 efde8b6e16
			
		
	
	
	efde8b6e16
	
	
	
		
			
			Add missing smp_rmb() primitives to the keyring search code. When keyring payloads are appended to without replacement (thus using up spare slots in the key pointer array), an smp_wmb() is issued between the pointer assignment and the increment of the key count (nkeys). There should be corresponding read barriers between the read of nkeys and dereferences of keys[n] when n is dependent on the value of nkeys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
		
			
				
	
	
		
			390 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			390 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Key garbage collector
 | |
|  *
 | |
|  * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public Licence
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the Licence, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/security.h>
 | |
| #include <keys/keyring-type.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Delay between key revocation/expiry in seconds
 | |
|  */
 | |
| unsigned key_gc_delay = 5 * 60;
 | |
| 
 | |
| /*
 | |
|  * Reaper for unused keys.
 | |
|  */
 | |
| static void key_garbage_collector(struct work_struct *work);
 | |
| DECLARE_WORK(key_gc_work, key_garbage_collector);
 | |
| 
 | |
| /*
 | |
|  * Reaper for links from keyrings to dead keys.
 | |
|  */
 | |
| static void key_gc_timer_func(unsigned long);
 | |
| static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
 | |
| 
 | |
| static time_t key_gc_next_run = LONG_MAX;
 | |
| static struct key_type *key_gc_dead_keytype;
 | |
| 
 | |
| static unsigned long key_gc_flags;
 | |
| #define KEY_GC_KEY_EXPIRED	0	/* A key expired and needs unlinking */
 | |
| #define KEY_GC_REAP_KEYTYPE	1	/* A keytype is being unregistered */
 | |
| #define KEY_GC_REAPING_KEYTYPE	2	/* Cleared when keytype reaped */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Any key whose type gets unregistered will be re-typed to this if it can't be
 | |
|  * immediately unlinked.
 | |
|  */
 | |
| struct key_type key_type_dead = {
 | |
| 	.name = "dead",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Schedule a garbage collection run.
 | |
|  * - time precision isn't particularly important
 | |
|  */
 | |
| void key_schedule_gc(time_t gc_at)
 | |
| {
 | |
| 	unsigned long expires;
 | |
| 	time_t now = current_kernel_time().tv_sec;
 | |
| 
 | |
| 	kenter("%ld", gc_at - now);
 | |
| 
 | |
| 	if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
 | |
| 		kdebug("IMMEDIATE");
 | |
| 		queue_work(system_nrt_wq, &key_gc_work);
 | |
| 	} else if (gc_at < key_gc_next_run) {
 | |
| 		kdebug("DEFERRED");
 | |
| 		key_gc_next_run = gc_at;
 | |
| 		expires = jiffies + (gc_at - now) * HZ;
 | |
| 		mod_timer(&key_gc_timer, expires);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some key's cleanup time was met after it expired, so we need to get the
 | |
|  * reaper to go through a cycle finding expired keys.
 | |
|  */
 | |
| static void key_gc_timer_func(unsigned long data)
 | |
| {
 | |
| 	kenter("");
 | |
| 	key_gc_next_run = LONG_MAX;
 | |
| 	set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
 | |
| 	queue_work(system_nrt_wq, &key_gc_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait_on_bit() sleep function for uninterruptible waiting
 | |
|  */
 | |
| static int key_gc_wait_bit(void *flags)
 | |
| {
 | |
| 	schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reap keys of dead type.
 | |
|  *
 | |
|  * We use three flags to make sure we see three complete cycles of the garbage
 | |
|  * collector: the first to mark keys of that type as being dead, the second to
 | |
|  * collect dead links and the third to clean up the dead keys.  We have to be
 | |
|  * careful as there may already be a cycle in progress.
 | |
|  *
 | |
|  * The caller must be holding key_types_sem.
 | |
|  */
 | |
| void key_gc_keytype(struct key_type *ktype)
 | |
| {
 | |
| 	kenter("%s", ktype->name);
 | |
| 
 | |
| 	key_gc_dead_keytype = ktype;
 | |
| 	set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
 | |
| 	smp_mb();
 | |
| 	set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
 | |
| 
 | |
| 	kdebug("schedule");
 | |
| 	queue_work(system_nrt_wq, &key_gc_work);
 | |
| 
 | |
| 	kdebug("sleep");
 | |
| 	wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit,
 | |
| 		    TASK_UNINTERRUPTIBLE);
 | |
| 
 | |
| 	key_gc_dead_keytype = NULL;
 | |
| 	kleave("");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Garbage collect pointers from a keyring.
 | |
|  *
 | |
|  * Not called with any locks held.  The keyring's key struct will not be
 | |
|  * deallocated under us as only our caller may deallocate it.
 | |
|  */
 | |
| static void key_gc_keyring(struct key *keyring, time_t limit)
 | |
| {
 | |
| 	struct keyring_list *klist;
 | |
| 	struct key *key;
 | |
| 	int loop;
 | |
| 
 | |
| 	kenter("%x", key_serial(keyring));
 | |
| 
 | |
| 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 | |
| 		goto dont_gc;
 | |
| 
 | |
| 	/* scan the keyring looking for dead keys */
 | |
| 	rcu_read_lock();
 | |
| 	klist = rcu_dereference(keyring->payload.subscriptions);
 | |
| 	if (!klist)
 | |
| 		goto unlock_dont_gc;
 | |
| 
 | |
| 	loop = klist->nkeys;
 | |
| 	smp_rmb();
 | |
| 	for (loop--; loop >= 0; loop--) {
 | |
| 		key = klist->keys[loop];
 | |
| 		if (test_bit(KEY_FLAG_DEAD, &key->flags) ||
 | |
| 		    (key->expiry > 0 && key->expiry <= limit))
 | |
| 			goto do_gc;
 | |
| 	}
 | |
| 
 | |
| unlock_dont_gc:
 | |
| 	rcu_read_unlock();
 | |
| dont_gc:
 | |
| 	kleave(" [no gc]");
 | |
| 	return;
 | |
| 
 | |
| do_gc:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	keyring_gc(keyring, limit);
 | |
| 	kleave(" [gc]");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Garbage collect an unreferenced, detached key
 | |
|  */
 | |
| static noinline void key_gc_unused_key(struct key *key)
 | |
| {
 | |
| 	key_check(key);
 | |
| 
 | |
| 	security_key_free(key);
 | |
| 
 | |
| 	/* deal with the user's key tracking and quota */
 | |
| 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 | |
| 		spin_lock(&key->user->lock);
 | |
| 		key->user->qnkeys--;
 | |
| 		key->user->qnbytes -= key->quotalen;
 | |
| 		spin_unlock(&key->user->lock);
 | |
| 	}
 | |
| 
 | |
| 	atomic_dec(&key->user->nkeys);
 | |
| 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
 | |
| 		atomic_dec(&key->user->nikeys);
 | |
| 
 | |
| 	key_user_put(key->user);
 | |
| 
 | |
| 	/* now throw away the key memory */
 | |
| 	if (key->type->destroy)
 | |
| 		key->type->destroy(key);
 | |
| 
 | |
| 	kfree(key->description);
 | |
| 
 | |
| #ifdef KEY_DEBUGGING
 | |
| 	key->magic = KEY_DEBUG_MAGIC_X;
 | |
| #endif
 | |
| 	kmem_cache_free(key_jar, key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Garbage collector for unused keys.
 | |
|  *
 | |
|  * This is done in process context so that we don't have to disable interrupts
 | |
|  * all over the place.  key_put() schedules this rather than trying to do the
 | |
|  * cleanup itself, which means key_put() doesn't have to sleep.
 | |
|  */
 | |
| static void key_garbage_collector(struct work_struct *work)
 | |
| {
 | |
| 	static u8 gc_state;		/* Internal persistent state */
 | |
| #define KEY_GC_REAP_AGAIN	0x01	/* - Need another cycle */
 | |
| #define KEY_GC_REAPING_LINKS	0x02	/* - We need to reap links */
 | |
| #define KEY_GC_SET_TIMER	0x04	/* - We need to restart the timer */
 | |
| #define KEY_GC_REAPING_DEAD_1	0x10	/* - We need to mark dead keys */
 | |
| #define KEY_GC_REAPING_DEAD_2	0x20	/* - We need to reap dead key links */
 | |
| #define KEY_GC_REAPING_DEAD_3	0x40	/* - We need to reap dead keys */
 | |
| #define KEY_GC_FOUND_DEAD_KEY	0x80	/* - We found at least one dead key */
 | |
| 
 | |
| 	struct rb_node *cursor;
 | |
| 	struct key *key;
 | |
| 	time_t new_timer, limit;
 | |
| 
 | |
| 	kenter("[%lx,%x]", key_gc_flags, gc_state);
 | |
| 
 | |
| 	limit = current_kernel_time().tv_sec;
 | |
| 	if (limit > key_gc_delay)
 | |
| 		limit -= key_gc_delay;
 | |
| 	else
 | |
| 		limit = key_gc_delay;
 | |
| 
 | |
| 	/* Work out what we're going to be doing in this pass */
 | |
| 	gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
 | |
| 	gc_state <<= 1;
 | |
| 	if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
 | |
| 		gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
 | |
| 
 | |
| 	if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
 | |
| 		gc_state |= KEY_GC_REAPING_DEAD_1;
 | |
| 	kdebug("new pass %x", gc_state);
 | |
| 
 | |
| 	new_timer = LONG_MAX;
 | |
| 
 | |
| 	/* As only this function is permitted to remove things from the key
 | |
| 	 * serial tree, if cursor is non-NULL then it will always point to a
 | |
| 	 * valid node in the tree - even if lock got dropped.
 | |
| 	 */
 | |
| 	spin_lock(&key_serial_lock);
 | |
| 	cursor = rb_first(&key_serial_tree);
 | |
| 
 | |
| continue_scanning:
 | |
| 	while (cursor) {
 | |
| 		key = rb_entry(cursor, struct key, serial_node);
 | |
| 		cursor = rb_next(cursor);
 | |
| 
 | |
| 		if (atomic_read(&key->usage) == 0)
 | |
| 			goto found_unreferenced_key;
 | |
| 
 | |
| 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
 | |
| 			if (key->type == key_gc_dead_keytype) {
 | |
| 				gc_state |= KEY_GC_FOUND_DEAD_KEY;
 | |
| 				set_bit(KEY_FLAG_DEAD, &key->flags);
 | |
| 				key->perm = 0;
 | |
| 				goto skip_dead_key;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (gc_state & KEY_GC_SET_TIMER) {
 | |
| 			if (key->expiry > limit && key->expiry < new_timer) {
 | |
| 				kdebug("will expire %x in %ld",
 | |
| 				       key_serial(key), key->expiry - limit);
 | |
| 				new_timer = key->expiry;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
 | |
| 			if (key->type == key_gc_dead_keytype)
 | |
| 				gc_state |= KEY_GC_FOUND_DEAD_KEY;
 | |
| 
 | |
| 		if ((gc_state & KEY_GC_REAPING_LINKS) ||
 | |
| 		    unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
 | |
| 			if (key->type == &key_type_keyring)
 | |
| 				goto found_keyring;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
 | |
| 			if (key->type == key_gc_dead_keytype)
 | |
| 				goto destroy_dead_key;
 | |
| 
 | |
| 	skip_dead_key:
 | |
| 		if (spin_is_contended(&key_serial_lock) || need_resched())
 | |
| 			goto contended;
 | |
| 	}
 | |
| 
 | |
| contended:
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 
 | |
| maybe_resched:
 | |
| 	if (cursor) {
 | |
| 		cond_resched();
 | |
| 		spin_lock(&key_serial_lock);
 | |
| 		goto continue_scanning;
 | |
| 	}
 | |
| 
 | |
| 	/* We've completed the pass.  Set the timer if we need to and queue a
 | |
| 	 * new cycle if necessary.  We keep executing cycles until we find one
 | |
| 	 * where we didn't reap any keys.
 | |
| 	 */
 | |
| 	kdebug("pass complete");
 | |
| 
 | |
| 	if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) {
 | |
| 		new_timer += key_gc_delay;
 | |
| 		key_schedule_gc(new_timer);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
 | |
| 		/* Make sure everyone revalidates their keys if we marked a
 | |
| 		 * bunch as being dead and make sure all keyring ex-payloads
 | |
| 		 * are destroyed.
 | |
| 		 */
 | |
| 		kdebug("dead sync");
 | |
| 		synchronize_rcu();
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
 | |
| 				 KEY_GC_REAPING_DEAD_2))) {
 | |
| 		if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
 | |
| 			/* No remaining dead keys: short circuit the remaining
 | |
| 			 * keytype reap cycles.
 | |
| 			 */
 | |
| 			kdebug("dead short");
 | |
| 			gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
 | |
| 			gc_state |= KEY_GC_REAPING_DEAD_3;
 | |
| 		} else {
 | |
| 			gc_state |= KEY_GC_REAP_AGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
 | |
| 		kdebug("dead wake");
 | |
| 		smp_mb();
 | |
| 		clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
 | |
| 		wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
 | |
| 	}
 | |
| 
 | |
| 	if (gc_state & KEY_GC_REAP_AGAIN)
 | |
| 		queue_work(system_nrt_wq, &key_gc_work);
 | |
| 	kleave(" [end %x]", gc_state);
 | |
| 	return;
 | |
| 
 | |
| 	/* We found an unreferenced key - once we've removed it from the tree,
 | |
| 	 * we can safely drop the lock.
 | |
| 	 */
 | |
| found_unreferenced_key:
 | |
| 	kdebug("unrefd key %d", key->serial);
 | |
| 	rb_erase(&key->serial_node, &key_serial_tree);
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 
 | |
| 	key_gc_unused_key(key);
 | |
| 	gc_state |= KEY_GC_REAP_AGAIN;
 | |
| 	goto maybe_resched;
 | |
| 
 | |
| 	/* We found a keyring and we need to check the payload for links to
 | |
| 	 * dead or expired keys.  We don't flag another reap immediately as we
 | |
| 	 * have to wait for the old payload to be destroyed by RCU before we
 | |
| 	 * can reap the keys to which it refers.
 | |
| 	 */
 | |
| found_keyring:
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 	kdebug("scan keyring %d", key->serial);
 | |
| 	key_gc_keyring(key, limit);
 | |
| 	goto maybe_resched;
 | |
| 
 | |
| 	/* We found a dead key that is still referenced.  Reset its type and
 | |
| 	 * destroy its payload with its semaphore held.
 | |
| 	 */
 | |
| destroy_dead_key:
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 	kdebug("destroy key %d", key->serial);
 | |
| 	down_write(&key->sem);
 | |
| 	key->type = &key_type_dead;
 | |
| 	if (key_gc_dead_keytype->destroy)
 | |
| 		key_gc_dead_keytype->destroy(key);
 | |
| 	memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
 | |
| 	up_write(&key->sem);
 | |
| 	goto maybe_resched;
 | |
| }
 |