |
| 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
 | |
| 	br18 = bg;
 | |
| 	br19 = fg;
 | |
| 	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
 | |
| 	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
 | |
| 
 | |
| 	switch (bpp) {
 | |
| 	case 8:
 | |
| 		br13 |= COLOR_DEPTH_8;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		br13 |= COLOR_DEPTH_16;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		br13 |= COLOR_DEPTH_32;
 | |
| 		br00 |= WRITE_ALPHA | WRITE_RGB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	START_RING(8 + ndwords);
 | |
| 	OUT_RING(br00);
 | |
| 	OUT_RING(br13);
 | |
| 	OUT_RING(br22);
 | |
| 	OUT_RING(br23);
 | |
| 	OUT_RING(br09);
 | |
| 	OUT_RING(br18);
 | |
| 	OUT_RING(br19);
 | |
| 	ix = iy = 0;
 | |
| 	iw = ROUND_UP_TO(w, 8) / 8;
 | |
| 	while (ndwords--) {
 | |
| 		dat = 0;
 | |
| 		for (j = 0; j < 2; ++j) {
 | |
| 			for (i = 0; i < 2; ++i) {
 | |
| 				if (ix != iw || i == 0)
 | |
| 					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
 | |
| 			}
 | |
| 			if (ix == iw && iy != (h-1)) {
 | |
| 				ix = 0;
 | |
| 				++iy;
 | |
| 			}
 | |
| 		}
 | |
| 		OUT_RING(dat);
 | |
| 	}
 | |
| 	if (pad)
 | |
| 		OUT_RING(MI_NOOP);
 | |
| 	ADVANCE_RING();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* HW cursor functions. */
 | |
| void intelfbhw_cursor_init(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_init\n");
 | |
| #endif
 | |
| 
 | |
| 	if (dinfo->mobile || IS_I9XX(dinfo)) {
 | |
| 		if (!dinfo->cursor.physical)
 | |
| 			return;
 | |
| 		tmp = INREG(CURSOR_A_CONTROL);
 | |
| 		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
 | |
| 			 CURSOR_MEM_TYPE_LOCAL |
 | |
| 			 (1 << CURSOR_PIPE_SELECT_SHIFT));
 | |
| 		tmp |= CURSOR_MODE_DISABLE;
 | |
| 		OUTREG(CURSOR_A_CONTROL, tmp);
 | |
| 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
 | |
| 	} else {
 | |
| 		tmp = INREG(CURSOR_CONTROL);
 | |
| 		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
 | |
| 			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
 | |
| 		tmp = CURSOR_FORMAT_3C;
 | |
| 		OUTREG(CURSOR_CONTROL, tmp);
 | |
| 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
 | |
| 		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
 | |
| 		      (64 << CURSOR_SIZE_V_SHIFT);
 | |
| 		OUTREG(CURSOR_SIZE, tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_hide\n");
 | |
| #endif
 | |
| 
 | |
| 	dinfo->cursor_on = 0;
 | |
| 	if (dinfo->mobile || IS_I9XX(dinfo)) {
 | |
| 		if (!dinfo->cursor.physical)
 | |
| 			return;
 | |
| 		tmp = INREG(CURSOR_A_CONTROL);
 | |
| 		tmp &= ~CURSOR_MODE_MASK;
 | |
| 		tmp |= CURSOR_MODE_DISABLE;
 | |
| 		OUTREG(CURSOR_A_CONTROL, tmp);
 | |
| 		/* Flush changes */
 | |
| 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
 | |
| 	} else {
 | |
| 		tmp = INREG(CURSOR_CONTROL);
 | |
| 		tmp &= ~CURSOR_ENABLE;
 | |
| 		OUTREG(CURSOR_CONTROL, tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_show(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_show\n");
 | |
| #endif
 | |
| 
 | |
| 	dinfo->cursor_on = 1;
 | |
| 
 | |
| 	if (dinfo->cursor_blanked)
 | |
| 		return;
 | |
| 
 | |
| 	if (dinfo->mobile || IS_I9XX(dinfo)) {
 | |
| 		if (!dinfo->cursor.physical)
 | |
| 			return;
 | |
| 		tmp = INREG(CURSOR_A_CONTROL);
 | |
| 		tmp &= ~CURSOR_MODE_MASK;
 | |
| 		tmp |= CURSOR_MODE_64_4C_AX;
 | |
| 		OUTREG(CURSOR_A_CONTROL, tmp);
 | |
| 		/* Flush changes */
 | |
| 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
 | |
| 	} else {
 | |
| 		tmp = INREG(CURSOR_CONTROL);
 | |
| 		tmp |= CURSOR_ENABLE;
 | |
| 		OUTREG(CURSOR_CONTROL, tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Sets the position. The coordinates are assumed to already
 | |
| 	 * have any offset adjusted. Assume that the cursor is never
 | |
| 	 * completely off-screen, and that x, y are always >= 0.
 | |
| 	 */
 | |
| 
 | |
| 	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
 | |
| 	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
 | |
| 	OUTREG(CURSOR_A_POSITION, tmp);
 | |
| 
 | |
| 	if (IS_I9XX(dinfo))
 | |
| 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
 | |
| {
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_setcolor\n");
 | |
| #endif
 | |
| 
 | |
| 	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
 | |
| 	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
 | |
| 	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
 | |
| 	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
 | |
| 			   u8 *data)
 | |
| {
 | |
| 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
 | |
| 	int i, j, w = width / 8;
 | |
| 	int mod = width % 8, t_mask, d_mask;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_load\n");
 | |
| #endif
 | |
| 
 | |
| 	if (!dinfo->cursor.virtual)
 | |
| 		return;
 | |
| 
 | |
| 	t_mask = 0xff >> mod;
 | |
| 	d_mask = ~(0xff >> mod);
 | |
| 	for (i = height; i--; ) {
 | |
| 		for (j = 0; j < w; j++) {
 | |
| 			writeb(0x00, addr + j);
 | |
| 			writeb(*(data++), addr + j+8);
 | |
| 		}
 | |
| 		if (mod) {
 | |
| 			writeb(t_mask, addr + j);
 | |
| 			writeb(*(data++) & d_mask, addr + j+8);
 | |
| 		}
 | |
| 		addr += 16;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
 | |
| 	int i, j;
 | |
| 
 | |
| #if VERBOSE > 0
 | |
| 	DBG_MSG("intelfbhw_cursor_reset\n");
 | |
| #endif
 | |
| 
 | |
| 	if (!dinfo->cursor.virtual)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 64; i--; ) {
 | |
| 		for (j = 0; j < 8; j++) {
 | |
| 			writeb(0xff, addr + j+0);
 | |
| 			writeb(0x00, addr + j+8);
 | |
| 		}
 | |
| 		addr += 16;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
 | |
| {
 | |
| 	u16 tmp;
 | |
| 	struct intelfb_info *dinfo = dev_id;
 | |
| 
 | |
| 	spin_lock(&dinfo->int_lock);
 | |
| 
 | |
| 	tmp = INREG16(IIR);
 | |
| 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
 | |
| 		tmp &= PIPE_A_EVENT_INTERRUPT;
 | |
| 	else
 | |
| 		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
 | |
| 
 | |
| 	if (tmp == 0) {
 | |
| 		spin_unlock(&dinfo->int_lock);
 | |
| 		return IRQ_RETVAL(0); /* not us */
 | |
| 	}
 | |
| 
 | |
| 	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
 | |
| 	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
 | |
| 
 | |
| 	OUTREG16(IIR, tmp);
 | |
| 	if (dinfo->vsync.pan_display) {
 | |
| 		dinfo->vsync.pan_display = 0;
 | |
| 		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
 | |
| 	}
 | |
| 
 | |
| 	dinfo->vsync.count++;
 | |
| 	wake_up_interruptible(&dinfo->vsync.wait);
 | |
| 
 | |
| 	spin_unlock(&dinfo->int_lock);
 | |
| 
 | |
| 	return IRQ_RETVAL(1);
 | |
| }
 | |
| 
 | |
| int intelfbhw_enable_irq(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	u16 tmp;
 | |
| 	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
 | |
| 		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
 | |
| 				"intelfb", dinfo)) {
 | |
| 			clear_bit(0, &dinfo->irq_flags);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irq(&dinfo->int_lock);
 | |
| 		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
 | |
| 		OUTREG16(IMR, 0);
 | |
| 	} else
 | |
| 		spin_lock_irq(&dinfo->int_lock);
 | |
| 
 | |
| 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
 | |
| 		tmp = PIPE_A_EVENT_INTERRUPT;
 | |
| 	else
 | |
| 		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
 | |
| 	if (tmp != INREG16(IER)) {
 | |
| 		DBG_MSG("changing IER to 0x%X\n", tmp);
 | |
| 		OUTREG16(IER, tmp);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&dinfo->int_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void intelfbhw_disable_irq(struct intelfb_info *dinfo)
 | |
| {
 | |
| 	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
 | |
| 		if (dinfo->vsync.pan_display) {
 | |
| 			dinfo->vsync.pan_display = 0;
 | |
| 			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
 | |
| 		}
 | |
| 		spin_lock_irq(&dinfo->int_lock);
 | |
| 		OUTREG16(HWSTAM, 0xffff);
 | |
| 		OUTREG16(IMR, 0xffff);
 | |
| 		OUTREG16(IER, 0x0);
 | |
| 
 | |
| 		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
 | |
| 		spin_unlock_irq(&dinfo->int_lock);
 | |
| 
 | |
| 		free_irq(dinfo->pdev->irq, dinfo);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
 | |
| {
 | |
| 	struct intelfb_vsync *vsync;
 | |
| 	unsigned int count;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (pipe) {
 | |
| 		case 0:
 | |
| 			vsync = &dinfo->vsync;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ret = intelfbhw_enable_irq(dinfo);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	count = vsync->count;
 | |
| 	ret = wait_event_interruptible_timeout(vsync->wait,
 | |
| 					       count != vsync->count, HZ / 10);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (ret == 0) {
 | |
| 		DBG_MSG("wait_for_vsync timed out!\n");
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |