* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
  cgroup: fix to allow mounting a hierarchy by name
  cgroup: move assignement out of condition in cgroup_attach_proc()
  cgroup: Remove task_lock() from cgroup_post_fork()
  cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
  cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
  cgroup: only need to check oldcgrp==newgrp once
  cgroup: remove redundant get/put of task struct
  cgroup: remove redundant get/put of old css_set from migrate
  cgroup: Remove unnecessary task_lock before fetching css_set on migration
  cgroup: Drop task_lock(parent) on cgroup_fork()
  cgroups: remove redundant get/put of css_set from css_set_check_fetched()
  resource cgroups: remove bogus cast
  cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
  cgroup, cpuset: don't use ss->pre_attach()
  cgroup: don't use subsys->can_attach_task() or ->attach_task()
  cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
  cgroup: improve old cgroup handling in cgroup_attach_proc()
  cgroup: always lock threadgroup during migration
  threadgroup: extend threadgroup_lock() to cover exit and exec
  threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
  ...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
		
	
			
		
			
				
	
	
		
			5289 lines
		
	
	
	
		
			139 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5289 lines
		
	
	
	
		
			139 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Generic process-grouping system.
 | |
|  *
 | |
|  *  Based originally on the cpuset system, extracted by Paul Menage
 | |
|  *  Copyright (C) 2006 Google, Inc
 | |
|  *
 | |
|  *  Notifications support
 | |
|  *  Copyright (C) 2009 Nokia Corporation
 | |
|  *  Author: Kirill A. Shutemov
 | |
|  *
 | |
|  *  Copyright notices from the original cpuset code:
 | |
|  *  --------------------------------------------------
 | |
|  *  Copyright (C) 2003 BULL SA.
 | |
|  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 | |
|  *
 | |
|  *  Portions derived from Patrick Mochel's sysfs code.
 | |
|  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 | |
|  *
 | |
|  *  2003-10-10 Written by Simon Derr.
 | |
|  *  2003-10-22 Updates by Stephen Hemminger.
 | |
|  *  2004 May-July Rework by Paul Jackson.
 | |
|  *  ---------------------------------------------------
 | |
|  *
 | |
|  *  This file is subject to the terms and conditions of the GNU General Public
 | |
|  *  License.  See the file COPYING in the main directory of the Linux
 | |
|  *  distribution for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/cgroupstats.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
 | |
| #include <linux/eventfd.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/flex_array.h> /* used in cgroup_attach_proc */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| 
 | |
| /*
 | |
|  * cgroup_mutex is the master lock.  Any modification to cgroup or its
 | |
|  * hierarchy must be performed while holding it.
 | |
|  *
 | |
|  * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 | |
|  * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 | |
|  * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 | |
|  * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 | |
|  * break the following locking order cycle.
 | |
|  *
 | |
|  *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 | |
|  *  B. namespace_sem -> cgroup_mutex
 | |
|  *
 | |
|  * B happens only through cgroup_show_options() and using cgroup_root_mutex
 | |
|  * breaks it.
 | |
|  */
 | |
| static DEFINE_MUTEX(cgroup_mutex);
 | |
| static DEFINE_MUTEX(cgroup_root_mutex);
 | |
| 
 | |
| /*
 | |
|  * Generate an array of cgroup subsystem pointers. At boot time, this is
 | |
|  * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 | |
|  * registered after that. The mutable section of this array is protected by
 | |
|  * cgroup_mutex.
 | |
|  */
 | |
| #define SUBSYS(_x) &_x ## _subsys,
 | |
| static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
 | |
| #include <linux/cgroup_subsys.h>
 | |
| };
 | |
| 
 | |
| #define MAX_CGROUP_ROOT_NAMELEN 64
 | |
| 
 | |
| /*
 | |
|  * A cgroupfs_root represents the root of a cgroup hierarchy,
 | |
|  * and may be associated with a superblock to form an active
 | |
|  * hierarchy
 | |
|  */
 | |
| struct cgroupfs_root {
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bitmask of subsystems intended to be attached to this
 | |
| 	 * hierarchy
 | |
| 	 */
 | |
| 	unsigned long subsys_bits;
 | |
| 
 | |
| 	/* Unique id for this hierarchy. */
 | |
| 	int hierarchy_id;
 | |
| 
 | |
| 	/* The bitmask of subsystems currently attached to this hierarchy */
 | |
| 	unsigned long actual_subsys_bits;
 | |
| 
 | |
| 	/* A list running through the attached subsystems */
 | |
| 	struct list_head subsys_list;
 | |
| 
 | |
| 	/* The root cgroup for this hierarchy */
 | |
| 	struct cgroup top_cgroup;
 | |
| 
 | |
| 	/* Tracks how many cgroups are currently defined in hierarchy.*/
 | |
| 	int number_of_cgroups;
 | |
| 
 | |
| 	/* A list running through the active hierarchies */
 | |
| 	struct list_head root_list;
 | |
| 
 | |
| 	/* Hierarchy-specific flags */
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* The path to use for release notifications. */
 | |
| 	char release_agent_path[PATH_MAX];
 | |
| 
 | |
| 	/* The name for this hierarchy - may be empty */
 | |
| 	char name[MAX_CGROUP_ROOT_NAMELEN];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 | |
|  * subsystems that are otherwise unattached - it never has more than a
 | |
|  * single cgroup, and all tasks are part of that cgroup.
 | |
|  */
 | |
| static struct cgroupfs_root rootnode;
 | |
| 
 | |
| /*
 | |
|  * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 | |
|  * cgroup_subsys->use_id != 0.
 | |
|  */
 | |
| #define CSS_ID_MAX	(65535)
 | |
| struct css_id {
 | |
| 	/*
 | |
| 	 * The css to which this ID points. This pointer is set to valid value
 | |
| 	 * after cgroup is populated. If cgroup is removed, this will be NULL.
 | |
| 	 * This pointer is expected to be RCU-safe because destroy()
 | |
| 	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
 | |
| 	 * css_tryget() should be used for avoiding race.
 | |
| 	 */
 | |
| 	struct cgroup_subsys_state __rcu *css;
 | |
| 	/*
 | |
| 	 * ID of this css.
 | |
| 	 */
 | |
| 	unsigned short id;
 | |
| 	/*
 | |
| 	 * Depth in hierarchy which this ID belongs to.
 | |
| 	 */
 | |
| 	unsigned short depth;
 | |
| 	/*
 | |
| 	 * ID is freed by RCU. (and lookup routine is RCU safe.)
 | |
| 	 */
 | |
| 	struct rcu_head rcu_head;
 | |
| 	/*
 | |
| 	 * Hierarchy of CSS ID belongs to.
 | |
| 	 */
 | |
| 	unsigned short stack[0]; /* Array of Length (depth+1) */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * cgroup_event represents events which userspace want to receive.
 | |
|  */
 | |
| struct cgroup_event {
 | |
| 	/*
 | |
| 	 * Cgroup which the event belongs to.
 | |
| 	 */
 | |
| 	struct cgroup *cgrp;
 | |
| 	/*
 | |
| 	 * Control file which the event associated.
 | |
| 	 */
 | |
| 	struct cftype *cft;
 | |
| 	/*
 | |
| 	 * eventfd to signal userspace about the event.
 | |
| 	 */
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| 	/*
 | |
| 	 * Each of these stored in a list by the cgroup.
 | |
| 	 */
 | |
| 	struct list_head list;
 | |
| 	/*
 | |
| 	 * All fields below needed to unregister event when
 | |
| 	 * userspace closes eventfd.
 | |
| 	 */
 | |
| 	poll_table pt;
 | |
| 	wait_queue_head_t *wqh;
 | |
| 	wait_queue_t wait;
 | |
| 	struct work_struct remove;
 | |
| };
 | |
| 
 | |
| /* The list of hierarchy roots */
 | |
| 
 | |
| static LIST_HEAD(roots);
 | |
| static int root_count;
 | |
| 
 | |
| static DEFINE_IDA(hierarchy_ida);
 | |
| static int next_hierarchy_id;
 | |
| static DEFINE_SPINLOCK(hierarchy_id_lock);
 | |
| 
 | |
| /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 | |
| #define dummytop (&rootnode.top_cgroup)
 | |
| 
 | |
| /* This flag indicates whether tasks in the fork and exit paths should
 | |
|  * check for fork/exit handlers to call. This avoids us having to do
 | |
|  * extra work in the fork/exit path if none of the subsystems need to
 | |
|  * be called.
 | |
|  */
 | |
| static int need_forkexit_callback __read_mostly;
 | |
| 
 | |
| #ifdef CONFIG_PROVE_LOCKING
 | |
| int cgroup_lock_is_held(void)
 | |
| {
 | |
| 	return lockdep_is_held(&cgroup_mutex);
 | |
| }
 | |
| #else /* #ifdef CONFIG_PROVE_LOCKING */
 | |
| int cgroup_lock_is_held(void)
 | |
| {
 | |
| 	return mutex_is_locked(&cgroup_mutex);
 | |
| }
 | |
| #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
 | |
| 
 | |
| /* convenient tests for these bits */
 | |
| inline int cgroup_is_removed(const struct cgroup *cgrp)
 | |
| {
 | |
| 	return test_bit(CGRP_REMOVED, &cgrp->flags);
 | |
| }
 | |
| 
 | |
| /* bits in struct cgroupfs_root flags field */
 | |
| enum {
 | |
| 	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 | |
| };
 | |
| 
 | |
| static int cgroup_is_releasable(const struct cgroup *cgrp)
 | |
| {
 | |
| 	const int bits =
 | |
| 		(1 << CGRP_RELEASABLE) |
 | |
| 		(1 << CGRP_NOTIFY_ON_RELEASE);
 | |
| 	return (cgrp->flags & bits) == bits;
 | |
| }
 | |
| 
 | |
| static int notify_on_release(const struct cgroup *cgrp)
 | |
| {
 | |
| 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 | |
| }
 | |
| 
 | |
| static int clone_children(const struct cgroup *cgrp)
 | |
| {
 | |
| 	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for_each_subsys() allows you to iterate on each subsystem attached to
 | |
|  * an active hierarchy
 | |
|  */
 | |
| #define for_each_subsys(_root, _ss) \
 | |
| list_for_each_entry(_ss, &_root->subsys_list, sibling)
 | |
| 
 | |
| /* for_each_active_root() allows you to iterate across the active hierarchies */
 | |
| #define for_each_active_root(_root) \
 | |
| list_for_each_entry(_root, &roots, root_list)
 | |
| 
 | |
| /* the list of cgroups eligible for automatic release. Protected by
 | |
|  * release_list_lock */
 | |
| static LIST_HEAD(release_list);
 | |
| static DEFINE_RAW_SPINLOCK(release_list_lock);
 | |
| static void cgroup_release_agent(struct work_struct *work);
 | |
| static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 | |
| static void check_for_release(struct cgroup *cgrp);
 | |
| 
 | |
| /* Link structure for associating css_set objects with cgroups */
 | |
| struct cg_cgroup_link {
 | |
| 	/*
 | |
| 	 * List running through cg_cgroup_links associated with a
 | |
| 	 * cgroup, anchored on cgroup->css_sets
 | |
| 	 */
 | |
| 	struct list_head cgrp_link_list;
 | |
| 	struct cgroup *cgrp;
 | |
| 	/*
 | |
| 	 * List running through cg_cgroup_links pointing at a
 | |
| 	 * single css_set object, anchored on css_set->cg_links
 | |
| 	 */
 | |
| 	struct list_head cg_link_list;
 | |
| 	struct css_set *cg;
 | |
| };
 | |
| 
 | |
| /* The default css_set - used by init and its children prior to any
 | |
|  * hierarchies being mounted. It contains a pointer to the root state
 | |
|  * for each subsystem. Also used to anchor the list of css_sets. Not
 | |
|  * reference-counted, to improve performance when child cgroups
 | |
|  * haven't been created.
 | |
|  */
 | |
| 
 | |
| static struct css_set init_css_set;
 | |
| static struct cg_cgroup_link init_css_set_link;
 | |
| 
 | |
| static int cgroup_init_idr(struct cgroup_subsys *ss,
 | |
| 			   struct cgroup_subsys_state *css);
 | |
| 
 | |
| /* css_set_lock protects the list of css_set objects, and the
 | |
|  * chain of tasks off each css_set.  Nests outside task->alloc_lock
 | |
|  * due to cgroup_iter_start() */
 | |
| static DEFINE_RWLOCK(css_set_lock);
 | |
| static int css_set_count;
 | |
| 
 | |
| /*
 | |
|  * hash table for cgroup groups. This improves the performance to find
 | |
|  * an existing css_set. This hash doesn't (currently) take into
 | |
|  * account cgroups in empty hierarchies.
 | |
|  */
 | |
| #define CSS_SET_HASH_BITS	7
 | |
| #define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
 | |
| static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 | |
| 
 | |
| static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 | |
| {
 | |
| 	int i;
 | |
| 	int index;
 | |
| 	unsigned long tmp = 0UL;
 | |
| 
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 | |
| 		tmp += (unsigned long)css[i];
 | |
| 	tmp = (tmp >> 16) ^ tmp;
 | |
| 
 | |
| 	index = hash_long(tmp, CSS_SET_HASH_BITS);
 | |
| 
 | |
| 	return &css_set_table[index];
 | |
| }
 | |
| 
 | |
| /* We don't maintain the lists running through each css_set to its
 | |
|  * task until after the first call to cgroup_iter_start(). This
 | |
|  * reduces the fork()/exit() overhead for people who have cgroups
 | |
|  * compiled into their kernel but not actually in use */
 | |
| static int use_task_css_set_links __read_mostly;
 | |
| 
 | |
| static void __put_css_set(struct css_set *cg, int taskexit)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct cg_cgroup_link *saved_link;
 | |
| 	/*
 | |
| 	 * Ensure that the refcount doesn't hit zero while any readers
 | |
| 	 * can see it. Similar to atomic_dec_and_lock(), but for an
 | |
| 	 * rwlock
 | |
| 	 */
 | |
| 	if (atomic_add_unless(&cg->refcount, -1, 1))
 | |
| 		return;
 | |
| 	write_lock(&css_set_lock);
 | |
| 	if (!atomic_dec_and_test(&cg->refcount)) {
 | |
| 		write_unlock(&css_set_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* This css_set is dead. unlink it and release cgroup refcounts */
 | |
| 	hlist_del(&cg->hlist);
 | |
| 	css_set_count--;
 | |
| 
 | |
| 	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 | |
| 				 cg_link_list) {
 | |
| 		struct cgroup *cgrp = link->cgrp;
 | |
| 		list_del(&link->cg_link_list);
 | |
| 		list_del(&link->cgrp_link_list);
 | |
| 		if (atomic_dec_and_test(&cgrp->count) &&
 | |
| 		    notify_on_release(cgrp)) {
 | |
| 			if (taskexit)
 | |
| 				set_bit(CGRP_RELEASABLE, &cgrp->flags);
 | |
| 			check_for_release(cgrp);
 | |
| 		}
 | |
| 
 | |
| 		kfree(link);
 | |
| 	}
 | |
| 
 | |
| 	write_unlock(&css_set_lock);
 | |
| 	kfree_rcu(cg, rcu_head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * refcounted get/put for css_set objects
 | |
|  */
 | |
| static inline void get_css_set(struct css_set *cg)
 | |
| {
 | |
| 	atomic_inc(&cg->refcount);
 | |
| }
 | |
| 
 | |
| static inline void put_css_set(struct css_set *cg)
 | |
| {
 | |
| 	__put_css_set(cg, 0);
 | |
| }
 | |
| 
 | |
| static inline void put_css_set_taskexit(struct css_set *cg)
 | |
| {
 | |
| 	__put_css_set(cg, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compare_css_sets - helper function for find_existing_css_set().
 | |
|  * @cg: candidate css_set being tested
 | |
|  * @old_cg: existing css_set for a task
 | |
|  * @new_cgrp: cgroup that's being entered by the task
 | |
|  * @template: desired set of css pointers in css_set (pre-calculated)
 | |
|  *
 | |
|  * Returns true if "cg" matches "old_cg" except for the hierarchy
 | |
|  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 | |
|  */
 | |
| static bool compare_css_sets(struct css_set *cg,
 | |
| 			     struct css_set *old_cg,
 | |
| 			     struct cgroup *new_cgrp,
 | |
| 			     struct cgroup_subsys_state *template[])
 | |
| {
 | |
| 	struct list_head *l1, *l2;
 | |
| 
 | |
| 	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 | |
| 		/* Not all subsystems matched */
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare cgroup pointers in order to distinguish between
 | |
| 	 * different cgroups in heirarchies with no subsystems. We
 | |
| 	 * could get by with just this check alone (and skip the
 | |
| 	 * memcmp above) but on most setups the memcmp check will
 | |
| 	 * avoid the need for this more expensive check on almost all
 | |
| 	 * candidates.
 | |
| 	 */
 | |
| 
 | |
| 	l1 = &cg->cg_links;
 | |
| 	l2 = &old_cg->cg_links;
 | |
| 	while (1) {
 | |
| 		struct cg_cgroup_link *cgl1, *cgl2;
 | |
| 		struct cgroup *cg1, *cg2;
 | |
| 
 | |
| 		l1 = l1->next;
 | |
| 		l2 = l2->next;
 | |
| 		/* See if we reached the end - both lists are equal length. */
 | |
| 		if (l1 == &cg->cg_links) {
 | |
| 			BUG_ON(l2 != &old_cg->cg_links);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			BUG_ON(l2 == &old_cg->cg_links);
 | |
| 		}
 | |
| 		/* Locate the cgroups associated with these links. */
 | |
| 		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 | |
| 		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 | |
| 		cg1 = cgl1->cgrp;
 | |
| 		cg2 = cgl2->cgrp;
 | |
| 		/* Hierarchies should be linked in the same order. */
 | |
| 		BUG_ON(cg1->root != cg2->root);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this hierarchy is the hierarchy of the cgroup
 | |
| 		 * that's changing, then we need to check that this
 | |
| 		 * css_set points to the new cgroup; if it's any other
 | |
| 		 * hierarchy, then this css_set should point to the
 | |
| 		 * same cgroup as the old css_set.
 | |
| 		 */
 | |
| 		if (cg1->root == new_cgrp->root) {
 | |
| 			if (cg1 != new_cgrp)
 | |
| 				return false;
 | |
| 		} else {
 | |
| 			if (cg1 != cg2)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_existing_css_set() is a helper for
 | |
|  * find_css_set(), and checks to see whether an existing
 | |
|  * css_set is suitable.
 | |
|  *
 | |
|  * oldcg: the cgroup group that we're using before the cgroup
 | |
|  * transition
 | |
|  *
 | |
|  * cgrp: the cgroup that we're moving into
 | |
|  *
 | |
|  * template: location in which to build the desired set of subsystem
 | |
|  * state objects for the new cgroup group
 | |
|  */
 | |
| static struct css_set *find_existing_css_set(
 | |
| 	struct css_set *oldcg,
 | |
| 	struct cgroup *cgrp,
 | |
| 	struct cgroup_subsys_state *template[])
 | |
| {
 | |
| 	int i;
 | |
| 	struct cgroupfs_root *root = cgrp->root;
 | |
| 	struct hlist_head *hhead;
 | |
| 	struct hlist_node *node;
 | |
| 	struct css_set *cg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the set of subsystem state objects that we want to see in the
 | |
| 	 * new css_set. while subsystems can change globally, the entries here
 | |
| 	 * won't change, so no need for locking.
 | |
| 	 */
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		if (root->subsys_bits & (1UL << i)) {
 | |
| 			/* Subsystem is in this hierarchy. So we want
 | |
| 			 * the subsystem state from the new
 | |
| 			 * cgroup */
 | |
| 			template[i] = cgrp->subsys[i];
 | |
| 		} else {
 | |
| 			/* Subsystem is not in this hierarchy, so we
 | |
| 			 * don't want to change the subsystem state */
 | |
| 			template[i] = oldcg->subsys[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hhead = css_set_hash(template);
 | |
| 	hlist_for_each_entry(cg, node, hhead, hlist) {
 | |
| 		if (!compare_css_sets(cg, oldcg, cgrp, template))
 | |
| 			continue;
 | |
| 
 | |
| 		/* This css_set matches what we need */
 | |
| 		return cg;
 | |
| 	}
 | |
| 
 | |
| 	/* No existing cgroup group matched */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void free_cg_links(struct list_head *tmp)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct cg_cgroup_link *saved_link;
 | |
| 
 | |
| 	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 | |
| 		list_del(&link->cgrp_link_list);
 | |
| 		kfree(link);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocate_cg_links() allocates "count" cg_cgroup_link structures
 | |
|  * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 | |
|  * success or a negative error
 | |
|  */
 | |
| static int allocate_cg_links(int count, struct list_head *tmp)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	int i;
 | |
| 	INIT_LIST_HEAD(tmp);
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		link = kmalloc(sizeof(*link), GFP_KERNEL);
 | |
| 		if (!link) {
 | |
| 			free_cg_links(tmp);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		list_add(&link->cgrp_link_list, tmp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * link_css_set - a helper function to link a css_set to a cgroup
 | |
|  * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 | |
|  * @cg: the css_set to be linked
 | |
|  * @cgrp: the destination cgroup
 | |
|  */
 | |
| static void link_css_set(struct list_head *tmp_cg_links,
 | |
| 			 struct css_set *cg, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 
 | |
| 	BUG_ON(list_empty(tmp_cg_links));
 | |
| 	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 | |
| 				cgrp_link_list);
 | |
| 	link->cg = cg;
 | |
| 	link->cgrp = cgrp;
 | |
| 	atomic_inc(&cgrp->count);
 | |
| 	list_move(&link->cgrp_link_list, &cgrp->css_sets);
 | |
| 	/*
 | |
| 	 * Always add links to the tail of the list so that the list
 | |
| 	 * is sorted by order of hierarchy creation
 | |
| 	 */
 | |
| 	list_add_tail(&link->cg_link_list, &cg->cg_links);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_css_set() takes an existing cgroup group and a
 | |
|  * cgroup object, and returns a css_set object that's
 | |
|  * equivalent to the old group, but with the given cgroup
 | |
|  * substituted into the appropriate hierarchy. Must be called with
 | |
|  * cgroup_mutex held
 | |
|  */
 | |
| static struct css_set *find_css_set(
 | |
| 	struct css_set *oldcg, struct cgroup *cgrp)
 | |
| {
 | |
| 	struct css_set *res;
 | |
| 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 | |
| 
 | |
| 	struct list_head tmp_cg_links;
 | |
| 
 | |
| 	struct hlist_head *hhead;
 | |
| 	struct cg_cgroup_link *link;
 | |
| 
 | |
| 	/* First see if we already have a cgroup group that matches
 | |
| 	 * the desired set */
 | |
| 	read_lock(&css_set_lock);
 | |
| 	res = find_existing_css_set(oldcg, cgrp, template);
 | |
| 	if (res)
 | |
| 		get_css_set(res);
 | |
| 	read_unlock(&css_set_lock);
 | |
| 
 | |
| 	if (res)
 | |
| 		return res;
 | |
| 
 | |
| 	res = kmalloc(sizeof(*res), GFP_KERNEL);
 | |
| 	if (!res)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Allocate all the cg_cgroup_link objects that we'll need */
 | |
| 	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 | |
| 		kfree(res);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&res->refcount, 1);
 | |
| 	INIT_LIST_HEAD(&res->cg_links);
 | |
| 	INIT_LIST_HEAD(&res->tasks);
 | |
| 	INIT_HLIST_NODE(&res->hlist);
 | |
| 
 | |
| 	/* Copy the set of subsystem state objects generated in
 | |
| 	 * find_existing_css_set() */
 | |
| 	memcpy(res->subsys, template, sizeof(res->subsys));
 | |
| 
 | |
| 	write_lock(&css_set_lock);
 | |
| 	/* Add reference counts and links from the new css_set. */
 | |
| 	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 | |
| 		struct cgroup *c = link->cgrp;
 | |
| 		if (c->root == cgrp->root)
 | |
| 			c = cgrp;
 | |
| 		link_css_set(&tmp_cg_links, res, c);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!list_empty(&tmp_cg_links));
 | |
| 
 | |
| 	css_set_count++;
 | |
| 
 | |
| 	/* Add this cgroup group to the hash table */
 | |
| 	hhead = css_set_hash(res->subsys);
 | |
| 	hlist_add_head(&res->hlist, hhead);
 | |
| 
 | |
| 	write_unlock(&css_set_lock);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the cgroup for "task" from the given hierarchy. Must be
 | |
|  * called with cgroup_mutex held.
 | |
|  */
 | |
| static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 | |
| 					    struct cgroupfs_root *root)
 | |
| {
 | |
| 	struct css_set *css;
 | |
| 	struct cgroup *res = NULL;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 | |
| 	read_lock(&css_set_lock);
 | |
| 	/*
 | |
| 	 * No need to lock the task - since we hold cgroup_mutex the
 | |
| 	 * task can't change groups, so the only thing that can happen
 | |
| 	 * is that it exits and its css is set back to init_css_set.
 | |
| 	 */
 | |
| 	css = task->cgroups;
 | |
| 	if (css == &init_css_set) {
 | |
| 		res = &root->top_cgroup;
 | |
| 	} else {
 | |
| 		struct cg_cgroup_link *link;
 | |
| 		list_for_each_entry(link, &css->cg_links, cg_link_list) {
 | |
| 			struct cgroup *c = link->cgrp;
 | |
| 			if (c->root == root) {
 | |
| 				res = c;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&css_set_lock);
 | |
| 	BUG_ON(!res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There is one global cgroup mutex. We also require taking
 | |
|  * task_lock() when dereferencing a task's cgroup subsys pointers.
 | |
|  * See "The task_lock() exception", at the end of this comment.
 | |
|  *
 | |
|  * A task must hold cgroup_mutex to modify cgroups.
 | |
|  *
 | |
|  * Any task can increment and decrement the count field without lock.
 | |
|  * So in general, code holding cgroup_mutex can't rely on the count
 | |
|  * field not changing.  However, if the count goes to zero, then only
 | |
|  * cgroup_attach_task() can increment it again.  Because a count of zero
 | |
|  * means that no tasks are currently attached, therefore there is no
 | |
|  * way a task attached to that cgroup can fork (the other way to
 | |
|  * increment the count).  So code holding cgroup_mutex can safely
 | |
|  * assume that if the count is zero, it will stay zero. Similarly, if
 | |
|  * a task holds cgroup_mutex on a cgroup with zero count, it
 | |
|  * knows that the cgroup won't be removed, as cgroup_rmdir()
 | |
|  * needs that mutex.
 | |
|  *
 | |
|  * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 | |
|  * (usually) take cgroup_mutex.  These are the two most performance
 | |
|  * critical pieces of code here.  The exception occurs on cgroup_exit(),
 | |
|  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 | |
|  * is taken, and if the cgroup count is zero, a usermode call made
 | |
|  * to the release agent with the name of the cgroup (path relative to
 | |
|  * the root of cgroup file system) as the argument.
 | |
|  *
 | |
|  * A cgroup can only be deleted if both its 'count' of using tasks
 | |
|  * is zero, and its list of 'children' cgroups is empty.  Since all
 | |
|  * tasks in the system use _some_ cgroup, and since there is always at
 | |
|  * least one task in the system (init, pid == 1), therefore, top_cgroup
 | |
|  * always has either children cgroups and/or using tasks.  So we don't
 | |
|  * need a special hack to ensure that top_cgroup cannot be deleted.
 | |
|  *
 | |
|  *	The task_lock() exception
 | |
|  *
 | |
|  * The need for this exception arises from the action of
 | |
|  * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 | |
|  * another.  It does so using cgroup_mutex, however there are
 | |
|  * several performance critical places that need to reference
 | |
|  * task->cgroup without the expense of grabbing a system global
 | |
|  * mutex.  Therefore except as noted below, when dereferencing or, as
 | |
|  * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 | |
|  * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 | |
|  * the task_struct routinely used for such matters.
 | |
|  *
 | |
|  * P.S.  One more locking exception.  RCU is used to guard the
 | |
|  * update of a tasks cgroup pointer by cgroup_attach_task()
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * cgroup_lock - lock out any changes to cgroup structures
 | |
|  *
 | |
|  */
 | |
| void cgroup_lock(void)
 | |
| {
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_lock);
 | |
| 
 | |
| /**
 | |
|  * cgroup_unlock - release lock on cgroup changes
 | |
|  *
 | |
|  * Undo the lock taken in a previous cgroup_lock() call.
 | |
|  */
 | |
| void cgroup_unlock(void)
 | |
| {
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_unlock);
 | |
| 
 | |
| /*
 | |
|  * A couple of forward declarations required, due to cyclic reference loop:
 | |
|  * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 | |
|  * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 | |
|  * -> cgroup_mkdir.
 | |
|  */
 | |
| 
 | |
| static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
 | |
| static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 | |
| static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 | |
| static int cgroup_populate_dir(struct cgroup *cgrp);
 | |
| static const struct inode_operations cgroup_dir_inode_operations;
 | |
| static const struct file_operations proc_cgroupstats_operations;
 | |
| 
 | |
| static struct backing_dev_info cgroup_backing_dev_info = {
 | |
| 	.name		= "cgroup",
 | |
| 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
 | |
| };
 | |
| 
 | |
| static int alloc_css_id(struct cgroup_subsys *ss,
 | |
| 			struct cgroup *parent, struct cgroup *child);
 | |
| 
 | |
| static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
 | |
| {
 | |
| 	struct inode *inode = new_inode(sb);
 | |
| 
 | |
| 	if (inode) {
 | |
| 		inode->i_ino = get_next_ino();
 | |
| 		inode->i_mode = mode;
 | |
| 		inode->i_uid = current_fsuid();
 | |
| 		inode->i_gid = current_fsgid();
 | |
| 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 | |
| 		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call subsys's pre_destroy handler.
 | |
|  * This is called before css refcnt check.
 | |
|  */
 | |
| static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for_each_subsys(cgrp->root, ss)
 | |
| 		if (ss->pre_destroy) {
 | |
| 			ret = ss->pre_destroy(ss, cgrp);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	/* is dentry a directory ? if so, kfree() associated cgroup */
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		struct cgroup *cgrp = dentry->d_fsdata;
 | |
| 		struct cgroup_subsys *ss;
 | |
| 		BUG_ON(!(cgroup_is_removed(cgrp)));
 | |
| 		/* It's possible for external users to be holding css
 | |
| 		 * reference counts on a cgroup; css_put() needs to
 | |
| 		 * be able to access the cgroup after decrementing
 | |
| 		 * the reference count in order to know if it needs to
 | |
| 		 * queue the cgroup to be handled by the release
 | |
| 		 * agent */
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 		mutex_lock(&cgroup_mutex);
 | |
| 		/*
 | |
| 		 * Release the subsystem state objects.
 | |
| 		 */
 | |
| 		for_each_subsys(cgrp->root, ss)
 | |
| 			ss->destroy(ss, cgrp);
 | |
| 
 | |
| 		cgrp->root->number_of_cgroups--;
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 		/*
 | |
| 		 * Drop the active superblock reference that we took when we
 | |
| 		 * created the cgroup
 | |
| 		 */
 | |
| 		deactivate_super(cgrp->root->sb);
 | |
| 
 | |
| 		/*
 | |
| 		 * if we're getting rid of the cgroup, refcount should ensure
 | |
| 		 * that there are no pidlists left.
 | |
| 		 */
 | |
| 		BUG_ON(!list_empty(&cgrp->pidlists));
 | |
| 
 | |
| 		kfree_rcu(cgrp, rcu_head);
 | |
| 	}
 | |
| 	iput(inode);
 | |
| }
 | |
| 
 | |
| static int cgroup_delete(const struct dentry *d)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void remove_dir(struct dentry *d)
 | |
| {
 | |
| 	struct dentry *parent = dget(d->d_parent);
 | |
| 
 | |
| 	d_delete(d);
 | |
| 	simple_rmdir(parent->d_inode, d);
 | |
| 	dput(parent);
 | |
| }
 | |
| 
 | |
| static void cgroup_clear_directory(struct dentry *dentry)
 | |
| {
 | |
| 	struct list_head *node;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	node = dentry->d_subdirs.next;
 | |
| 	while (node != &dentry->d_subdirs) {
 | |
| 		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 | |
| 
 | |
| 		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 		list_del_init(node);
 | |
| 		if (d->d_inode) {
 | |
| 			/* This should never be called on a cgroup
 | |
| 			 * directory with child cgroups */
 | |
| 			BUG_ON(d->d_inode->i_mode & S_IFDIR);
 | |
| 			dget_dlock(d);
 | |
| 			spin_unlock(&d->d_lock);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			d_delete(d);
 | |
| 			simple_unlink(dentry->d_inode, d);
 | |
| 			dput(d);
 | |
| 			spin_lock(&dentry->d_lock);
 | |
| 		} else
 | |
| 			spin_unlock(&d->d_lock);
 | |
| 		node = dentry->d_subdirs.next;
 | |
| 	}
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE : the dentry must have been dget()'ed
 | |
|  */
 | |
| static void cgroup_d_remove_dir(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *parent;
 | |
| 
 | |
| 	cgroup_clear_directory(dentry);
 | |
| 
 | |
| 	parent = dentry->d_parent;
 | |
| 	spin_lock(&parent->d_lock);
 | |
| 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 	list_del_init(&dentry->d_u.d_child);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	spin_unlock(&parent->d_lock);
 | |
| 	remove_dir(dentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 | |
|  * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 | |
|  * reference to css->refcnt. In general, this refcnt is expected to goes down
 | |
|  * to zero, soon.
 | |
|  *
 | |
|  * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 | |
|  */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 | |
| 
 | |
| static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 | |
| {
 | |
| 	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
 | |
| 		wake_up_all(&cgroup_rmdir_waitq);
 | |
| }
 | |
| 
 | |
| void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	css_get(css);
 | |
| }
 | |
| 
 | |
| void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	cgroup_wakeup_rmdir_waiter(css->cgroup);
 | |
| 	css_put(css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call with cgroup_mutex held. Drops reference counts on modules, including
 | |
|  * any duplicate ones that parse_cgroupfs_options took. If this function
 | |
|  * returns an error, no reference counts are touched.
 | |
|  */
 | |
| static int rebind_subsystems(struct cgroupfs_root *root,
 | |
| 			      unsigned long final_bits)
 | |
| {
 | |
| 	unsigned long added_bits, removed_bits;
 | |
| 	struct cgroup *cgrp = &root->top_cgroup;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 | |
| 	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
 | |
| 
 | |
| 	removed_bits = root->actual_subsys_bits & ~final_bits;
 | |
| 	added_bits = final_bits & ~root->actual_subsys_bits;
 | |
| 	/* Check that any added subsystems are currently free */
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		unsigned long bit = 1UL << i;
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		if (!(bit & added_bits))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Nobody should tell us to do a subsys that doesn't exist:
 | |
| 		 * parse_cgroupfs_options should catch that case and refcounts
 | |
| 		 * ensure that subsystems won't disappear once selected.
 | |
| 		 */
 | |
| 		BUG_ON(ss == NULL);
 | |
| 		if (ss->root != &rootnode) {
 | |
| 			/* Subsystem isn't free */
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Currently we don't handle adding/removing subsystems when
 | |
| 	 * any child cgroups exist. This is theoretically supportable
 | |
| 	 * but involves complex error handling, so it's being left until
 | |
| 	 * later */
 | |
| 	if (root->number_of_cgroups > 1)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Process each subsystem */
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		unsigned long bit = 1UL << i;
 | |
| 		if (bit & added_bits) {
 | |
| 			/* We're binding this subsystem to this hierarchy */
 | |
| 			BUG_ON(ss == NULL);
 | |
| 			BUG_ON(cgrp->subsys[i]);
 | |
| 			BUG_ON(!dummytop->subsys[i]);
 | |
| 			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
 | |
| 			mutex_lock(&ss->hierarchy_mutex);
 | |
| 			cgrp->subsys[i] = dummytop->subsys[i];
 | |
| 			cgrp->subsys[i]->cgroup = cgrp;
 | |
| 			list_move(&ss->sibling, &root->subsys_list);
 | |
| 			ss->root = root;
 | |
| 			if (ss->bind)
 | |
| 				ss->bind(ss, cgrp);
 | |
| 			mutex_unlock(&ss->hierarchy_mutex);
 | |
| 			/* refcount was already taken, and we're keeping it */
 | |
| 		} else if (bit & removed_bits) {
 | |
| 			/* We're removing this subsystem */
 | |
| 			BUG_ON(ss == NULL);
 | |
| 			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
 | |
| 			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
 | |
| 			mutex_lock(&ss->hierarchy_mutex);
 | |
| 			if (ss->bind)
 | |
| 				ss->bind(ss, dummytop);
 | |
| 			dummytop->subsys[i]->cgroup = dummytop;
 | |
| 			cgrp->subsys[i] = NULL;
 | |
| 			subsys[i]->root = &rootnode;
 | |
| 			list_move(&ss->sibling, &rootnode.subsys_list);
 | |
| 			mutex_unlock(&ss->hierarchy_mutex);
 | |
| 			/* subsystem is now free - drop reference on module */
 | |
| 			module_put(ss->module);
 | |
| 		} else if (bit & final_bits) {
 | |
| 			/* Subsystem state should already exist */
 | |
| 			BUG_ON(ss == NULL);
 | |
| 			BUG_ON(!cgrp->subsys[i]);
 | |
| 			/*
 | |
| 			 * a refcount was taken, but we already had one, so
 | |
| 			 * drop the extra reference.
 | |
| 			 */
 | |
| 			module_put(ss->module);
 | |
| #ifdef CONFIG_MODULE_UNLOAD
 | |
| 			BUG_ON(ss->module && !module_refcount(ss->module));
 | |
| #endif
 | |
| 		} else {
 | |
| 			/* Subsystem state shouldn't exist */
 | |
| 			BUG_ON(cgrp->subsys[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	root->subsys_bits = root->actual_subsys_bits = final_bits;
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
 | |
| {
 | |
| 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 
 | |
| 	mutex_lock(&cgroup_root_mutex);
 | |
| 	for_each_subsys(root, ss)
 | |
| 		seq_printf(seq, ",%s", ss->name);
 | |
| 	if (test_bit(ROOT_NOPREFIX, &root->flags))
 | |
| 		seq_puts(seq, ",noprefix");
 | |
| 	if (strlen(root->release_agent_path))
 | |
| 		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
 | |
| 	if (clone_children(&root->top_cgroup))
 | |
| 		seq_puts(seq, ",clone_children");
 | |
| 	if (strlen(root->name))
 | |
| 		seq_printf(seq, ",name=%s", root->name);
 | |
| 	mutex_unlock(&cgroup_root_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cgroup_sb_opts {
 | |
| 	unsigned long subsys_bits;
 | |
| 	unsigned long flags;
 | |
| 	char *release_agent;
 | |
| 	bool clone_children;
 | |
| 	char *name;
 | |
| 	/* User explicitly requested empty subsystem */
 | |
| 	bool none;
 | |
| 
 | |
| 	struct cgroupfs_root *new_root;
 | |
| 
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
 | |
|  * with cgroup_mutex held to protect the subsys[] array. This function takes
 | |
|  * refcounts on subsystems to be used, unless it returns error, in which case
 | |
|  * no refcounts are taken.
 | |
|  */
 | |
| static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
 | |
| {
 | |
| 	char *token, *o = data;
 | |
| 	bool all_ss = false, one_ss = false;
 | |
| 	unsigned long mask = (unsigned long)-1;
 | |
| 	int i;
 | |
| 	bool module_pin_failed = false;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 | |
| 
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	mask = ~(1UL << cpuset_subsys_id);
 | |
| #endif
 | |
| 
 | |
| 	memset(opts, 0, sizeof(*opts));
 | |
| 
 | |
| 	while ((token = strsep(&o, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			return -EINVAL;
 | |
| 		if (!strcmp(token, "none")) {
 | |
| 			/* Explicitly have no subsystems */
 | |
| 			opts->none = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strcmp(token, "all")) {
 | |
| 			/* Mutually exclusive option 'all' + subsystem name */
 | |
| 			if (one_ss)
 | |
| 				return -EINVAL;
 | |
| 			all_ss = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strcmp(token, "noprefix")) {
 | |
| 			set_bit(ROOT_NOPREFIX, &opts->flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strcmp(token, "clone_children")) {
 | |
| 			opts->clone_children = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strncmp(token, "release_agent=", 14)) {
 | |
| 			/* Specifying two release agents is forbidden */
 | |
| 			if (opts->release_agent)
 | |
| 				return -EINVAL;
 | |
| 			opts->release_agent =
 | |
| 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
 | |
| 			if (!opts->release_agent)
 | |
| 				return -ENOMEM;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strncmp(token, "name=", 5)) {
 | |
| 			const char *name = token + 5;
 | |
| 			/* Can't specify an empty name */
 | |
| 			if (!strlen(name))
 | |
| 				return -EINVAL;
 | |
| 			/* Must match [\w.-]+ */
 | |
| 			for (i = 0; i < strlen(name); i++) {
 | |
| 				char c = name[i];
 | |
| 				if (isalnum(c))
 | |
| 					continue;
 | |
| 				if ((c == '.') || (c == '-') || (c == '_'))
 | |
| 					continue;
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			/* Specifying two names is forbidden */
 | |
| 			if (opts->name)
 | |
| 				return -EINVAL;
 | |
| 			opts->name = kstrndup(name,
 | |
| 					      MAX_CGROUP_ROOT_NAMELEN - 1,
 | |
| 					      GFP_KERNEL);
 | |
| 			if (!opts->name)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 			struct cgroup_subsys *ss = subsys[i];
 | |
| 			if (ss == NULL)
 | |
| 				continue;
 | |
| 			if (strcmp(token, ss->name))
 | |
| 				continue;
 | |
| 			if (ss->disabled)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Mutually exclusive option 'all' + subsystem name */
 | |
| 			if (all_ss)
 | |
| 				return -EINVAL;
 | |
| 			set_bit(i, &opts->subsys_bits);
 | |
| 			one_ss = true;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		if (i == CGROUP_SUBSYS_COUNT)
 | |
| 			return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the 'all' option was specified select all the subsystems,
 | |
| 	 * otherwise if 'none', 'name=' and a subsystem name options
 | |
| 	 * were not specified, let's default to 'all'
 | |
| 	 */
 | |
| 	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
 | |
| 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 			struct cgroup_subsys *ss = subsys[i];
 | |
| 			if (ss == NULL)
 | |
| 				continue;
 | |
| 			if (ss->disabled)
 | |
| 				continue;
 | |
| 			set_bit(i, &opts->subsys_bits);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Consistency checks */
 | |
| 
 | |
| 	/*
 | |
| 	 * Option noprefix was introduced just for backward compatibility
 | |
| 	 * with the old cpuset, so we allow noprefix only if mounting just
 | |
| 	 * the cpuset subsystem.
 | |
| 	 */
 | |
| 	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
 | |
| 	    (opts->subsys_bits & mask))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 
 | |
| 	/* Can't specify "none" and some subsystems */
 | |
| 	if (opts->subsys_bits && opts->none)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We either have to specify by name or by subsystems. (So all
 | |
| 	 * empty hierarchies must have a name).
 | |
| 	 */
 | |
| 	if (!opts->subsys_bits && !opts->name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Grab references on all the modules we'll need, so the subsystems
 | |
| 	 * don't dance around before rebind_subsystems attaches them. This may
 | |
| 	 * take duplicate reference counts on a subsystem that's already used,
 | |
| 	 * but rebind_subsystems handles this case.
 | |
| 	 */
 | |
| 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		unsigned long bit = 1UL << i;
 | |
| 
 | |
| 		if (!(bit & opts->subsys_bits))
 | |
| 			continue;
 | |
| 		if (!try_module_get(subsys[i]->module)) {
 | |
| 			module_pin_failed = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (module_pin_failed) {
 | |
| 		/*
 | |
| 		 * oops, one of the modules was going away. this means that we
 | |
| 		 * raced with a module_delete call, and to the user this is
 | |
| 		 * essentially a "subsystem doesn't exist" case.
 | |
| 		 */
 | |
| 		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
 | |
| 			/* drop refcounts only on the ones we took */
 | |
| 			unsigned long bit = 1UL << i;
 | |
| 
 | |
| 			if (!(bit & opts->subsys_bits))
 | |
| 				continue;
 | |
| 			module_put(subsys[i]->module);
 | |
| 		}
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void drop_parsed_module_refcounts(unsigned long subsys_bits)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		unsigned long bit = 1UL << i;
 | |
| 
 | |
| 		if (!(bit & subsys_bits))
 | |
| 			continue;
 | |
| 		module_put(subsys[i]->module);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_remount(struct super_block *sb, int *flags, char *data)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct cgroupfs_root *root = sb->s_fs_info;
 | |
| 	struct cgroup *cgrp = &root->top_cgroup;
 | |
| 	struct cgroup_sb_opts opts;
 | |
| 
 | |
| 	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	mutex_lock(&cgroup_root_mutex);
 | |
| 
 | |
| 	/* See what subsystems are wanted */
 | |
| 	ret = parse_cgroupfs_options(data, &opts);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Don't allow flags or name to change at remount */
 | |
| 	if (opts.flags != root->flags ||
 | |
| 	    (opts.name && strcmp(opts.name, root->name))) {
 | |
| 		ret = -EINVAL;
 | |
| 		drop_parsed_module_refcounts(opts.subsys_bits);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = rebind_subsystems(root, opts.subsys_bits);
 | |
| 	if (ret) {
 | |
| 		drop_parsed_module_refcounts(opts.subsys_bits);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* (re)populate subsystem files */
 | |
| 	cgroup_populate_dir(cgrp);
 | |
| 
 | |
| 	if (opts.release_agent)
 | |
| 		strcpy(root->release_agent_path, opts.release_agent);
 | |
|  out_unlock:
 | |
| 	kfree(opts.release_agent);
 | |
| 	kfree(opts.name);
 | |
| 	mutex_unlock(&cgroup_root_mutex);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct super_operations cgroup_ops = {
 | |
| 	.statfs = simple_statfs,
 | |
| 	.drop_inode = generic_delete_inode,
 | |
| 	.show_options = cgroup_show_options,
 | |
| 	.remount_fs = cgroup_remount,
 | |
| };
 | |
| 
 | |
| static void init_cgroup_housekeeping(struct cgroup *cgrp)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&cgrp->sibling);
 | |
| 	INIT_LIST_HEAD(&cgrp->children);
 | |
| 	INIT_LIST_HEAD(&cgrp->css_sets);
 | |
| 	INIT_LIST_HEAD(&cgrp->release_list);
 | |
| 	INIT_LIST_HEAD(&cgrp->pidlists);
 | |
| 	mutex_init(&cgrp->pidlist_mutex);
 | |
| 	INIT_LIST_HEAD(&cgrp->event_list);
 | |
| 	spin_lock_init(&cgrp->event_list_lock);
 | |
| }
 | |
| 
 | |
| static void init_cgroup_root(struct cgroupfs_root *root)
 | |
| {
 | |
| 	struct cgroup *cgrp = &root->top_cgroup;
 | |
| 	INIT_LIST_HEAD(&root->subsys_list);
 | |
| 	INIT_LIST_HEAD(&root->root_list);
 | |
| 	root->number_of_cgroups = 1;
 | |
| 	cgrp->root = root;
 | |
| 	cgrp->top_cgroup = cgrp;
 | |
| 	init_cgroup_housekeeping(cgrp);
 | |
| }
 | |
| 
 | |
| static bool init_root_id(struct cgroupfs_root *root)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	do {
 | |
| 		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
 | |
| 			return false;
 | |
| 		spin_lock(&hierarchy_id_lock);
 | |
| 		/* Try to allocate the next unused ID */
 | |
| 		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
 | |
| 					&root->hierarchy_id);
 | |
| 		if (ret == -ENOSPC)
 | |
| 			/* Try again starting from 0 */
 | |
| 			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
 | |
| 		if (!ret) {
 | |
| 			next_hierarchy_id = root->hierarchy_id + 1;
 | |
| 		} else if (ret != -EAGAIN) {
 | |
| 			/* Can only get here if the 31-bit IDR is full ... */
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		spin_unlock(&hierarchy_id_lock);
 | |
| 	} while (ret);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int cgroup_test_super(struct super_block *sb, void *data)
 | |
| {
 | |
| 	struct cgroup_sb_opts *opts = data;
 | |
| 	struct cgroupfs_root *root = sb->s_fs_info;
 | |
| 
 | |
| 	/* If we asked for a name then it must match */
 | |
| 	if (opts->name && strcmp(opts->name, root->name))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we asked for subsystems (or explicitly for no
 | |
| 	 * subsystems) then they must match
 | |
| 	 */
 | |
| 	if ((opts->subsys_bits || opts->none)
 | |
| 	    && (opts->subsys_bits != root->subsys_bits))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
 | |
| {
 | |
| 	struct cgroupfs_root *root;
 | |
| 
 | |
| 	if (!opts->subsys_bits && !opts->none)
 | |
| 		return NULL;
 | |
| 
 | |
| 	root = kzalloc(sizeof(*root), GFP_KERNEL);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (!init_root_id(root)) {
 | |
| 		kfree(root);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	init_cgroup_root(root);
 | |
| 
 | |
| 	root->subsys_bits = opts->subsys_bits;
 | |
| 	root->flags = opts->flags;
 | |
| 	if (opts->release_agent)
 | |
| 		strcpy(root->release_agent_path, opts->release_agent);
 | |
| 	if (opts->name)
 | |
| 		strcpy(root->name, opts->name);
 | |
| 	if (opts->clone_children)
 | |
| 		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| static void cgroup_drop_root(struct cgroupfs_root *root)
 | |
| {
 | |
| 	if (!root)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(!root->hierarchy_id);
 | |
| 	spin_lock(&hierarchy_id_lock);
 | |
| 	ida_remove(&hierarchy_ida, root->hierarchy_id);
 | |
| 	spin_unlock(&hierarchy_id_lock);
 | |
| 	kfree(root);
 | |
| }
 | |
| 
 | |
| static int cgroup_set_super(struct super_block *sb, void *data)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct cgroup_sb_opts *opts = data;
 | |
| 
 | |
| 	/* If we don't have a new root, we can't set up a new sb */
 | |
| 	if (!opts->new_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	BUG_ON(!opts->subsys_bits && !opts->none);
 | |
| 
 | |
| 	ret = set_anon_super(sb, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sb->s_fs_info = opts->new_root;
 | |
| 	opts->new_root->sb = sb;
 | |
| 
 | |
| 	sb->s_blocksize = PAGE_CACHE_SIZE;
 | |
| 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
 | |
| 	sb->s_magic = CGROUP_SUPER_MAGIC;
 | |
| 	sb->s_op = &cgroup_ops;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_get_rootdir(struct super_block *sb)
 | |
| {
 | |
| 	static const struct dentry_operations cgroup_dops = {
 | |
| 		.d_iput = cgroup_diput,
 | |
| 		.d_delete = cgroup_delete,
 | |
| 	};
 | |
| 
 | |
| 	struct inode *inode =
 | |
| 		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	inode->i_fop = &simple_dir_operations;
 | |
| 	inode->i_op = &cgroup_dir_inode_operations;
 | |
| 	/* directories start off with i_nlink == 2 (for "." entry) */
 | |
| 	inc_nlink(inode);
 | |
| 	dentry = d_alloc_root(inode);
 | |
| 	if (!dentry) {
 | |
| 		iput(inode);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	sb->s_root = dentry;
 | |
| 	/* for everything else we want ->d_op set */
 | |
| 	sb->s_d_op = &cgroup_dops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dentry *cgroup_mount(struct file_system_type *fs_type,
 | |
| 			 int flags, const char *unused_dev_name,
 | |
| 			 void *data)
 | |
| {
 | |
| 	struct cgroup_sb_opts opts;
 | |
| 	struct cgroupfs_root *root;
 | |
| 	int ret = 0;
 | |
| 	struct super_block *sb;
 | |
| 	struct cgroupfs_root *new_root;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	/* First find the desired set of subsystems */
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	ret = parse_cgroupfs_options(data, &opts);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a new cgroup root. We may not need it if we're
 | |
| 	 * reusing an existing hierarchy.
 | |
| 	 */
 | |
| 	new_root = cgroup_root_from_opts(&opts);
 | |
| 	if (IS_ERR(new_root)) {
 | |
| 		ret = PTR_ERR(new_root);
 | |
| 		goto drop_modules;
 | |
| 	}
 | |
| 	opts.new_root = new_root;
 | |
| 
 | |
| 	/* Locate an existing or new sb for this hierarchy */
 | |
| 	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
 | |
| 	if (IS_ERR(sb)) {
 | |
| 		ret = PTR_ERR(sb);
 | |
| 		cgroup_drop_root(opts.new_root);
 | |
| 		goto drop_modules;
 | |
| 	}
 | |
| 
 | |
| 	root = sb->s_fs_info;
 | |
| 	BUG_ON(!root);
 | |
| 	if (root == opts.new_root) {
 | |
| 		/* We used the new root structure, so this is a new hierarchy */
 | |
| 		struct list_head tmp_cg_links;
 | |
| 		struct cgroup *root_cgrp = &root->top_cgroup;
 | |
| 		struct cgroupfs_root *existing_root;
 | |
| 		const struct cred *cred;
 | |
| 		int i;
 | |
| 
 | |
| 		BUG_ON(sb->s_root != NULL);
 | |
| 
 | |
| 		ret = cgroup_get_rootdir(sb);
 | |
| 		if (ret)
 | |
| 			goto drop_new_super;
 | |
| 		inode = sb->s_root->d_inode;
 | |
| 
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		mutex_lock(&cgroup_mutex);
 | |
| 		mutex_lock(&cgroup_root_mutex);
 | |
| 
 | |
| 		/* Check for name clashes with existing mounts */
 | |
| 		ret = -EBUSY;
 | |
| 		if (strlen(root->name))
 | |
| 			for_each_active_root(existing_root)
 | |
| 				if (!strcmp(existing_root->name, root->name))
 | |
| 					goto unlock_drop;
 | |
| 
 | |
| 		/*
 | |
| 		 * We're accessing css_set_count without locking
 | |
| 		 * css_set_lock here, but that's OK - it can only be
 | |
| 		 * increased by someone holding cgroup_lock, and
 | |
| 		 * that's us. The worst that can happen is that we
 | |
| 		 * have some link structures left over
 | |
| 		 */
 | |
| 		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
 | |
| 		if (ret)
 | |
| 			goto unlock_drop;
 | |
| 
 | |
| 		ret = rebind_subsystems(root, root->subsys_bits);
 | |
| 		if (ret == -EBUSY) {
 | |
| 			free_cg_links(&tmp_cg_links);
 | |
| 			goto unlock_drop;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * There must be no failure case after here, since rebinding
 | |
| 		 * takes care of subsystems' refcounts, which are explicitly
 | |
| 		 * dropped in the failure exit path.
 | |
| 		 */
 | |
| 
 | |
| 		/* EBUSY should be the only error here */
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		list_add(&root->root_list, &roots);
 | |
| 		root_count++;
 | |
| 
 | |
| 		sb->s_root->d_fsdata = root_cgrp;
 | |
| 		root->top_cgroup.dentry = sb->s_root;
 | |
| 
 | |
| 		/* Link the top cgroup in this hierarchy into all
 | |
| 		 * the css_set objects */
 | |
| 		write_lock(&css_set_lock);
 | |
| 		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
 | |
| 			struct hlist_head *hhead = &css_set_table[i];
 | |
| 			struct hlist_node *node;
 | |
| 			struct css_set *cg;
 | |
| 
 | |
| 			hlist_for_each_entry(cg, node, hhead, hlist)
 | |
| 				link_css_set(&tmp_cg_links, cg, root_cgrp);
 | |
| 		}
 | |
| 		write_unlock(&css_set_lock);
 | |
| 
 | |
| 		free_cg_links(&tmp_cg_links);
 | |
| 
 | |
| 		BUG_ON(!list_empty(&root_cgrp->sibling));
 | |
| 		BUG_ON(!list_empty(&root_cgrp->children));
 | |
| 		BUG_ON(root->number_of_cgroups != 1);
 | |
| 
 | |
| 		cred = override_creds(&init_cred);
 | |
| 		cgroup_populate_dir(root_cgrp);
 | |
| 		revert_creds(cred);
 | |
| 		mutex_unlock(&cgroup_root_mutex);
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We re-used an existing hierarchy - the new root (if
 | |
| 		 * any) is not needed
 | |
| 		 */
 | |
| 		cgroup_drop_root(opts.new_root);
 | |
| 		/* no subsys rebinding, so refcounts don't change */
 | |
| 		drop_parsed_module_refcounts(opts.subsys_bits);
 | |
| 	}
 | |
| 
 | |
| 	kfree(opts.release_agent);
 | |
| 	kfree(opts.name);
 | |
| 	return dget(sb->s_root);
 | |
| 
 | |
|  unlock_drop:
 | |
| 	mutex_unlock(&cgroup_root_mutex);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
|  drop_new_super:
 | |
| 	deactivate_locked_super(sb);
 | |
|  drop_modules:
 | |
| 	drop_parsed_module_refcounts(opts.subsys_bits);
 | |
|  out_err:
 | |
| 	kfree(opts.release_agent);
 | |
| 	kfree(opts.name);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static void cgroup_kill_sb(struct super_block *sb) {
 | |
| 	struct cgroupfs_root *root = sb->s_fs_info;
 | |
| 	struct cgroup *cgrp = &root->top_cgroup;
 | |
| 	int ret;
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct cg_cgroup_link *saved_link;
 | |
| 
 | |
| 	BUG_ON(!root);
 | |
| 
 | |
| 	BUG_ON(root->number_of_cgroups != 1);
 | |
| 	BUG_ON(!list_empty(&cgrp->children));
 | |
| 	BUG_ON(!list_empty(&cgrp->sibling));
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	mutex_lock(&cgroup_root_mutex);
 | |
| 
 | |
| 	/* Rebind all subsystems back to the default hierarchy */
 | |
| 	ret = rebind_subsystems(root, 0);
 | |
| 	/* Shouldn't be able to fail ... */
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release all the links from css_sets to this hierarchy's
 | |
| 	 * root cgroup
 | |
| 	 */
 | |
| 	write_lock(&css_set_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
 | |
| 				 cgrp_link_list) {
 | |
| 		list_del(&link->cg_link_list);
 | |
| 		list_del(&link->cgrp_link_list);
 | |
| 		kfree(link);
 | |
| 	}
 | |
| 	write_unlock(&css_set_lock);
 | |
| 
 | |
| 	if (!list_empty(&root->root_list)) {
 | |
| 		list_del(&root->root_list);
 | |
| 		root_count--;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cgroup_root_mutex);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	kill_litter_super(sb);
 | |
| 	cgroup_drop_root(root);
 | |
| }
 | |
| 
 | |
| static struct file_system_type cgroup_fs_type = {
 | |
| 	.name = "cgroup",
 | |
| 	.mount = cgroup_mount,
 | |
| 	.kill_sb = cgroup_kill_sb,
 | |
| };
 | |
| 
 | |
| static struct kobject *cgroup_kobj;
 | |
| 
 | |
| static inline struct cgroup *__d_cgrp(struct dentry *dentry)
 | |
| {
 | |
| 	return dentry->d_fsdata;
 | |
| }
 | |
| 
 | |
| static inline struct cftype *__d_cft(struct dentry *dentry)
 | |
| {
 | |
| 	return dentry->d_fsdata;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_path - generate the path of a cgroup
 | |
|  * @cgrp: the cgroup in question
 | |
|  * @buf: the buffer to write the path into
 | |
|  * @buflen: the length of the buffer
 | |
|  *
 | |
|  * Called with cgroup_mutex held or else with an RCU-protected cgroup
 | |
|  * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 | |
|  * -errno on error.
 | |
|  */
 | |
| int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
 | |
| {
 | |
| 	char *start;
 | |
| 	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
 | |
| 						      cgroup_lock_is_held());
 | |
| 
 | |
| 	if (!dentry || cgrp == dummytop) {
 | |
| 		/*
 | |
| 		 * Inactive subsystems have no dentry for their root
 | |
| 		 * cgroup
 | |
| 		 */
 | |
| 		strcpy(buf, "/");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	start = buf + buflen;
 | |
| 
 | |
| 	*--start = '\0';
 | |
| 	for (;;) {
 | |
| 		int len = dentry->d_name.len;
 | |
| 
 | |
| 		if ((start -= len) < buf)
 | |
| 			return -ENAMETOOLONG;
 | |
| 		memcpy(start, dentry->d_name.name, len);
 | |
| 		cgrp = cgrp->parent;
 | |
| 		if (!cgrp)
 | |
| 			break;
 | |
| 
 | |
| 		dentry = rcu_dereference_check(cgrp->dentry,
 | |
| 					       cgroup_lock_is_held());
 | |
| 		if (!cgrp->parent)
 | |
| 			continue;
 | |
| 		if (--start < buf)
 | |
| 			return -ENAMETOOLONG;
 | |
| 		*start = '/';
 | |
| 	}
 | |
| 	memmove(buf, start, buf + buflen - start);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_path);
 | |
| 
 | |
| /*
 | |
|  * Control Group taskset
 | |
|  */
 | |
| struct task_and_cgroup {
 | |
| 	struct task_struct	*task;
 | |
| 	struct cgroup		*cgrp;
 | |
| };
 | |
| 
 | |
| struct cgroup_taskset {
 | |
| 	struct task_and_cgroup	single;
 | |
| 	struct flex_array	*tc_array;
 | |
| 	int			tc_array_len;
 | |
| 	int			idx;
 | |
| 	struct cgroup		*cur_cgrp;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_first - reset taskset and return the first task
 | |
|  * @tset: taskset of interest
 | |
|  *
 | |
|  * @tset iteration is initialized and the first task is returned.
 | |
|  */
 | |
| struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	if (tset->tc_array) {
 | |
| 		tset->idx = 0;
 | |
| 		return cgroup_taskset_next(tset);
 | |
| 	} else {
 | |
| 		tset->cur_cgrp = tset->single.cgrp;
 | |
| 		return tset->single.task;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_taskset_first);
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_next - iterate to the next task in taskset
 | |
|  * @tset: taskset of interest
 | |
|  *
 | |
|  * Return the next task in @tset.  Iteration must have been initialized
 | |
|  * with cgroup_taskset_first().
 | |
|  */
 | |
| struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_and_cgroup *tc;
 | |
| 
 | |
| 	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tc = flex_array_get(tset->tc_array, tset->idx++);
 | |
| 	tset->cur_cgrp = tc->cgrp;
 | |
| 	return tc->task;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_taskset_next);
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 | |
|  * @tset: taskset of interest
 | |
|  *
 | |
|  * Return the cgroup for the current (last returned) task of @tset.  This
 | |
|  * function must be preceded by either cgroup_taskset_first() or
 | |
|  * cgroup_taskset_next().
 | |
|  */
 | |
| struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	return tset->cur_cgrp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_size - return the number of tasks in taskset
 | |
|  * @tset: taskset of interest
 | |
|  */
 | |
| int cgroup_taskset_size(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	return tset->tc_array ? tset->tc_array_len : 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_taskset_size);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * cgroup_task_migrate - move a task from one cgroup to another.
 | |
|  *
 | |
|  * 'guarantee' is set if the caller promises that a new css_set for the task
 | |
|  * will already exist. If not set, this function might sleep, and can fail with
 | |
|  * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
 | |
|  */
 | |
| static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
 | |
| 			       struct task_struct *tsk, bool guarantee)
 | |
| {
 | |
| 	struct css_set *oldcg;
 | |
| 	struct css_set *newcg;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are synchronized through threadgroup_lock() against PF_EXITING
 | |
| 	 * setting such that we can't race against cgroup_exit() changing the
 | |
| 	 * css_set to init_css_set and dropping the old one.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(tsk->flags & PF_EXITING);
 | |
| 	oldcg = tsk->cgroups;
 | |
| 
 | |
| 	/* locate or allocate a new css_set for this task. */
 | |
| 	if (guarantee) {
 | |
| 		/* we know the css_set we want already exists. */
 | |
| 		struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 | |
| 		read_lock(&css_set_lock);
 | |
| 		newcg = find_existing_css_set(oldcg, cgrp, template);
 | |
| 		BUG_ON(!newcg);
 | |
| 		get_css_set(newcg);
 | |
| 		read_unlock(&css_set_lock);
 | |
| 	} else {
 | |
| 		might_sleep();
 | |
| 		/* find_css_set will give us newcg already referenced. */
 | |
| 		newcg = find_css_set(oldcg, cgrp);
 | |
| 		if (!newcg)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	rcu_assign_pointer(tsk->cgroups, newcg);
 | |
| 	task_unlock(tsk);
 | |
| 
 | |
| 	/* Update the css_set linked lists if we're using them */
 | |
| 	write_lock(&css_set_lock);
 | |
| 	if (!list_empty(&tsk->cg_list))
 | |
| 		list_move(&tsk->cg_list, &newcg->tasks);
 | |
| 	write_unlock(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We just gained a reference on oldcg by taking it from the task. As
 | |
| 	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
 | |
| 	 * it here; it will be freed under RCU.
 | |
| 	 */
 | |
| 	put_css_set(oldcg);
 | |
| 
 | |
| 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 | |
|  * @cgrp: the cgroup the task is attaching to
 | |
|  * @tsk: the task to be attached
 | |
|  *
 | |
|  * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 | |
|  * @tsk during call.
 | |
|  */
 | |
| int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct cgroup_subsys *ss, *failed_ss = NULL;
 | |
| 	struct cgroup *oldcgrp;
 | |
| 	struct cgroupfs_root *root = cgrp->root;
 | |
| 	struct cgroup_taskset tset = { };
 | |
| 
 | |
| 	/* @tsk either already exited or can't exit until the end */
 | |
| 	if (tsk->flags & PF_EXITING)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	/* Nothing to do if the task is already in that cgroup */
 | |
| 	oldcgrp = task_cgroup_from_root(tsk, root);
 | |
| 	if (cgrp == oldcgrp)
 | |
| 		return 0;
 | |
| 
 | |
| 	tset.single.task = tsk;
 | |
| 	tset.single.cgrp = oldcgrp;
 | |
| 
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		if (ss->can_attach) {
 | |
| 			retval = ss->can_attach(ss, cgrp, &tset);
 | |
| 			if (retval) {
 | |
| 				/*
 | |
| 				 * Remember on which subsystem the can_attach()
 | |
| 				 * failed, so that we only call cancel_attach()
 | |
| 				 * against the subsystems whose can_attach()
 | |
| 				 * succeeded. (See below)
 | |
| 				 */
 | |
| 				failed_ss = ss;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		if (ss->attach)
 | |
| 			ss->attach(ss, cgrp, &tset);
 | |
| 	}
 | |
| 
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/*
 | |
| 	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
 | |
| 	 * is no longer empty.
 | |
| 	 */
 | |
| 	cgroup_wakeup_rmdir_waiter(cgrp);
 | |
| out:
 | |
| 	if (retval) {
 | |
| 		for_each_subsys(root, ss) {
 | |
| 			if (ss == failed_ss)
 | |
| 				/*
 | |
| 				 * This subsystem was the one that failed the
 | |
| 				 * can_attach() check earlier, so we don't need
 | |
| 				 * to call cancel_attach() against it or any
 | |
| 				 * remaining subsystems.
 | |
| 				 */
 | |
| 				break;
 | |
| 			if (ss->cancel_attach)
 | |
| 				ss->cancel_attach(ss, cgrp, &tset);
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 | |
|  * @from: attach to all cgroups of a given task
 | |
|  * @tsk: the task to be attached
 | |
|  */
 | |
| int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
 | |
| {
 | |
| 	struct cgroupfs_root *root;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	for_each_active_root(root) {
 | |
| 		struct cgroup *from_cg = task_cgroup_from_root(from, root);
 | |
| 
 | |
| 		retval = cgroup_attach_task(from_cg, tsk);
 | |
| 		if (retval)
 | |
| 			break;
 | |
| 	}
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
 | |
| 
 | |
| /*
 | |
|  * cgroup_attach_proc works in two stages, the first of which prefetches all
 | |
|  * new css_sets needed (to make sure we have enough memory before committing
 | |
|  * to the move) and stores them in a list of entries of the following type.
 | |
|  * TODO: possible optimization: use css_set->rcu_head for chaining instead
 | |
|  */
 | |
| struct cg_list_entry {
 | |
| 	struct css_set *cg;
 | |
| 	struct list_head links;
 | |
| };
 | |
| 
 | |
| static bool css_set_check_fetched(struct cgroup *cgrp,
 | |
| 				  struct task_struct *tsk, struct css_set *cg,
 | |
| 				  struct list_head *newcg_list)
 | |
| {
 | |
| 	struct css_set *newcg;
 | |
| 	struct cg_list_entry *cg_entry;
 | |
| 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 | |
| 
 | |
| 	read_lock(&css_set_lock);
 | |
| 	newcg = find_existing_css_set(cg, cgrp, template);
 | |
| 	read_unlock(&css_set_lock);
 | |
| 
 | |
| 	/* doesn't exist at all? */
 | |
| 	if (!newcg)
 | |
| 		return false;
 | |
| 	/* see if it's already in the list */
 | |
| 	list_for_each_entry(cg_entry, newcg_list, links)
 | |
| 		if (cg_entry->cg == newcg)
 | |
| 			return true;
 | |
| 
 | |
| 	/* not found */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the new css_set and store it in the list in preparation for moving the
 | |
|  * given task to the given cgroup. Returns 0 or -ENOMEM.
 | |
|  */
 | |
| static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
 | |
| 			    struct list_head *newcg_list)
 | |
| {
 | |
| 	struct css_set *newcg;
 | |
| 	struct cg_list_entry *cg_entry;
 | |
| 
 | |
| 	/* ensure a new css_set will exist for this thread */
 | |
| 	newcg = find_css_set(cg, cgrp);
 | |
| 	if (!newcg)
 | |
| 		return -ENOMEM;
 | |
| 	/* add it to the list */
 | |
| 	cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
 | |
| 	if (!cg_entry) {
 | |
| 		put_css_set(newcg);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	cg_entry->cg = newcg;
 | |
| 	list_add(&cg_entry->links, newcg_list);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 | |
|  * @cgrp: the cgroup to attach to
 | |
|  * @leader: the threadgroup leader task_struct of the group to be attached
 | |
|  *
 | |
|  * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 | |
|  * task_lock of each thread in leader's threadgroup individually in turn.
 | |
|  */
 | |
| static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
 | |
| {
 | |
| 	int retval, i, group_size;
 | |
| 	struct cgroup_subsys *ss, *failed_ss = NULL;
 | |
| 	/* guaranteed to be initialized later, but the compiler needs this */
 | |
| 	struct css_set *oldcg;
 | |
| 	struct cgroupfs_root *root = cgrp->root;
 | |
| 	/* threadgroup list cursor and array */
 | |
| 	struct task_struct *tsk;
 | |
| 	struct task_and_cgroup *tc;
 | |
| 	struct flex_array *group;
 | |
| 	struct cgroup_taskset tset = { };
 | |
| 	/*
 | |
| 	 * we need to make sure we have css_sets for all the tasks we're
 | |
| 	 * going to move -before- we actually start moving them, so that in
 | |
| 	 * case we get an ENOMEM we can bail out before making any changes.
 | |
| 	 */
 | |
| 	struct list_head newcg_list;
 | |
| 	struct cg_list_entry *cg_entry, *temp_nobe;
 | |
| 
 | |
| 	/*
 | |
| 	 * step 0: in order to do expensive, possibly blocking operations for
 | |
| 	 * every thread, we cannot iterate the thread group list, since it needs
 | |
| 	 * rcu or tasklist locked. instead, build an array of all threads in the
 | |
| 	 * group - group_rwsem prevents new threads from appearing, and if
 | |
| 	 * threads exit, this will just be an over-estimate.
 | |
| 	 */
 | |
| 	group_size = get_nr_threads(leader);
 | |
| 	/* flex_array supports very large thread-groups better than kmalloc. */
 | |
| 	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
 | |
| 	if (!group)
 | |
| 		return -ENOMEM;
 | |
| 	/* pre-allocate to guarantee space while iterating in rcu read-side. */
 | |
| 	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
 | |
| 	if (retval)
 | |
| 		goto out_free_group_list;
 | |
| 
 | |
| 	/* prevent changes to the threadgroup list while we take a snapshot. */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (!thread_group_leader(leader)) {
 | |
| 		/*
 | |
| 		 * a race with de_thread from another thread's exec() may strip
 | |
| 		 * us of our leadership, making while_each_thread unsafe to use
 | |
| 		 * on this task. if this happens, there is no choice but to
 | |
| 		 * throw this task away and try again (from cgroup_procs_write);
 | |
| 		 * this is "double-double-toil-and-trouble-check locking".
 | |
| 		 */
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		retval = -EAGAIN;
 | |
| 		goto out_free_group_list;
 | |
| 	}
 | |
| 
 | |
| 	tsk = leader;
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		struct task_and_cgroup ent;
 | |
| 
 | |
| 		/* @tsk either already exited or can't exit until the end */
 | |
| 		if (tsk->flags & PF_EXITING)
 | |
| 			continue;
 | |
| 
 | |
| 		/* as per above, nr_threads may decrease, but not increase. */
 | |
| 		BUG_ON(i >= group_size);
 | |
| 		/*
 | |
| 		 * saying GFP_ATOMIC has no effect here because we did prealloc
 | |
| 		 * earlier, but it's good form to communicate our expectations.
 | |
| 		 */
 | |
| 		ent.task = tsk;
 | |
| 		ent.cgrp = task_cgroup_from_root(tsk, root);
 | |
| 		/* nothing to do if this task is already in the cgroup */
 | |
| 		if (ent.cgrp == cgrp)
 | |
| 			continue;
 | |
| 		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
 | |
| 		BUG_ON(retval != 0);
 | |
| 		i++;
 | |
| 	} while_each_thread(leader, tsk);
 | |
| 	/* remember the number of threads in the array for later. */
 | |
| 	group_size = i;
 | |
| 	tset.tc_array = group;
 | |
| 	tset.tc_array_len = group_size;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/* methods shouldn't be called if no task is actually migrating */
 | |
| 	retval = 0;
 | |
| 	if (!group_size)
 | |
| 		goto out_free_group_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * step 1: check that we can legitimately attach to the cgroup.
 | |
| 	 */
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		if (ss->can_attach) {
 | |
| 			retval = ss->can_attach(ss, cgrp, &tset);
 | |
| 			if (retval) {
 | |
| 				failed_ss = ss;
 | |
| 				goto out_cancel_attach;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * step 2: make sure css_sets exist for all threads to be migrated.
 | |
| 	 * we use find_css_set, which allocates a new one if necessary.
 | |
| 	 */
 | |
| 	INIT_LIST_HEAD(&newcg_list);
 | |
| 	for (i = 0; i < group_size; i++) {
 | |
| 		tc = flex_array_get(group, i);
 | |
| 		oldcg = tc->task->cgroups;
 | |
| 
 | |
| 		/* if we don't already have it in the list get a new one */
 | |
| 		if (!css_set_check_fetched(cgrp, tc->task, oldcg,
 | |
| 					   &newcg_list)) {
 | |
| 			retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
 | |
| 			if (retval)
 | |
| 				goto out_list_teardown;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * step 3: now that we're guaranteed success wrt the css_sets,
 | |
| 	 * proceed to move all tasks to the new cgroup.  There are no
 | |
| 	 * failure cases after here, so this is the commit point.
 | |
| 	 */
 | |
| 	for (i = 0; i < group_size; i++) {
 | |
| 		tc = flex_array_get(group, i);
 | |
| 		retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
 | |
| 		BUG_ON(retval);
 | |
| 	}
 | |
| 	/* nothing is sensitive to fork() after this point. */
 | |
| 
 | |
| 	/*
 | |
| 	 * step 4: do subsystem attach callbacks.
 | |
| 	 */
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		if (ss->attach)
 | |
| 			ss->attach(ss, cgrp, &tset);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * step 5: success! and cleanup
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 	cgroup_wakeup_rmdir_waiter(cgrp);
 | |
| 	retval = 0;
 | |
| out_list_teardown:
 | |
| 	/* clean up the list of prefetched css_sets. */
 | |
| 	list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
 | |
| 		list_del(&cg_entry->links);
 | |
| 		put_css_set(cg_entry->cg);
 | |
| 		kfree(cg_entry);
 | |
| 	}
 | |
| out_cancel_attach:
 | |
| 	/* same deal as in cgroup_attach_task */
 | |
| 	if (retval) {
 | |
| 		for_each_subsys(root, ss) {
 | |
| 			if (ss == failed_ss)
 | |
| 				break;
 | |
| 			if (ss->cancel_attach)
 | |
| 				ss->cancel_attach(ss, cgrp, &tset);
 | |
| 		}
 | |
| 	}
 | |
| out_free_group_list:
 | |
| 	flex_array_free(group);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the task_struct of the task to attach by vpid and pass it along to the
 | |
|  * function to attach either it or all tasks in its threadgroup. Will lock
 | |
|  * cgroup_mutex and threadgroup; may take task_lock of task.
 | |
|  */
 | |
| static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	const struct cred *cred = current_cred(), *tcred;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cgroup_lock_live_group(cgrp))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (pid) {
 | |
| 		rcu_read_lock();
 | |
| 		tsk = find_task_by_vpid(pid);
 | |
| 		if (!tsk) {
 | |
| 			rcu_read_unlock();
 | |
| 			cgroup_unlock();
 | |
| 			return -ESRCH;
 | |
| 		}
 | |
| 		if (threadgroup) {
 | |
| 			/*
 | |
| 			 * RCU protects this access, since tsk was found in the
 | |
| 			 * tid map. a race with de_thread may cause group_leader
 | |
| 			 * to stop being the leader, but cgroup_attach_proc will
 | |
| 			 * detect it later.
 | |
| 			 */
 | |
| 			tsk = tsk->group_leader;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * even if we're attaching all tasks in the thread group, we
 | |
| 		 * only need to check permissions on one of them.
 | |
| 		 */
 | |
| 		tcred = __task_cred(tsk);
 | |
| 		if (cred->euid &&
 | |
| 		    cred->euid != tcred->uid &&
 | |
| 		    cred->euid != tcred->suid) {
 | |
| 			rcu_read_unlock();
 | |
| 			cgroup_unlock();
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		get_task_struct(tsk);
 | |
| 		rcu_read_unlock();
 | |
| 	} else {
 | |
| 		if (threadgroup)
 | |
| 			tsk = current->group_leader;
 | |
| 		else
 | |
| 			tsk = current;
 | |
| 		get_task_struct(tsk);
 | |
| 	}
 | |
| 
 | |
| 	threadgroup_lock(tsk);
 | |
| 
 | |
| 	if (threadgroup)
 | |
| 		ret = cgroup_attach_proc(cgrp, tsk);
 | |
| 	else
 | |
| 		ret = cgroup_attach_task(cgrp, tsk);
 | |
| 
 | |
| 	threadgroup_unlock(tsk);
 | |
| 
 | |
| 	put_task_struct(tsk);
 | |
| 	cgroup_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
 | |
| {
 | |
| 	return attach_task_by_pid(cgrp, pid, false);
 | |
| }
 | |
| 
 | |
| static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
 | |
| {
 | |
| 	int ret;
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * attach_proc fails with -EAGAIN if threadgroup leadership
 | |
| 		 * changes in the middle of the operation, in which case we need
 | |
| 		 * to find the task_struct for the new leader and start over.
 | |
| 		 */
 | |
| 		ret = attach_task_by_pid(cgrp, tgid, true);
 | |
| 	} while (ret == -EAGAIN);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 | |
|  * @cgrp: the cgroup to be checked for liveness
 | |
|  *
 | |
|  * On success, returns true; the lock should be later released with
 | |
|  * cgroup_unlock(). On failure returns false with no lock held.
 | |
|  */
 | |
| bool cgroup_lock_live_group(struct cgroup *cgrp)
 | |
| {
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	if (cgroup_is_removed(cgrp)) {
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
 | |
| 
 | |
| static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				      const char *buffer)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 | |
| 	if (strlen(buffer) >= PATH_MAX)
 | |
| 		return -EINVAL;
 | |
| 	if (!cgroup_lock_live_group(cgrp))
 | |
| 		return -ENODEV;
 | |
| 	mutex_lock(&cgroup_root_mutex);
 | |
| 	strcpy(cgrp->root->release_agent_path, buffer);
 | |
| 	mutex_unlock(&cgroup_root_mutex);
 | |
| 	cgroup_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				     struct seq_file *seq)
 | |
| {
 | |
| 	if (!cgroup_lock_live_group(cgrp))
 | |
| 		return -ENODEV;
 | |
| 	seq_puts(seq, cgrp->root->release_agent_path);
 | |
| 	seq_putc(seq, '\n');
 | |
| 	cgroup_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* A buffer size big enough for numbers or short strings */
 | |
| #define CGROUP_LOCAL_BUFFER_SIZE 64
 | |
| 
 | |
| static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				struct file *file,
 | |
| 				const char __user *userbuf,
 | |
| 				size_t nbytes, loff_t *unused_ppos)
 | |
| {
 | |
| 	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
 | |
| 	int retval = 0;
 | |
| 	char *end;
 | |
| 
 | |
| 	if (!nbytes)
 | |
| 		return -EINVAL;
 | |
| 	if (nbytes >= sizeof(buffer))
 | |
| 		return -E2BIG;
 | |
| 	if (copy_from_user(buffer, userbuf, nbytes))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	buffer[nbytes] = 0;     /* nul-terminate */
 | |
| 	if (cft->write_u64) {
 | |
| 		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
 | |
| 		if (*end)
 | |
| 			return -EINVAL;
 | |
| 		retval = cft->write_u64(cgrp, cft, val);
 | |
| 	} else {
 | |
| 		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
 | |
| 		if (*end)
 | |
| 			return -EINVAL;
 | |
| 		retval = cft->write_s64(cgrp, cft, val);
 | |
| 	}
 | |
| 	if (!retval)
 | |
| 		retval = nbytes;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				   struct file *file,
 | |
| 				   const char __user *userbuf,
 | |
| 				   size_t nbytes, loff_t *unused_ppos)
 | |
| {
 | |
| 	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
 | |
| 	int retval = 0;
 | |
| 	size_t max_bytes = cft->max_write_len;
 | |
| 	char *buffer = local_buffer;
 | |
| 
 | |
| 	if (!max_bytes)
 | |
| 		max_bytes = sizeof(local_buffer) - 1;
 | |
| 	if (nbytes >= max_bytes)
 | |
| 		return -E2BIG;
 | |
| 	/* Allocate a dynamic buffer if we need one */
 | |
| 	if (nbytes >= sizeof(local_buffer)) {
 | |
| 		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
 | |
| 		if (buffer == NULL)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
 | |
| 		retval = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	buffer[nbytes] = 0;     /* nul-terminate */
 | |
| 	retval = cft->write_string(cgrp, cft, strstrip(buffer));
 | |
| 	if (!retval)
 | |
| 		retval = nbytes;
 | |
| out:
 | |
| 	if (buffer != local_buffer)
 | |
| 		kfree(buffer);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
 | |
| 						size_t nbytes, loff_t *ppos)
 | |
| {
 | |
| 	struct cftype *cft = __d_cft(file->f_dentry);
 | |
| 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 | |
| 
 | |
| 	if (cgroup_is_removed(cgrp))
 | |
| 		return -ENODEV;
 | |
| 	if (cft->write)
 | |
| 		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	if (cft->write_u64 || cft->write_s64)
 | |
| 		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	if (cft->write_string)
 | |
| 		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	if (cft->trigger) {
 | |
| 		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
 | |
| 		return ret ? ret : nbytes;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
 | |
| 			       struct file *file,
 | |
| 			       char __user *buf, size_t nbytes,
 | |
| 			       loff_t *ppos)
 | |
| {
 | |
| 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
 | |
| 	u64 val = cft->read_u64(cgrp, cft);
 | |
| 	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
 | |
| 
 | |
| 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
 | |
| 			       struct file *file,
 | |
| 			       char __user *buf, size_t nbytes,
 | |
| 			       loff_t *ppos)
 | |
| {
 | |
| 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
 | |
| 	s64 val = cft->read_s64(cgrp, cft);
 | |
| 	int len = sprintf(tmp, "%lld\n", (long long) val);
 | |
| 
 | |
| 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_file_read(struct file *file, char __user *buf,
 | |
| 				   size_t nbytes, loff_t *ppos)
 | |
| {
 | |
| 	struct cftype *cft = __d_cft(file->f_dentry);
 | |
| 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 | |
| 
 | |
| 	if (cgroup_is_removed(cgrp))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (cft->read)
 | |
| 		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	if (cft->read_u64)
 | |
| 		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	if (cft->read_s64)
 | |
| 		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * seqfile ops/methods for returning structured data. Currently just
 | |
|  * supports string->u64 maps, but can be extended in future.
 | |
|  */
 | |
| 
 | |
| struct cgroup_seqfile_state {
 | |
| 	struct cftype *cft;
 | |
| 	struct cgroup *cgroup;
 | |
| };
 | |
| 
 | |
| static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
 | |
| {
 | |
| 	struct seq_file *sf = cb->state;
 | |
| 	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
 | |
| }
 | |
| 
 | |
| static int cgroup_seqfile_show(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	struct cgroup_seqfile_state *state = m->private;
 | |
| 	struct cftype *cft = state->cft;
 | |
| 	if (cft->read_map) {
 | |
| 		struct cgroup_map_cb cb = {
 | |
| 			.fill = cgroup_map_add,
 | |
| 			.state = m,
 | |
| 		};
 | |
| 		return cft->read_map(state->cgroup, cft, &cb);
 | |
| 	}
 | |
| 	return cft->read_seq_string(state->cgroup, cft, m);
 | |
| }
 | |
| 
 | |
| static int cgroup_seqfile_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq = file->private_data;
 | |
| 	kfree(seq->private);
 | |
| 	return single_release(inode, file);
 | |
| }
 | |
| 
 | |
| static const struct file_operations cgroup_seqfile_operations = {
 | |
| 	.read = seq_read,
 | |
| 	.write = cgroup_file_write,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = cgroup_seqfile_release,
 | |
| };
 | |
| 
 | |
| static int cgroup_file_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	int err;
 | |
| 	struct cftype *cft;
 | |
| 
 | |
| 	err = generic_file_open(inode, file);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	cft = __d_cft(file->f_dentry);
 | |
| 
 | |
| 	if (cft->read_map || cft->read_seq_string) {
 | |
| 		struct cgroup_seqfile_state *state =
 | |
| 			kzalloc(sizeof(*state), GFP_USER);
 | |
| 		if (!state)
 | |
| 			return -ENOMEM;
 | |
| 		state->cft = cft;
 | |
| 		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
 | |
| 		file->f_op = &cgroup_seqfile_operations;
 | |
| 		err = single_open(file, cgroup_seqfile_show, state);
 | |
| 		if (err < 0)
 | |
| 			kfree(state);
 | |
| 	} else if (cft->open)
 | |
| 		err = cft->open(inode, file);
 | |
| 	else
 | |
| 		err = 0;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cgroup_file_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct cftype *cft = __d_cft(file->f_dentry);
 | |
| 	if (cft->release)
 | |
| 		return cft->release(inode, file);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup_rename - Only allow simple rename of directories in place.
 | |
|  */
 | |
| static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
 | |
| 			    struct inode *new_dir, struct dentry *new_dentry)
 | |
| {
 | |
| 	if (!S_ISDIR(old_dentry->d_inode->i_mode))
 | |
| 		return -ENOTDIR;
 | |
| 	if (new_dentry->d_inode)
 | |
| 		return -EEXIST;
 | |
| 	if (old_dir != new_dir)
 | |
| 		return -EIO;
 | |
| 	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
 | |
| }
 | |
| 
 | |
| static const struct file_operations cgroup_file_operations = {
 | |
| 	.read = cgroup_file_read,
 | |
| 	.write = cgroup_file_write,
 | |
| 	.llseek = generic_file_llseek,
 | |
| 	.open = cgroup_file_open,
 | |
| 	.release = cgroup_file_release,
 | |
| };
 | |
| 
 | |
| static const struct inode_operations cgroup_dir_inode_operations = {
 | |
| 	.lookup = cgroup_lookup,
 | |
| 	.mkdir = cgroup_mkdir,
 | |
| 	.rmdir = cgroup_rmdir,
 | |
| 	.rename = cgroup_rename,
 | |
| };
 | |
| 
 | |
| static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
 | |
| {
 | |
| 	if (dentry->d_name.len > NAME_MAX)
 | |
| 		return ERR_PTR(-ENAMETOOLONG);
 | |
| 	d_add(dentry, NULL);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a file is a control file
 | |
|  */
 | |
| static inline struct cftype *__file_cft(struct file *file)
 | |
| {
 | |
| 	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	return __d_cft(file->f_dentry);
 | |
| }
 | |
| 
 | |
| static int cgroup_create_file(struct dentry *dentry, umode_t mode,
 | |
| 				struct super_block *sb)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	if (!dentry)
 | |
| 		return -ENOENT;
 | |
| 	if (dentry->d_inode)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	inode = cgroup_new_inode(mode, sb);
 | |
| 	if (!inode)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (S_ISDIR(mode)) {
 | |
| 		inode->i_op = &cgroup_dir_inode_operations;
 | |
| 		inode->i_fop = &simple_dir_operations;
 | |
| 
 | |
| 		/* start off with i_nlink == 2 (for "." entry) */
 | |
| 		inc_nlink(inode);
 | |
| 
 | |
| 		/* start with the directory inode held, so that we can
 | |
| 		 * populate it without racing with another mkdir */
 | |
| 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
 | |
| 	} else if (S_ISREG(mode)) {
 | |
| 		inode->i_size = 0;
 | |
| 		inode->i_fop = &cgroup_file_operations;
 | |
| 	}
 | |
| 	d_instantiate(dentry, inode);
 | |
| 	dget(dentry);	/* Extra count - pin the dentry in core */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup_create_dir - create a directory for an object.
 | |
|  * @cgrp: the cgroup we create the directory for. It must have a valid
 | |
|  *        ->parent field. And we are going to fill its ->dentry field.
 | |
|  * @dentry: dentry of the new cgroup
 | |
|  * @mode: mode to set on new directory.
 | |
|  */
 | |
| static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
 | |
| 				umode_t mode)
 | |
| {
 | |
| 	struct dentry *parent;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	parent = cgrp->parent->dentry;
 | |
| 	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
 | |
| 	if (!error) {
 | |
| 		dentry->d_fsdata = cgrp;
 | |
| 		inc_nlink(parent->d_inode);
 | |
| 		rcu_assign_pointer(cgrp->dentry, dentry);
 | |
| 		dget(dentry);
 | |
| 	}
 | |
| 	dput(dentry);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_file_mode - deduce file mode of a control file
 | |
|  * @cft: the control file in question
 | |
|  *
 | |
|  * returns cft->mode if ->mode is not 0
 | |
|  * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 | |
|  * returns S_IRUGO if it has only a read handler
 | |
|  * returns S_IWUSR if it has only a write hander
 | |
|  */
 | |
| static umode_t cgroup_file_mode(const struct cftype *cft)
 | |
| {
 | |
| 	umode_t mode = 0;
 | |
| 
 | |
| 	if (cft->mode)
 | |
| 		return cft->mode;
 | |
| 
 | |
| 	if (cft->read || cft->read_u64 || cft->read_s64 ||
 | |
| 	    cft->read_map || cft->read_seq_string)
 | |
| 		mode |= S_IRUGO;
 | |
| 
 | |
| 	if (cft->write || cft->write_u64 || cft->write_s64 ||
 | |
| 	    cft->write_string || cft->trigger)
 | |
| 		mode |= S_IWUSR;
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| int cgroup_add_file(struct cgroup *cgrp,
 | |
| 		       struct cgroup_subsys *subsys,
 | |
| 		       const struct cftype *cft)
 | |
| {
 | |
| 	struct dentry *dir = cgrp->dentry;
 | |
| 	struct dentry *dentry;
 | |
| 	int error;
 | |
| 	umode_t mode;
 | |
| 
 | |
| 	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
 | |
| 	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
 | |
| 		strcpy(name, subsys->name);
 | |
| 		strcat(name, ".");
 | |
| 	}
 | |
| 	strcat(name, cft->name);
 | |
| 	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
 | |
| 	dentry = lookup_one_len(name, dir, strlen(name));
 | |
| 	if (!IS_ERR(dentry)) {
 | |
| 		mode = cgroup_file_mode(cft);
 | |
| 		error = cgroup_create_file(dentry, mode | S_IFREG,
 | |
| 						cgrp->root->sb);
 | |
| 		if (!error)
 | |
| 			dentry->d_fsdata = (void *)cft;
 | |
| 		dput(dentry);
 | |
| 	} else
 | |
| 		error = PTR_ERR(dentry);
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_add_file);
 | |
| 
 | |
| int cgroup_add_files(struct cgroup *cgrp,
 | |
| 			struct cgroup_subsys *subsys,
 | |
| 			const struct cftype cft[],
 | |
| 			int count)
 | |
| {
 | |
| 	int i, err;
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		err = cgroup_add_file(cgrp, subsys, &cft[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_add_files);
 | |
| 
 | |
| /**
 | |
|  * cgroup_task_count - count the number of tasks in a cgroup.
 | |
|  * @cgrp: the cgroup in question
 | |
|  *
 | |
|  * Return the number of tasks in the cgroup.
 | |
|  */
 | |
| int cgroup_task_count(const struct cgroup *cgrp)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct cg_cgroup_link *link;
 | |
| 
 | |
| 	read_lock(&css_set_lock);
 | |
| 	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
 | |
| 		count += atomic_read(&link->cg->refcount);
 | |
| 	}
 | |
| 	read_unlock(&css_set_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance a list_head iterator.  The iterator should be positioned at
 | |
|  * the start of a css_set
 | |
|  */
 | |
| static void cgroup_advance_iter(struct cgroup *cgrp,
 | |
| 				struct cgroup_iter *it)
 | |
| {
 | |
| 	struct list_head *l = it->cg_link;
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct css_set *cg;
 | |
| 
 | |
| 	/* Advance to the next non-empty css_set */
 | |
| 	do {
 | |
| 		l = l->next;
 | |
| 		if (l == &cgrp->css_sets) {
 | |
| 			it->cg_link = NULL;
 | |
| 			return;
 | |
| 		}
 | |
| 		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
 | |
| 		cg = link->cg;
 | |
| 	} while (list_empty(&cg->tasks));
 | |
| 	it->cg_link = l;
 | |
| 	it->task = cg->tasks.next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To reduce the fork() overhead for systems that are not actually
 | |
|  * using their cgroups capability, we don't maintain the lists running
 | |
|  * through each css_set to its tasks until we see the list actually
 | |
|  * used - in other words after the first call to cgroup_iter_start().
 | |
|  *
 | |
|  * The tasklist_lock is not held here, as do_each_thread() and
 | |
|  * while_each_thread() are protected by RCU.
 | |
|  */
 | |
| static void cgroup_enable_task_cg_lists(void)
 | |
| {
 | |
| 	struct task_struct *p, *g;
 | |
| 	write_lock(&css_set_lock);
 | |
| 	use_task_css_set_links = 1;
 | |
| 	do_each_thread(g, p) {
 | |
| 		task_lock(p);
 | |
| 		/*
 | |
| 		 * We should check if the process is exiting, otherwise
 | |
| 		 * it will race with cgroup_exit() in that the list
 | |
| 		 * entry won't be deleted though the process has exited.
 | |
| 		 */
 | |
| 		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
 | |
| 			list_add(&p->cg_list, &p->cgroups->tasks);
 | |
| 		task_unlock(p);
 | |
| 	} while_each_thread(g, p);
 | |
| 	write_unlock(&css_set_lock);
 | |
| }
 | |
| 
 | |
| void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
 | |
| 	__acquires(css_set_lock)
 | |
| {
 | |
| 	/*
 | |
| 	 * The first time anyone tries to iterate across a cgroup,
 | |
| 	 * we need to enable the list linking each css_set to its
 | |
| 	 * tasks, and fix up all existing tasks.
 | |
| 	 */
 | |
| 	if (!use_task_css_set_links)
 | |
| 		cgroup_enable_task_cg_lists();
 | |
| 
 | |
| 	read_lock(&css_set_lock);
 | |
| 	it->cg_link = &cgrp->css_sets;
 | |
| 	cgroup_advance_iter(cgrp, it);
 | |
| }
 | |
| 
 | |
| struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
 | |
| 					struct cgroup_iter *it)
 | |
| {
 | |
| 	struct task_struct *res;
 | |
| 	struct list_head *l = it->task;
 | |
| 	struct cg_cgroup_link *link;
 | |
| 
 | |
| 	/* If the iterator cg is NULL, we have no tasks */
 | |
| 	if (!it->cg_link)
 | |
| 		return NULL;
 | |
| 	res = list_entry(l, struct task_struct, cg_list);
 | |
| 	/* Advance iterator to find next entry */
 | |
| 	l = l->next;
 | |
| 	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
 | |
| 	if (l == &link->cg->tasks) {
 | |
| 		/* We reached the end of this task list - move on to
 | |
| 		 * the next cg_cgroup_link */
 | |
| 		cgroup_advance_iter(cgrp, it);
 | |
| 	} else {
 | |
| 		it->task = l;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
 | |
| 	__releases(css_set_lock)
 | |
| {
 | |
| 	read_unlock(&css_set_lock);
 | |
| }
 | |
| 
 | |
| static inline int started_after_time(struct task_struct *t1,
 | |
| 				     struct timespec *time,
 | |
| 				     struct task_struct *t2)
 | |
| {
 | |
| 	int start_diff = timespec_compare(&t1->start_time, time);
 | |
| 	if (start_diff > 0) {
 | |
| 		return 1;
 | |
| 	} else if (start_diff < 0) {
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Arbitrarily, if two processes started at the same
 | |
| 		 * time, we'll say that the lower pointer value
 | |
| 		 * started first. Note that t2 may have exited by now
 | |
| 		 * so this may not be a valid pointer any longer, but
 | |
| 		 * that's fine - it still serves to distinguish
 | |
| 		 * between two tasks started (effectively) simultaneously.
 | |
| 		 */
 | |
| 		return t1 > t2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is a callback from heap_insert() and is used to order
 | |
|  * the heap.
 | |
|  * In this case we order the heap in descending task start time.
 | |
|  */
 | |
| static inline int started_after(void *p1, void *p2)
 | |
| {
 | |
| 	struct task_struct *t1 = p1;
 | |
| 	struct task_struct *t2 = p2;
 | |
| 	return started_after_time(t1, &t2->start_time, t2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 | |
|  * @scan: struct cgroup_scanner containing arguments for the scan
 | |
|  *
 | |
|  * Arguments include pointers to callback functions test_task() and
 | |
|  * process_task().
 | |
|  * Iterate through all the tasks in a cgroup, calling test_task() for each,
 | |
|  * and if it returns true, call process_task() for it also.
 | |
|  * The test_task pointer may be NULL, meaning always true (select all tasks).
 | |
|  * Effectively duplicates cgroup_iter_{start,next,end}()
 | |
|  * but does not lock css_set_lock for the call to process_task().
 | |
|  * The struct cgroup_scanner may be embedded in any structure of the caller's
 | |
|  * creation.
 | |
|  * It is guaranteed that process_task() will act on every task that
 | |
|  * is a member of the cgroup for the duration of this call. This
 | |
|  * function may or may not call process_task() for tasks that exit
 | |
|  * or move to a different cgroup during the call, or are forked or
 | |
|  * move into the cgroup during the call.
 | |
|  *
 | |
|  * Note that test_task() may be called with locks held, and may in some
 | |
|  * situations be called multiple times for the same task, so it should
 | |
|  * be cheap.
 | |
|  * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 | |
|  * pre-allocated and will be used for heap operations (and its "gt" member will
 | |
|  * be overwritten), else a temporary heap will be used (allocation of which
 | |
|  * may cause this function to fail).
 | |
|  */
 | |
| int cgroup_scan_tasks(struct cgroup_scanner *scan)
 | |
| {
 | |
| 	int retval, i;
 | |
| 	struct cgroup_iter it;
 | |
| 	struct task_struct *p, *dropped;
 | |
| 	/* Never dereference latest_task, since it's not refcounted */
 | |
| 	struct task_struct *latest_task = NULL;
 | |
| 	struct ptr_heap tmp_heap;
 | |
| 	struct ptr_heap *heap;
 | |
| 	struct timespec latest_time = { 0, 0 };
 | |
| 
 | |
| 	if (scan->heap) {
 | |
| 		/* The caller supplied our heap and pre-allocated its memory */
 | |
| 		heap = scan->heap;
 | |
| 		heap->gt = &started_after;
 | |
| 	} else {
 | |
| 		/* We need to allocate our own heap memory */
 | |
| 		heap = &tmp_heap;
 | |
| 		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
 | |
| 		if (retval)
 | |
| 			/* cannot allocate the heap */
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
|  again:
 | |
| 	/*
 | |
| 	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
 | |
| 	 * to determine which are of interest, and using the scanner's
 | |
| 	 * "process_task" callback to process any of them that need an update.
 | |
| 	 * Since we don't want to hold any locks during the task updates,
 | |
| 	 * gather tasks to be processed in a heap structure.
 | |
| 	 * The heap is sorted by descending task start time.
 | |
| 	 * If the statically-sized heap fills up, we overflow tasks that
 | |
| 	 * started later, and in future iterations only consider tasks that
 | |
| 	 * started after the latest task in the previous pass. This
 | |
| 	 * guarantees forward progress and that we don't miss any tasks.
 | |
| 	 */
 | |
| 	heap->size = 0;
 | |
| 	cgroup_iter_start(scan->cg, &it);
 | |
| 	while ((p = cgroup_iter_next(scan->cg, &it))) {
 | |
| 		/*
 | |
| 		 * Only affect tasks that qualify per the caller's callback,
 | |
| 		 * if he provided one
 | |
| 		 */
 | |
| 		if (scan->test_task && !scan->test_task(p, scan))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Only process tasks that started after the last task
 | |
| 		 * we processed
 | |
| 		 */
 | |
| 		if (!started_after_time(p, &latest_time, latest_task))
 | |
| 			continue;
 | |
| 		dropped = heap_insert(heap, p);
 | |
| 		if (dropped == NULL) {
 | |
| 			/*
 | |
| 			 * The new task was inserted; the heap wasn't
 | |
| 			 * previously full
 | |
| 			 */
 | |
| 			get_task_struct(p);
 | |
| 		} else if (dropped != p) {
 | |
| 			/*
 | |
| 			 * The new task was inserted, and pushed out a
 | |
| 			 * different task
 | |
| 			 */
 | |
| 			get_task_struct(p);
 | |
| 			put_task_struct(dropped);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Else the new task was newer than anything already in
 | |
| 		 * the heap and wasn't inserted
 | |
| 		 */
 | |
| 	}
 | |
| 	cgroup_iter_end(scan->cg, &it);
 | |
| 
 | |
| 	if (heap->size) {
 | |
| 		for (i = 0; i < heap->size; i++) {
 | |
| 			struct task_struct *q = heap->ptrs[i];
 | |
| 			if (i == 0) {
 | |
| 				latest_time = q->start_time;
 | |
| 				latest_task = q;
 | |
| 			}
 | |
| 			/* Process the task per the caller's callback */
 | |
| 			scan->process_task(q, scan);
 | |
| 			put_task_struct(q);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If we had to process any tasks at all, scan again
 | |
| 		 * in case some of them were in the middle of forking
 | |
| 		 * children that didn't get processed.
 | |
| 		 * Not the most efficient way to do it, but it avoids
 | |
| 		 * having to take callback_mutex in the fork path
 | |
| 		 */
 | |
| 		goto again;
 | |
| 	}
 | |
| 	if (heap == &tmp_heap)
 | |
| 		heap_free(&tmp_heap);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stuff for reading the 'tasks'/'procs' files.
 | |
|  *
 | |
|  * Reading this file can return large amounts of data if a cgroup has
 | |
|  * *lots* of attached tasks. So it may need several calls to read(),
 | |
|  * but we cannot guarantee that the information we produce is correct
 | |
|  * unless we produce it entirely atomically.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The following two functions "fix" the issue where there are more pids
 | |
|  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 | |
|  * TODO: replace with a kernel-wide solution to this problem
 | |
|  */
 | |
| #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
 | |
| static void *pidlist_allocate(int count)
 | |
| {
 | |
| 	if (PIDLIST_TOO_LARGE(count))
 | |
| 		return vmalloc(count * sizeof(pid_t));
 | |
| 	else
 | |
| 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
 | |
| }
 | |
| static void pidlist_free(void *p)
 | |
| {
 | |
| 	if (is_vmalloc_addr(p))
 | |
| 		vfree(p);
 | |
| 	else
 | |
| 		kfree(p);
 | |
| }
 | |
| static void *pidlist_resize(void *p, int newcount)
 | |
| {
 | |
| 	void *newlist;
 | |
| 	/* note: if new alloc fails, old p will still be valid either way */
 | |
| 	if (is_vmalloc_addr(p)) {
 | |
| 		newlist = vmalloc(newcount * sizeof(pid_t));
 | |
| 		if (!newlist)
 | |
| 			return NULL;
 | |
| 		memcpy(newlist, p, newcount * sizeof(pid_t));
 | |
| 		vfree(p);
 | |
| 	} else {
 | |
| 		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
 | |
| 	}
 | |
| 	return newlist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 | |
|  * If the new stripped list is sufficiently smaller and there's enough memory
 | |
|  * to allocate a new buffer, will let go of the unneeded memory. Returns the
 | |
|  * number of unique elements.
 | |
|  */
 | |
| /* is the size difference enough that we should re-allocate the array? */
 | |
| #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
 | |
| static int pidlist_uniq(pid_t **p, int length)
 | |
| {
 | |
| 	int src, dest = 1;
 | |
| 	pid_t *list = *p;
 | |
| 	pid_t *newlist;
 | |
| 
 | |
| 	/*
 | |
| 	 * we presume the 0th element is unique, so i starts at 1. trivial
 | |
| 	 * edge cases first; no work needs to be done for either
 | |
| 	 */
 | |
| 	if (length == 0 || length == 1)
 | |
| 		return length;
 | |
| 	/* src and dest walk down the list; dest counts unique elements */
 | |
| 	for (src = 1; src < length; src++) {
 | |
| 		/* find next unique element */
 | |
| 		while (list[src] == list[src-1]) {
 | |
| 			src++;
 | |
| 			if (src == length)
 | |
| 				goto after;
 | |
| 		}
 | |
| 		/* dest always points to where the next unique element goes */
 | |
| 		list[dest] = list[src];
 | |
| 		dest++;
 | |
| 	}
 | |
| after:
 | |
| 	/*
 | |
| 	 * if the length difference is large enough, we want to allocate a
 | |
| 	 * smaller buffer to save memory. if this fails due to out of memory,
 | |
| 	 * we'll just stay with what we've got.
 | |
| 	 */
 | |
| 	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
 | |
| 		newlist = pidlist_resize(list, dest);
 | |
| 		if (newlist)
 | |
| 			*p = newlist;
 | |
| 	}
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| static int cmppid(const void *a, const void *b)
 | |
| {
 | |
| 	return *(pid_t *)a - *(pid_t *)b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the appropriate pidlist for our purpose (given procs vs tasks)
 | |
|  * returns with the lock on that pidlist already held, and takes care
 | |
|  * of the use count, or returns NULL with no locks held if we're out of
 | |
|  * memory.
 | |
|  */
 | |
| static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 | |
| 						  enum cgroup_filetype type)
 | |
| {
 | |
| 	struct cgroup_pidlist *l;
 | |
| 	/* don't need task_nsproxy() if we're looking at ourself */
 | |
| 	struct pid_namespace *ns = current->nsproxy->pid_ns;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't drop the pidlist_mutex before taking the l->mutex in case
 | |
| 	 * the last ref-holder is trying to remove l from the list at the same
 | |
| 	 * time. Holding the pidlist_mutex precludes somebody taking whichever
 | |
| 	 * list we find out from under us - compare release_pid_array().
 | |
| 	 */
 | |
| 	mutex_lock(&cgrp->pidlist_mutex);
 | |
| 	list_for_each_entry(l, &cgrp->pidlists, links) {
 | |
| 		if (l->key.type == type && l->key.ns == ns) {
 | |
| 			/* make sure l doesn't vanish out from under us */
 | |
| 			down_write(&l->mutex);
 | |
| 			mutex_unlock(&cgrp->pidlist_mutex);
 | |
| 			return l;
 | |
| 		}
 | |
| 	}
 | |
| 	/* entry not found; create a new one */
 | |
| 	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 | |
| 	if (!l) {
 | |
| 		mutex_unlock(&cgrp->pidlist_mutex);
 | |
| 		return l;
 | |
| 	}
 | |
| 	init_rwsem(&l->mutex);
 | |
| 	down_write(&l->mutex);
 | |
| 	l->key.type = type;
 | |
| 	l->key.ns = get_pid_ns(ns);
 | |
| 	l->use_count = 0; /* don't increment here */
 | |
| 	l->list = NULL;
 | |
| 	l->owner = cgrp;
 | |
| 	list_add(&l->links, &cgrp->pidlists);
 | |
| 	mutex_unlock(&cgrp->pidlist_mutex);
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 | |
|  */
 | |
| static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 | |
| 			      struct cgroup_pidlist **lp)
 | |
| {
 | |
| 	pid_t *array;
 | |
| 	int length;
 | |
| 	int pid, n = 0; /* used for populating the array */
 | |
| 	struct cgroup_iter it;
 | |
| 	struct task_struct *tsk;
 | |
| 	struct cgroup_pidlist *l;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cgroup gets more users after we read count, we won't have
 | |
| 	 * enough space - tough.  This race is indistinguishable to the
 | |
| 	 * caller from the case that the additional cgroup users didn't
 | |
| 	 * show up until sometime later on.
 | |
| 	 */
 | |
| 	length = cgroup_task_count(cgrp);
 | |
| 	array = pidlist_allocate(length);
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 	/* now, populate the array */
 | |
| 	cgroup_iter_start(cgrp, &it);
 | |
| 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
 | |
| 		if (unlikely(n == length))
 | |
| 			break;
 | |
| 		/* get tgid or pid for procs or tasks file respectively */
 | |
| 		if (type == CGROUP_FILE_PROCS)
 | |
| 			pid = task_tgid_vnr(tsk);
 | |
| 		else
 | |
| 			pid = task_pid_vnr(tsk);
 | |
| 		if (pid > 0) /* make sure to only use valid results */
 | |
| 			array[n++] = pid;
 | |
| 	}
 | |
| 	cgroup_iter_end(cgrp, &it);
 | |
| 	length = n;
 | |
| 	/* now sort & (if procs) strip out duplicates */
 | |
| 	sort(array, length, sizeof(pid_t), cmppid, NULL);
 | |
| 	if (type == CGROUP_FILE_PROCS)
 | |
| 		length = pidlist_uniq(&array, length);
 | |
| 	l = cgroup_pidlist_find(cgrp, type);
 | |
| 	if (!l) {
 | |
| 		pidlist_free(array);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	/* store array, freeing old if necessary - lock already held */
 | |
| 	pidlist_free(l->list);
 | |
| 	l->list = array;
 | |
| 	l->length = length;
 | |
| 	l->use_count++;
 | |
| 	up_write(&l->mutex);
 | |
| 	*lp = l;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroupstats_build - build and fill cgroupstats
 | |
|  * @stats: cgroupstats to fill information into
 | |
|  * @dentry: A dentry entry belonging to the cgroup for which stats have
 | |
|  * been requested.
 | |
|  *
 | |
|  * Build and fill cgroupstats so that taskstats can export it to user
 | |
|  * space.
 | |
|  */
 | |
| int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct cgroup_iter it;
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate dentry by checking the superblock operations,
 | |
| 	 * and make sure it's a directory.
 | |
| 	 */
 | |
| 	if (dentry->d_sb->s_op != &cgroup_ops ||
 | |
| 	    !S_ISDIR(dentry->d_inode->i_mode))
 | |
| 		 goto err;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	cgrp = dentry->d_fsdata;
 | |
| 
 | |
| 	cgroup_iter_start(cgrp, &it);
 | |
| 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
 | |
| 		switch (tsk->state) {
 | |
| 		case TASK_RUNNING:
 | |
| 			stats->nr_running++;
 | |
| 			break;
 | |
| 		case TASK_INTERRUPTIBLE:
 | |
| 			stats->nr_sleeping++;
 | |
| 			break;
 | |
| 		case TASK_UNINTERRUPTIBLE:
 | |
| 			stats->nr_uninterruptible++;
 | |
| 			break;
 | |
| 		case TASK_STOPPED:
 | |
| 			stats->nr_stopped++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (delayacct_is_task_waiting_on_io(tsk))
 | |
| 				stats->nr_io_wait++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	cgroup_iter_end(cgrp, &it);
 | |
| 
 | |
| err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * seq_file methods for the tasks/procs files. The seq_file position is the
 | |
|  * next pid to display; the seq_file iterator is a pointer to the pid
 | |
|  * in the cgroup->l->list array.
 | |
|  */
 | |
| 
 | |
| static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initially we receive a position value that corresponds to
 | |
| 	 * one more than the last pid shown (or 0 on the first call or
 | |
| 	 * after a seek to the start). Use a binary-search to find the
 | |
| 	 * next pid to display, if any
 | |
| 	 */
 | |
| 	struct cgroup_pidlist *l = s->private;
 | |
| 	int index = 0, pid = *pos;
 | |
| 	int *iter;
 | |
| 
 | |
| 	down_read(&l->mutex);
 | |
| 	if (pid) {
 | |
| 		int end = l->length;
 | |
| 
 | |
| 		while (index < end) {
 | |
| 			int mid = (index + end) / 2;
 | |
| 			if (l->list[mid] == pid) {
 | |
| 				index = mid;
 | |
| 				break;
 | |
| 			} else if (l->list[mid] <= pid)
 | |
| 				index = mid + 1;
 | |
| 			else
 | |
| 				end = mid;
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we're off the end of the array, we're done */
 | |
| 	if (index >= l->length)
 | |
| 		return NULL;
 | |
| 	/* Update the abstract position to be the actual pid that we found */
 | |
| 	iter = l->list + index;
 | |
| 	*pos = *iter;
 | |
| 	return iter;
 | |
| }
 | |
| 
 | |
| static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 | |
| {
 | |
| 	struct cgroup_pidlist *l = s->private;
 | |
| 	up_read(&l->mutex);
 | |
| }
 | |
| 
 | |
| static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct cgroup_pidlist *l = s->private;
 | |
| 	pid_t *p = v;
 | |
| 	pid_t *end = l->list + l->length;
 | |
| 	/*
 | |
| 	 * Advance to the next pid in the array. If this goes off the
 | |
| 	 * end, we're done
 | |
| 	 */
 | |
| 	p++;
 | |
| 	if (p >= end) {
 | |
| 		return NULL;
 | |
| 	} else {
 | |
| 		*pos = *p;
 | |
| 		return p;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_pidlist_show(struct seq_file *s, void *v)
 | |
| {
 | |
| 	return seq_printf(s, "%d\n", *(int *)v);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * seq_operations functions for iterating on pidlists through seq_file -
 | |
|  * independent of whether it's tasks or procs
 | |
|  */
 | |
| static const struct seq_operations cgroup_pidlist_seq_operations = {
 | |
| 	.start = cgroup_pidlist_start,
 | |
| 	.stop = cgroup_pidlist_stop,
 | |
| 	.next = cgroup_pidlist_next,
 | |
| 	.show = cgroup_pidlist_show,
 | |
| };
 | |
| 
 | |
| static void cgroup_release_pid_array(struct cgroup_pidlist *l)
 | |
| {
 | |
| 	/*
 | |
| 	 * the case where we're the last user of this particular pidlist will
 | |
| 	 * have us remove it from the cgroup's list, which entails taking the
 | |
| 	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
 | |
| 	 * pidlist_mutex, we have to take pidlist_mutex first.
 | |
| 	 */
 | |
| 	mutex_lock(&l->owner->pidlist_mutex);
 | |
| 	down_write(&l->mutex);
 | |
| 	BUG_ON(!l->use_count);
 | |
| 	if (!--l->use_count) {
 | |
| 		/* we're the last user if refcount is 0; remove and free */
 | |
| 		list_del(&l->links);
 | |
| 		mutex_unlock(&l->owner->pidlist_mutex);
 | |
| 		pidlist_free(l->list);
 | |
| 		put_pid_ns(l->key.ns);
 | |
| 		up_write(&l->mutex);
 | |
| 		kfree(l);
 | |
| 		return;
 | |
| 	}
 | |
| 	mutex_unlock(&l->owner->pidlist_mutex);
 | |
| 	up_write(&l->mutex);
 | |
| }
 | |
| 
 | |
| static int cgroup_pidlist_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct cgroup_pidlist *l;
 | |
| 	if (!(file->f_mode & FMODE_READ))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * the seq_file will only be initialized if the file was opened for
 | |
| 	 * reading; hence we check if it's not null only in that case.
 | |
| 	 */
 | |
| 	l = ((struct seq_file *)file->private_data)->private;
 | |
| 	cgroup_release_pid_array(l);
 | |
| 	return seq_release(inode, file);
 | |
| }
 | |
| 
 | |
| static const struct file_operations cgroup_pidlist_operations = {
 | |
| 	.read = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.write = cgroup_file_write,
 | |
| 	.release = cgroup_pidlist_release,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The following functions handle opens on a file that displays a pidlist
 | |
|  * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 | |
|  * in the cgroup.
 | |
|  */
 | |
| /* helper function for the two below it */
 | |
| static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
 | |
| {
 | |
| 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 | |
| 	struct cgroup_pidlist *l;
 | |
| 	int retval;
 | |
| 
 | |
| 	/* Nothing to do for write-only files */
 | |
| 	if (!(file->f_mode & FMODE_READ))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* have the array populated */
 | |
| 	retval = pidlist_array_load(cgrp, type, &l);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 	/* configure file information */
 | |
| 	file->f_op = &cgroup_pidlist_operations;
 | |
| 
 | |
| 	retval = seq_open(file, &cgroup_pidlist_seq_operations);
 | |
| 	if (retval) {
 | |
| 		cgroup_release_pid_array(l);
 | |
| 		return retval;
 | |
| 	}
 | |
| 	((struct seq_file *)file->private_data)->private = l;
 | |
| 	return 0;
 | |
| }
 | |
| static int cgroup_tasks_open(struct inode *unused, struct file *file)
 | |
| {
 | |
| 	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
 | |
| }
 | |
| static int cgroup_procs_open(struct inode *unused, struct file *file)
 | |
| {
 | |
| 	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
 | |
| }
 | |
| 
 | |
| static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
 | |
| 					    struct cftype *cft)
 | |
| {
 | |
| 	return notify_on_release(cgrp);
 | |
| }
 | |
| 
 | |
| static int cgroup_write_notify_on_release(struct cgroup *cgrp,
 | |
| 					  struct cftype *cft,
 | |
| 					  u64 val)
 | |
| {
 | |
| 	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
 | |
| 	if (val)
 | |
| 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 | |
| 	else
 | |
| 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unregister event and free resources.
 | |
|  *
 | |
|  * Gets called from workqueue.
 | |
|  */
 | |
| static void cgroup_event_remove(struct work_struct *work)
 | |
| {
 | |
| 	struct cgroup_event *event = container_of(work, struct cgroup_event,
 | |
| 			remove);
 | |
| 	struct cgroup *cgrp = event->cgrp;
 | |
| 
 | |
| 	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
 | |
| 
 | |
| 	eventfd_ctx_put(event->eventfd);
 | |
| 	kfree(event);
 | |
| 	dput(cgrp->dentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets called on POLLHUP on eventfd when user closes it.
 | |
|  *
 | |
|  * Called with wqh->lock held and interrupts disabled.
 | |
|  */
 | |
| static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
 | |
| 		int sync, void *key)
 | |
| {
 | |
| 	struct cgroup_event *event = container_of(wait,
 | |
| 			struct cgroup_event, wait);
 | |
| 	struct cgroup *cgrp = event->cgrp;
 | |
| 	unsigned long flags = (unsigned long)key;
 | |
| 
 | |
| 	if (flags & POLLHUP) {
 | |
| 		__remove_wait_queue(event->wqh, &event->wait);
 | |
| 		spin_lock(&cgrp->event_list_lock);
 | |
| 		list_del(&event->list);
 | |
| 		spin_unlock(&cgrp->event_list_lock);
 | |
| 		/*
 | |
| 		 * We are in atomic context, but cgroup_event_remove() may
 | |
| 		 * sleep, so we have to call it in workqueue.
 | |
| 		 */
 | |
| 		schedule_work(&event->remove);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cgroup_event_ptable_queue_proc(struct file *file,
 | |
| 		wait_queue_head_t *wqh, poll_table *pt)
 | |
| {
 | |
| 	struct cgroup_event *event = container_of(pt,
 | |
| 			struct cgroup_event, pt);
 | |
| 
 | |
| 	event->wqh = wqh;
 | |
| 	add_wait_queue(wqh, &event->wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse input and register new cgroup event handler.
 | |
|  *
 | |
|  * Input must be in format '<event_fd> <control_fd> <args>'.
 | |
|  * Interpretation of args is defined by control file implementation.
 | |
|  */
 | |
| static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				      const char *buffer)
 | |
| {
 | |
| 	struct cgroup_event *event = NULL;
 | |
| 	unsigned int efd, cfd;
 | |
| 	struct file *efile = NULL;
 | |
| 	struct file *cfile = NULL;
 | |
| 	char *endp;
 | |
| 	int ret;
 | |
| 
 | |
| 	efd = simple_strtoul(buffer, &endp, 10);
 | |
| 	if (*endp != ' ')
 | |
| 		return -EINVAL;
 | |
| 	buffer = endp + 1;
 | |
| 
 | |
| 	cfd = simple_strtoul(buffer, &endp, 10);
 | |
| 	if ((*endp != ' ') && (*endp != '\0'))
 | |
| 		return -EINVAL;
 | |
| 	buffer = endp + 1;
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 	event->cgrp = cgrp;
 | |
| 	INIT_LIST_HEAD(&event->list);
 | |
| 	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
 | |
| 	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
 | |
| 	INIT_WORK(&event->remove, cgroup_event_remove);
 | |
| 
 | |
| 	efile = eventfd_fget(efd);
 | |
| 	if (IS_ERR(efile)) {
 | |
| 		ret = PTR_ERR(efile);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	event->eventfd = eventfd_ctx_fileget(efile);
 | |
| 	if (IS_ERR(event->eventfd)) {
 | |
| 		ret = PTR_ERR(event->eventfd);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	cfile = fget(cfd);
 | |
| 	if (!cfile) {
 | |
| 		ret = -EBADF;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* the process need read permission on control file */
 | |
| 	/* AV: shouldn't we check that it's been opened for read instead? */
 | |
| 	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	event->cft = __file_cft(cfile);
 | |
| 	if (IS_ERR(event->cft)) {
 | |
| 		ret = PTR_ERR(event->cft);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (!event->cft->register_event || !event->cft->unregister_event) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = event->cft->register_event(cgrp, event->cft,
 | |
| 			event->eventfd, buffer);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
 | |
| 		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
 | |
| 		ret = 0;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Events should be removed after rmdir of cgroup directory, but before
 | |
| 	 * destroying subsystem state objects. Let's take reference to cgroup
 | |
| 	 * directory dentry to do that.
 | |
| 	 */
 | |
| 	dget(cgrp->dentry);
 | |
| 
 | |
| 	spin_lock(&cgrp->event_list_lock);
 | |
| 	list_add(&event->list, &cgrp->event_list);
 | |
| 	spin_unlock(&cgrp->event_list_lock);
 | |
| 
 | |
| 	fput(cfile);
 | |
| 	fput(efile);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (cfile)
 | |
| 		fput(cfile);
 | |
| 
 | |
| 	if (event && event->eventfd && !IS_ERR(event->eventfd))
 | |
| 		eventfd_ctx_put(event->eventfd);
 | |
| 
 | |
| 	if (!IS_ERR_OR_NULL(efile))
 | |
| 		fput(efile);
 | |
| 
 | |
| 	kfree(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 cgroup_clone_children_read(struct cgroup *cgrp,
 | |
| 				    struct cftype *cft)
 | |
| {
 | |
| 	return clone_children(cgrp);
 | |
| }
 | |
| 
 | |
| static int cgroup_clone_children_write(struct cgroup *cgrp,
 | |
| 				     struct cftype *cft,
 | |
| 				     u64 val)
 | |
| {
 | |
| 	if (val)
 | |
| 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 | |
| 	else
 | |
| 		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for the common functions, 'private' gives the type of file
 | |
|  */
 | |
| /* for hysterical raisins, we can't put this on the older files */
 | |
| #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
 | |
| static struct cftype files[] = {
 | |
| 	{
 | |
| 		.name = "tasks",
 | |
| 		.open = cgroup_tasks_open,
 | |
| 		.write_u64 = cgroup_tasks_write,
 | |
| 		.release = cgroup_pidlist_release,
 | |
| 		.mode = S_IRUGO | S_IWUSR,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
 | |
| 		.open = cgroup_procs_open,
 | |
| 		.write_u64 = cgroup_procs_write,
 | |
| 		.release = cgroup_pidlist_release,
 | |
| 		.mode = S_IRUGO | S_IWUSR,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "notify_on_release",
 | |
| 		.read_u64 = cgroup_read_notify_on_release,
 | |
| 		.write_u64 = cgroup_write_notify_on_release,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
 | |
| 		.write_string = cgroup_write_event_control,
 | |
| 		.mode = S_IWUGO,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.clone_children",
 | |
| 		.read_u64 = cgroup_clone_children_read,
 | |
| 		.write_u64 = cgroup_clone_children_write,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static struct cftype cft_release_agent = {
 | |
| 	.name = "release_agent",
 | |
| 	.read_seq_string = cgroup_release_agent_show,
 | |
| 	.write_string = cgroup_release_agent_write,
 | |
| 	.max_write_len = PATH_MAX,
 | |
| };
 | |
| 
 | |
| static int cgroup_populate_dir(struct cgroup *cgrp)
 | |
| {
 | |
| 	int err;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 
 | |
| 	/* First clear out any existing files */
 | |
| 	cgroup_clear_directory(cgrp->dentry);
 | |
| 
 | |
| 	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	if (cgrp == cgrp->top_cgroup) {
 | |
| 		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	for_each_subsys(cgrp->root, ss) {
 | |
| 		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 	/* This cgroup is ready now */
 | |
| 	for_each_subsys(cgrp->root, ss) {
 | |
| 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
 | |
| 		/*
 | |
| 		 * Update id->css pointer and make this css visible from
 | |
| 		 * CSS ID functions. This pointer will be dereferened
 | |
| 		 * from RCU-read-side without locks.
 | |
| 		 */
 | |
| 		if (css->id)
 | |
| 			rcu_assign_pointer(css->id->css, css);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_cgroup_css(struct cgroup_subsys_state *css,
 | |
| 			       struct cgroup_subsys *ss,
 | |
| 			       struct cgroup *cgrp)
 | |
| {
 | |
| 	css->cgroup = cgrp;
 | |
| 	atomic_set(&css->refcnt, 1);
 | |
| 	css->flags = 0;
 | |
| 	css->id = NULL;
 | |
| 	if (cgrp == dummytop)
 | |
| 		set_bit(CSS_ROOT, &css->flags);
 | |
| 	BUG_ON(cgrp->subsys[ss->subsys_id]);
 | |
| 	cgrp->subsys[ss->subsys_id] = css;
 | |
| }
 | |
| 
 | |
| static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
 | |
| {
 | |
| 	/* We need to take each hierarchy_mutex in a consistent order */
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * No worry about a race with rebind_subsystems that might mess up the
 | |
| 	 * locking order, since both parties are under cgroup_mutex.
 | |
| 	 */
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		if (ss == NULL)
 | |
| 			continue;
 | |
| 		if (ss->root == root)
 | |
| 			mutex_lock(&ss->hierarchy_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		if (ss == NULL)
 | |
| 			continue;
 | |
| 		if (ss->root == root)
 | |
| 			mutex_unlock(&ss->hierarchy_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup_create - create a cgroup
 | |
|  * @parent: cgroup that will be parent of the new cgroup
 | |
|  * @dentry: dentry of the new cgroup
 | |
|  * @mode: mode to set on new inode
 | |
|  *
 | |
|  * Must be called with the mutex on the parent inode held
 | |
|  */
 | |
| static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
 | |
| 			     umode_t mode)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct cgroupfs_root *root = parent->root;
 | |
| 	int err = 0;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct super_block *sb = root->sb;
 | |
| 
 | |
| 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Grab a reference on the superblock so the hierarchy doesn't
 | |
| 	 * get deleted on unmount if there are child cgroups.  This
 | |
| 	 * can be done outside cgroup_mutex, since the sb can't
 | |
| 	 * disappear while someone has an open control file on the
 | |
| 	 * fs */
 | |
| 	atomic_inc(&sb->s_active);
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	init_cgroup_housekeeping(cgrp);
 | |
| 
 | |
| 	cgrp->parent = parent;
 | |
| 	cgrp->root = parent->root;
 | |
| 	cgrp->top_cgroup = parent->top_cgroup;
 | |
| 
 | |
| 	if (notify_on_release(parent))
 | |
| 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 | |
| 
 | |
| 	if (clone_children(parent))
 | |
| 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 | |
| 
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
 | |
| 
 | |
| 		if (IS_ERR(css)) {
 | |
| 			err = PTR_ERR(css);
 | |
| 			goto err_destroy;
 | |
| 		}
 | |
| 		init_cgroup_css(css, ss, cgrp);
 | |
| 		if (ss->use_id) {
 | |
| 			err = alloc_css_id(ss, parent, cgrp);
 | |
| 			if (err)
 | |
| 				goto err_destroy;
 | |
| 		}
 | |
| 		/* At error, ->destroy() callback has to free assigned ID. */
 | |
| 		if (clone_children(parent) && ss->post_clone)
 | |
| 			ss->post_clone(ss, cgrp);
 | |
| 	}
 | |
| 
 | |
| 	cgroup_lock_hierarchy(root);
 | |
| 	list_add(&cgrp->sibling, &cgrp->parent->children);
 | |
| 	cgroup_unlock_hierarchy(root);
 | |
| 	root->number_of_cgroups++;
 | |
| 
 | |
| 	err = cgroup_create_dir(cgrp, dentry, mode);
 | |
| 	if (err < 0)
 | |
| 		goto err_remove;
 | |
| 
 | |
| 	/* The cgroup directory was pre-locked for us */
 | |
| 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
 | |
| 
 | |
| 	err = cgroup_populate_dir(cgrp);
 | |
| 	/* If err < 0, we have a half-filled directory - oh well ;) */
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_remove:
 | |
| 
 | |
| 	cgroup_lock_hierarchy(root);
 | |
| 	list_del(&cgrp->sibling);
 | |
| 	cgroup_unlock_hierarchy(root);
 | |
| 	root->number_of_cgroups--;
 | |
| 
 | |
|  err_destroy:
 | |
| 
 | |
| 	for_each_subsys(root, ss) {
 | |
| 		if (cgrp->subsys[ss->subsys_id])
 | |
| 			ss->destroy(ss, cgrp);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	/* Release the reference count that we took on the superblock */
 | |
| 	deactivate_super(sb);
 | |
| 
 | |
| 	kfree(cgrp);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 | |
| {
 | |
| 	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
 | |
| 
 | |
| 	/* the vfs holds inode->i_mutex already */
 | |
| 	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
 | |
| }
 | |
| 
 | |
| static int cgroup_has_css_refs(struct cgroup *cgrp)
 | |
| {
 | |
| 	/* Check the reference count on each subsystem. Since we
 | |
| 	 * already established that there are no tasks in the
 | |
| 	 * cgroup, if the css refcount is also 1, then there should
 | |
| 	 * be no outstanding references, so the subsystem is safe to
 | |
| 	 * destroy. We scan across all subsystems rather than using
 | |
| 	 * the per-hierarchy linked list of mounted subsystems since
 | |
| 	 * we can be called via check_for_release() with no
 | |
| 	 * synchronization other than RCU, and the subsystem linked
 | |
| 	 * list isn't RCU-safe */
 | |
| 	int i;
 | |
| 	/*
 | |
| 	 * We won't need to lock the subsys array, because the subsystems
 | |
| 	 * we're concerned about aren't going anywhere since our cgroup root
 | |
| 	 * has a reference on them.
 | |
| 	 */
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		struct cgroup_subsys_state *css;
 | |
| 		/* Skip subsystems not present or not in this hierarchy */
 | |
| 		if (ss == NULL || ss->root != cgrp->root)
 | |
| 			continue;
 | |
| 		css = cgrp->subsys[ss->subsys_id];
 | |
| 		/* When called from check_for_release() it's possible
 | |
| 		 * that by this point the cgroup has been removed
 | |
| 		 * and the css deleted. But a false-positive doesn't
 | |
| 		 * matter, since it can only happen if the cgroup
 | |
| 		 * has been deleted and hence no longer needs the
 | |
| 		 * release agent to be called anyway. */
 | |
| 		if (css && (atomic_read(&css->refcnt) > 1))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Atomically mark all (or else none) of the cgroup's CSS objects as
 | |
|  * CSS_REMOVED. Return true on success, or false if the cgroup has
 | |
|  * busy subsystems. Call with cgroup_mutex held
 | |
|  */
 | |
| 
 | |
| static int cgroup_clear_css_refs(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	unsigned long flags;
 | |
| 	bool failed = false;
 | |
| 	local_irq_save(flags);
 | |
| 	for_each_subsys(cgrp->root, ss) {
 | |
| 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
 | |
| 		int refcnt;
 | |
| 		while (1) {
 | |
| 			/* We can only remove a CSS with a refcnt==1 */
 | |
| 			refcnt = atomic_read(&css->refcnt);
 | |
| 			if (refcnt > 1) {
 | |
| 				failed = true;
 | |
| 				goto done;
 | |
| 			}
 | |
| 			BUG_ON(!refcnt);
 | |
| 			/*
 | |
| 			 * Drop the refcnt to 0 while we check other
 | |
| 			 * subsystems. This will cause any racing
 | |
| 			 * css_tryget() to spin until we set the
 | |
| 			 * CSS_REMOVED bits or abort
 | |
| 			 */
 | |
| 			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
 | |
| 				break;
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 	}
 | |
|  done:
 | |
| 	for_each_subsys(cgrp->root, ss) {
 | |
| 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
 | |
| 		if (failed) {
 | |
| 			/*
 | |
| 			 * Restore old refcnt if we previously managed
 | |
| 			 * to clear it from 1 to 0
 | |
| 			 */
 | |
| 			if (!atomic_read(&css->refcnt))
 | |
| 				atomic_set(&css->refcnt, 1);
 | |
| 		} else {
 | |
| 			/* Commit the fact that the CSS is removed */
 | |
| 			set_bit(CSS_REMOVED, &css->flags);
 | |
| 		}
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 	return !failed;
 | |
| }
 | |
| 
 | |
| static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
 | |
| {
 | |
| 	struct cgroup *cgrp = dentry->d_fsdata;
 | |
| 	struct dentry *d;
 | |
| 	struct cgroup *parent;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	struct cgroup_event *event, *tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* the vfs holds both inode->i_mutex already */
 | |
| again:
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	if (atomic_read(&cgrp->count) != 0) {
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	if (!list_empty(&cgrp->children)) {
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * In general, subsystem has no css->refcnt after pre_destroy(). But
 | |
| 	 * in racy cases, subsystem may have to get css->refcnt after
 | |
| 	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
 | |
| 	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
 | |
| 	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
 | |
| 	 * and subsystem's reference count handling. Please see css_get/put
 | |
| 	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
 | |
| 	 */
 | |
| 	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call pre_destroy handlers of subsys. Notify subsystems
 | |
| 	 * that rmdir() request comes.
 | |
| 	 */
 | |
| 	ret = cgroup_call_pre_destroy(cgrp);
 | |
| 	if (ret) {
 | |
| 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	parent = cgrp->parent;
 | |
| 	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
 | |
| 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
 | |
| 	if (!cgroup_clear_css_refs(cgrp)) {
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		/*
 | |
| 		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
 | |
| 		 * prepare_to_wait(), we need to check this flag.
 | |
| 		 */
 | |
| 		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
 | |
| 			schedule();
 | |
| 		finish_wait(&cgroup_rmdir_waitq, &wait);
 | |
| 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 | |
| 		if (signal_pending(current))
 | |
| 			return -EINTR;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	/* NO css_tryget() can success after here. */
 | |
| 	finish_wait(&cgroup_rmdir_waitq, &wait);
 | |
| 	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 | |
| 
 | |
| 	raw_spin_lock(&release_list_lock);
 | |
| 	set_bit(CGRP_REMOVED, &cgrp->flags);
 | |
| 	if (!list_empty(&cgrp->release_list))
 | |
| 		list_del_init(&cgrp->release_list);
 | |
| 	raw_spin_unlock(&release_list_lock);
 | |
| 
 | |
| 	cgroup_lock_hierarchy(cgrp->root);
 | |
| 	/* delete this cgroup from parent->children */
 | |
| 	list_del_init(&cgrp->sibling);
 | |
| 	cgroup_unlock_hierarchy(cgrp->root);
 | |
| 
 | |
| 	d = dget(cgrp->dentry);
 | |
| 
 | |
| 	cgroup_d_remove_dir(d);
 | |
| 	dput(d);
 | |
| 
 | |
| 	set_bit(CGRP_RELEASABLE, &parent->flags);
 | |
| 	check_for_release(parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister events and notify userspace.
 | |
| 	 * Notify userspace about cgroup removing only after rmdir of cgroup
 | |
| 	 * directory to avoid race between userspace and kernelspace
 | |
| 	 */
 | |
| 	spin_lock(&cgrp->event_list_lock);
 | |
| 	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
 | |
| 		list_del(&event->list);
 | |
| 		remove_wait_queue(event->wqh, &event->wait);
 | |
| 		eventfd_signal(event->eventfd, 1);
 | |
| 		schedule_work(&event->remove);
 | |
| 	}
 | |
| 	spin_unlock(&cgrp->event_list_lock);
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
 | |
| 
 | |
| 	/* Create the top cgroup state for this subsystem */
 | |
| 	list_add(&ss->sibling, &rootnode.subsys_list);
 | |
| 	ss->root = &rootnode;
 | |
| 	css = ss->create(ss, dummytop);
 | |
| 	/* We don't handle early failures gracefully */
 | |
| 	BUG_ON(IS_ERR(css));
 | |
| 	init_cgroup_css(css, ss, dummytop);
 | |
| 
 | |
| 	/* Update the init_css_set to contain a subsys
 | |
| 	 * pointer to this state - since the subsystem is
 | |
| 	 * newly registered, all tasks and hence the
 | |
| 	 * init_css_set is in the subsystem's top cgroup. */
 | |
| 	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
 | |
| 
 | |
| 	need_forkexit_callback |= ss->fork || ss->exit;
 | |
| 
 | |
| 	/* At system boot, before all subsystems have been
 | |
| 	 * registered, no tasks have been forked, so we don't
 | |
| 	 * need to invoke fork callbacks here. */
 | |
| 	BUG_ON(!list_empty(&init_task.tasks));
 | |
| 
 | |
| 	mutex_init(&ss->hierarchy_mutex);
 | |
| 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
 | |
| 	ss->active = 1;
 | |
| 
 | |
| 	/* this function shouldn't be used with modular subsystems, since they
 | |
| 	 * need to register a subsys_id, among other things */
 | |
| 	BUG_ON(ss->module);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_load_subsys: load and register a modular subsystem at runtime
 | |
|  * @ss: the subsystem to load
 | |
|  *
 | |
|  * This function should be called in a modular subsystem's initcall. If the
 | |
|  * subsystem is built as a module, it will be assigned a new subsys_id and set
 | |
|  * up for use. If the subsystem is built-in anyway, work is delegated to the
 | |
|  * simpler cgroup_init_subsys.
 | |
|  */
 | |
| int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
 | |
| {
 | |
| 	int i;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	/* check name and function validity */
 | |
| 	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
 | |
| 	    ss->create == NULL || ss->destroy == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't support callbacks in modular subsystems. this check is
 | |
| 	 * before the ss->module check for consistency; a subsystem that could
 | |
| 	 * be a module should still have no callbacks even if the user isn't
 | |
| 	 * compiling it as one.
 | |
| 	 */
 | |
| 	if (ss->fork || ss->exit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * an optionally modular subsystem is built-in: we want to do nothing,
 | |
| 	 * since cgroup_init_subsys will have already taken care of it.
 | |
| 	 */
 | |
| 	if (ss->module == NULL) {
 | |
| 		/* a few sanity checks */
 | |
| 		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
 | |
| 		BUG_ON(subsys[ss->subsys_id] != ss);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * need to register a subsys id before anything else - for example,
 | |
| 	 * init_cgroup_css needs it.
 | |
| 	 */
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	/* find the first empty slot in the array */
 | |
| 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		if (subsys[i] == NULL)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i == CGROUP_SUBSYS_COUNT) {
 | |
| 		/* maximum number of subsystems already registered! */
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	/* assign ourselves the subsys_id */
 | |
| 	ss->subsys_id = i;
 | |
| 	subsys[i] = ss;
 | |
| 
 | |
| 	/*
 | |
| 	 * no ss->create seems to need anything important in the ss struct, so
 | |
| 	 * this can happen first (i.e. before the rootnode attachment).
 | |
| 	 */
 | |
| 	css = ss->create(ss, dummytop);
 | |
| 	if (IS_ERR(css)) {
 | |
| 		/* failure case - need to deassign the subsys[] slot. */
 | |
| 		subsys[i] = NULL;
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return PTR_ERR(css);
 | |
| 	}
 | |
| 
 | |
| 	list_add(&ss->sibling, &rootnode.subsys_list);
 | |
| 	ss->root = &rootnode;
 | |
| 
 | |
| 	/* our new subsystem will be attached to the dummy hierarchy. */
 | |
| 	init_cgroup_css(css, ss, dummytop);
 | |
| 	/* init_idr must be after init_cgroup_css because it sets css->id. */
 | |
| 	if (ss->use_id) {
 | |
| 		int ret = cgroup_init_idr(ss, css);
 | |
| 		if (ret) {
 | |
| 			dummytop->subsys[ss->subsys_id] = NULL;
 | |
| 			ss->destroy(ss, dummytop);
 | |
| 			subsys[i] = NULL;
 | |
| 			mutex_unlock(&cgroup_mutex);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we need to entangle the css into the existing css_sets. unlike
 | |
| 	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
 | |
| 	 * will need a new pointer to it; done by iterating the css_set_table.
 | |
| 	 * furthermore, modifying the existing css_sets will corrupt the hash
 | |
| 	 * table state, so each changed css_set will need its hash recomputed.
 | |
| 	 * this is all done under the css_set_lock.
 | |
| 	 */
 | |
| 	write_lock(&css_set_lock);
 | |
| 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
 | |
| 		struct css_set *cg;
 | |
| 		struct hlist_node *node, *tmp;
 | |
| 		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
 | |
| 
 | |
| 		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
 | |
| 			/* skip entries that we already rehashed */
 | |
| 			if (cg->subsys[ss->subsys_id])
 | |
| 				continue;
 | |
| 			/* remove existing entry */
 | |
| 			hlist_del(&cg->hlist);
 | |
| 			/* set new value */
 | |
| 			cg->subsys[ss->subsys_id] = css;
 | |
| 			/* recompute hash and restore entry */
 | |
| 			new_bucket = css_set_hash(cg->subsys);
 | |
| 			hlist_add_head(&cg->hlist, new_bucket);
 | |
| 		}
 | |
| 	}
 | |
| 	write_unlock(&css_set_lock);
 | |
| 
 | |
| 	mutex_init(&ss->hierarchy_mutex);
 | |
| 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
 | |
| 	ss->active = 1;
 | |
| 
 | |
| 	/* success! */
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_load_subsys);
 | |
| 
 | |
| /**
 | |
|  * cgroup_unload_subsys: unload a modular subsystem
 | |
|  * @ss: the subsystem to unload
 | |
|  *
 | |
|  * This function should be called in a modular subsystem's exitcall. When this
 | |
|  * function is invoked, the refcount on the subsystem's module will be 0, so
 | |
|  * the subsystem will not be attached to any hierarchy.
 | |
|  */
 | |
| void cgroup_unload_subsys(struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct hlist_head *hhead;
 | |
| 
 | |
| 	BUG_ON(ss->module == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * we shouldn't be called if the subsystem is in use, and the use of
 | |
| 	 * try_module_get in parse_cgroupfs_options should ensure that it
 | |
| 	 * doesn't start being used while we're killing it off.
 | |
| 	 */
 | |
| 	BUG_ON(ss->root != &rootnode);
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	/* deassign the subsys_id */
 | |
| 	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
 | |
| 	subsys[ss->subsys_id] = NULL;
 | |
| 
 | |
| 	/* remove subsystem from rootnode's list of subsystems */
 | |
| 	list_del_init(&ss->sibling);
 | |
| 
 | |
| 	/*
 | |
| 	 * disentangle the css from all css_sets attached to the dummytop. as
 | |
| 	 * in loading, we need to pay our respects to the hashtable gods.
 | |
| 	 */
 | |
| 	write_lock(&css_set_lock);
 | |
| 	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
 | |
| 		struct css_set *cg = link->cg;
 | |
| 
 | |
| 		hlist_del(&cg->hlist);
 | |
| 		BUG_ON(!cg->subsys[ss->subsys_id]);
 | |
| 		cg->subsys[ss->subsys_id] = NULL;
 | |
| 		hhead = css_set_hash(cg->subsys);
 | |
| 		hlist_add_head(&cg->hlist, hhead);
 | |
| 	}
 | |
| 	write_unlock(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * remove subsystem's css from the dummytop and free it - need to free
 | |
| 	 * before marking as null because ss->destroy needs the cgrp->subsys
 | |
| 	 * pointer to find their state. note that this also takes care of
 | |
| 	 * freeing the css_id.
 | |
| 	 */
 | |
| 	ss->destroy(ss, dummytop);
 | |
| 	dummytop->subsys[ss->subsys_id] = NULL;
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
 | |
| 
 | |
| /**
 | |
|  * cgroup_init_early - cgroup initialization at system boot
 | |
|  *
 | |
|  * Initialize cgroups at system boot, and initialize any
 | |
|  * subsystems that request early init.
 | |
|  */
 | |
| int __init cgroup_init_early(void)
 | |
| {
 | |
| 	int i;
 | |
| 	atomic_set(&init_css_set.refcount, 1);
 | |
| 	INIT_LIST_HEAD(&init_css_set.cg_links);
 | |
| 	INIT_LIST_HEAD(&init_css_set.tasks);
 | |
| 	INIT_HLIST_NODE(&init_css_set.hlist);
 | |
| 	css_set_count = 1;
 | |
| 	init_cgroup_root(&rootnode);
 | |
| 	root_count = 1;
 | |
| 	init_task.cgroups = &init_css_set;
 | |
| 
 | |
| 	init_css_set_link.cg = &init_css_set;
 | |
| 	init_css_set_link.cgrp = dummytop;
 | |
| 	list_add(&init_css_set_link.cgrp_link_list,
 | |
| 		 &rootnode.top_cgroup.css_sets);
 | |
| 	list_add(&init_css_set_link.cg_link_list,
 | |
| 		 &init_css_set.cg_links);
 | |
| 
 | |
| 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
 | |
| 		INIT_HLIST_HEAD(&css_set_table[i]);
 | |
| 
 | |
| 	/* at bootup time, we don't worry about modular subsystems */
 | |
| 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 
 | |
| 		BUG_ON(!ss->name);
 | |
| 		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
 | |
| 		BUG_ON(!ss->create);
 | |
| 		BUG_ON(!ss->destroy);
 | |
| 		if (ss->subsys_id != i) {
 | |
| 			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
 | |
| 			       ss->name, ss->subsys_id);
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		if (ss->early_init)
 | |
| 			cgroup_init_subsys(ss);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_init - cgroup initialization
 | |
|  *
 | |
|  * Register cgroup filesystem and /proc file, and initialize
 | |
|  * any subsystems that didn't request early init.
 | |
|  */
 | |
| int __init cgroup_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	int i;
 | |
| 	struct hlist_head *hhead;
 | |
| 
 | |
| 	err = bdi_init(&cgroup_backing_dev_info);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* at bootup time, we don't worry about modular subsystems */
 | |
| 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		if (!ss->early_init)
 | |
| 			cgroup_init_subsys(ss);
 | |
| 		if (ss->use_id)
 | |
| 			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
 | |
| 	}
 | |
| 
 | |
| 	/* Add init_css_set to the hash table */
 | |
| 	hhead = css_set_hash(init_css_set.subsys);
 | |
| 	hlist_add_head(&init_css_set.hlist, hhead);
 | |
| 	BUG_ON(!init_root_id(&rootnode));
 | |
| 
 | |
| 	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
 | |
| 	if (!cgroup_kobj) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = register_filesystem(&cgroup_fs_type);
 | |
| 	if (err < 0) {
 | |
| 		kobject_put(cgroup_kobj);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
 | |
| 
 | |
| out:
 | |
| 	if (err)
 | |
| 		bdi_destroy(&cgroup_backing_dev_info);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * proc_cgroup_show()
 | |
|  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 | |
|  *  - Used for /proc/<pid>/cgroup.
 | |
|  *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 | |
|  *    doesn't really matter if tsk->cgroup changes after we read it,
 | |
|  *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
 | |
|  *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 | |
|  *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 | |
|  *    cgroup to top_cgroup.
 | |
|  */
 | |
| 
 | |
| /* TODO: Use a proper seq_file iterator */
 | |
| static int proc_cgroup_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	struct task_struct *tsk;
 | |
| 	char *buf;
 | |
| 	int retval;
 | |
| 	struct cgroupfs_root *root;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	pid = m->private;
 | |
| 	tsk = get_pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!tsk)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = 0;
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	for_each_active_root(root) {
 | |
| 		struct cgroup_subsys *ss;
 | |
| 		struct cgroup *cgrp;
 | |
| 		int count = 0;
 | |
| 
 | |
| 		seq_printf(m, "%d:", root->hierarchy_id);
 | |
| 		for_each_subsys(root, ss)
 | |
| 			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
 | |
| 		if (strlen(root->name))
 | |
| 			seq_printf(m, "%sname=%s", count ? "," : "",
 | |
| 				   root->name);
 | |
| 		seq_putc(m, ':');
 | |
| 		cgrp = task_cgroup_from_root(tsk, root);
 | |
| 		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
 | |
| 		if (retval < 0)
 | |
| 			goto out_unlock;
 | |
| 		seq_puts(m, buf);
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	put_task_struct(tsk);
 | |
| out_free:
 | |
| 	kfree(buf);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cgroup_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct pid *pid = PROC_I(inode)->pid;
 | |
| 	return single_open(file, proc_cgroup_show, pid);
 | |
| }
 | |
| 
 | |
| const struct file_operations proc_cgroup_operations = {
 | |
| 	.open		= cgroup_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| /* Display information about each subsystem and each hierarchy */
 | |
| static int proc_cgroupstats_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 | |
| 	/*
 | |
| 	 * ideally we don't want subsystems moving around while we do this.
 | |
| 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 | |
| 	 * subsys/hierarchy state.
 | |
| 	 */
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 | |
| 		struct cgroup_subsys *ss = subsys[i];
 | |
| 		if (ss == NULL)
 | |
| 			continue;
 | |
| 		seq_printf(m, "%s\t%d\t%d\t%d\n",
 | |
| 			   ss->name, ss->root->hierarchy_id,
 | |
| 			   ss->root->number_of_cgroups, !ss->disabled);
 | |
| 	}
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroupstats_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, proc_cgroupstats_show, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_cgroupstats_operations = {
 | |
| 	.open = cgroupstats_open,
 | |
| 	.read = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = single_release,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cgroup_fork - attach newly forked task to its parents cgroup.
 | |
|  * @child: pointer to task_struct of forking parent process.
 | |
|  *
 | |
|  * Description: A task inherits its parent's cgroup at fork().
 | |
|  *
 | |
|  * A pointer to the shared css_set was automatically copied in
 | |
|  * fork.c by dup_task_struct().  However, we ignore that copy, since
 | |
|  * it was not made under the protection of RCU, cgroup_mutex or
 | |
|  * threadgroup_change_begin(), so it might no longer be a valid
 | |
|  * cgroup pointer.  cgroup_attach_task() might have already changed
 | |
|  * current->cgroups, allowing the previously referenced cgroup
 | |
|  * group to be removed and freed.
 | |
|  *
 | |
|  * Outside the pointer validity we also need to process the css_set
 | |
|  * inheritance between threadgoup_change_begin() and
 | |
|  * threadgoup_change_end(), this way there is no leak in any process
 | |
|  * wide migration performed by cgroup_attach_proc() that could otherwise
 | |
|  * miss a thread because it is too early or too late in the fork stage.
 | |
|  *
 | |
|  * At the point that cgroup_fork() is called, 'current' is the parent
 | |
|  * task, and the passed argument 'child' points to the child task.
 | |
|  */
 | |
| void cgroup_fork(struct task_struct *child)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't need to task_lock() current because current->cgroups
 | |
| 	 * can't be changed concurrently here. The parent obviously hasn't
 | |
| 	 * exited and called cgroup_exit(), and we are synchronized against
 | |
| 	 * cgroup migration through threadgroup_change_begin().
 | |
| 	 */
 | |
| 	child->cgroups = current->cgroups;
 | |
| 	get_css_set(child->cgroups);
 | |
| 	INIT_LIST_HEAD(&child->cg_list);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_fork_callbacks - run fork callbacks
 | |
|  * @child: the new task
 | |
|  *
 | |
|  * Called on a new task very soon before adding it to the
 | |
|  * tasklist. No need to take any locks since no-one can
 | |
|  * be operating on this task.
 | |
|  */
 | |
| void cgroup_fork_callbacks(struct task_struct *child)
 | |
| {
 | |
| 	if (need_forkexit_callback) {
 | |
| 		int i;
 | |
| 		/*
 | |
| 		 * forkexit callbacks are only supported for builtin
 | |
| 		 * subsystems, and the builtin section of the subsys array is
 | |
| 		 * immutable, so we don't need to lock the subsys array here.
 | |
| 		 */
 | |
| 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
 | |
| 			struct cgroup_subsys *ss = subsys[i];
 | |
| 			if (ss->fork)
 | |
| 				ss->fork(ss, child);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_post_fork - called on a new task after adding it to the task list
 | |
|  * @child: the task in question
 | |
|  *
 | |
|  * Adds the task to the list running through its css_set if necessary.
 | |
|  * Has to be after the task is visible on the task list in case we race
 | |
|  * with the first call to cgroup_iter_start() - to guarantee that the
 | |
|  * new task ends up on its list.
 | |
|  */
 | |
| void cgroup_post_fork(struct task_struct *child)
 | |
| {
 | |
| 	if (use_task_css_set_links) {
 | |
| 		write_lock(&css_set_lock);
 | |
| 		if (list_empty(&child->cg_list)) {
 | |
| 			/*
 | |
| 			 * It's safe to use child->cgroups without task_lock()
 | |
| 			 * here because we are protected through
 | |
| 			 * threadgroup_change_begin() against concurrent
 | |
| 			 * css_set change in cgroup_task_migrate(). Also
 | |
| 			 * the task can't exit at that point until
 | |
| 			 * wake_up_new_task() is called, so we are protected
 | |
| 			 * against cgroup_exit() setting child->cgroup to
 | |
| 			 * init_css_set.
 | |
| 			 */
 | |
| 			list_add(&child->cg_list, &child->cgroups->tasks);
 | |
| 		}
 | |
| 		write_unlock(&css_set_lock);
 | |
| 	}
 | |
| }
 | |
| /**
 | |
|  * cgroup_exit - detach cgroup from exiting task
 | |
|  * @tsk: pointer to task_struct of exiting process
 | |
|  * @run_callback: run exit callbacks?
 | |
|  *
 | |
|  * Description: Detach cgroup from @tsk and release it.
 | |
|  *
 | |
|  * Note that cgroups marked notify_on_release force every task in
 | |
|  * them to take the global cgroup_mutex mutex when exiting.
 | |
|  * This could impact scaling on very large systems.  Be reluctant to
 | |
|  * use notify_on_release cgroups where very high task exit scaling
 | |
|  * is required on large systems.
 | |
|  *
 | |
|  * the_top_cgroup_hack:
 | |
|  *
 | |
|  *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 | |
|  *
 | |
|  *    We call cgroup_exit() while the task is still competent to
 | |
|  *    handle notify_on_release(), then leave the task attached to the
 | |
|  *    root cgroup in each hierarchy for the remainder of its exit.
 | |
|  *
 | |
|  *    To do this properly, we would increment the reference count on
 | |
|  *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 | |
|  *    code we would add a second cgroup function call, to drop that
 | |
|  *    reference.  This would just create an unnecessary hot spot on
 | |
|  *    the top_cgroup reference count, to no avail.
 | |
|  *
 | |
|  *    Normally, holding a reference to a cgroup without bumping its
 | |
|  *    count is unsafe.   The cgroup could go away, or someone could
 | |
|  *    attach us to a different cgroup, decrementing the count on
 | |
|  *    the first cgroup that we never incremented.  But in this case,
 | |
|  *    top_cgroup isn't going away, and either task has PF_EXITING set,
 | |
|  *    which wards off any cgroup_attach_task() attempts, or task is a failed
 | |
|  *    fork, never visible to cgroup_attach_task.
 | |
|  */
 | |
| void cgroup_exit(struct task_struct *tsk, int run_callbacks)
 | |
| {
 | |
| 	struct css_set *cg;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlink from the css_set task list if necessary.
 | |
| 	 * Optimistically check cg_list before taking
 | |
| 	 * css_set_lock
 | |
| 	 */
 | |
| 	if (!list_empty(&tsk->cg_list)) {
 | |
| 		write_lock(&css_set_lock);
 | |
| 		if (!list_empty(&tsk->cg_list))
 | |
| 			list_del_init(&tsk->cg_list);
 | |
| 		write_unlock(&css_set_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Reassign the task to the init_css_set. */
 | |
| 	task_lock(tsk);
 | |
| 	cg = tsk->cgroups;
 | |
| 	tsk->cgroups = &init_css_set;
 | |
| 
 | |
| 	if (run_callbacks && need_forkexit_callback) {
 | |
| 		/*
 | |
| 		 * modular subsystems can't use callbacks, so no need to lock
 | |
| 		 * the subsys array
 | |
| 		 */
 | |
| 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
 | |
| 			struct cgroup_subsys *ss = subsys[i];
 | |
| 			if (ss->exit) {
 | |
| 				struct cgroup *old_cgrp =
 | |
| 					rcu_dereference_raw(cg->subsys[i])->cgroup;
 | |
| 				struct cgroup *cgrp = task_cgroup(tsk, i);
 | |
| 				ss->exit(ss, cgrp, old_cgrp, tsk);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	task_unlock(tsk);
 | |
| 
 | |
| 	if (cg)
 | |
| 		put_css_set_taskexit(cg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
 | |
|  * @cgrp: the cgroup in question
 | |
|  * @task: the task in question
 | |
|  *
 | |
|  * See if @cgrp is a descendant of @task's cgroup in the appropriate
 | |
|  * hierarchy.
 | |
|  *
 | |
|  * If we are sending in dummytop, then presumably we are creating
 | |
|  * the top cgroup in the subsystem.
 | |
|  *
 | |
|  * Called only by the ns (nsproxy) cgroup.
 | |
|  */
 | |
| int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct cgroup *target;
 | |
| 
 | |
| 	if (cgrp == dummytop)
 | |
| 		return 1;
 | |
| 
 | |
| 	target = task_cgroup_from_root(task, cgrp->root);
 | |
| 	while (cgrp != target && cgrp!= cgrp->top_cgroup)
 | |
| 		cgrp = cgrp->parent;
 | |
| 	ret = (cgrp == target);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void check_for_release(struct cgroup *cgrp)
 | |
| {
 | |
| 	/* All of these checks rely on RCU to keep the cgroup
 | |
| 	 * structure alive */
 | |
| 	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
 | |
| 	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
 | |
| 		/* Control Group is currently removeable. If it's not
 | |
| 		 * already queued for a userspace notification, queue
 | |
| 		 * it now */
 | |
| 		int need_schedule_work = 0;
 | |
| 		raw_spin_lock(&release_list_lock);
 | |
| 		if (!cgroup_is_removed(cgrp) &&
 | |
| 		    list_empty(&cgrp->release_list)) {
 | |
| 			list_add(&cgrp->release_list, &release_list);
 | |
| 			need_schedule_work = 1;
 | |
| 		}
 | |
| 		raw_spin_unlock(&release_list_lock);
 | |
| 		if (need_schedule_work)
 | |
| 			schedule_work(&release_agent_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Caller must verify that the css is not for root cgroup */
 | |
| void __css_put(struct cgroup_subsys_state *css, int count)
 | |
| {
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 	int val;
 | |
| 	rcu_read_lock();
 | |
| 	val = atomic_sub_return(count, &css->refcnt);
 | |
| 	if (val == 1) {
 | |
| 		if (notify_on_release(cgrp)) {
 | |
| 			set_bit(CGRP_RELEASABLE, &cgrp->flags);
 | |
| 			check_for_release(cgrp);
 | |
| 		}
 | |
| 		cgroup_wakeup_rmdir_waiter(cgrp);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	WARN_ON_ONCE(val < 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__css_put);
 | |
| 
 | |
| /*
 | |
|  * Notify userspace when a cgroup is released, by running the
 | |
|  * configured release agent with the name of the cgroup (path
 | |
|  * relative to the root of cgroup file system) as the argument.
 | |
|  *
 | |
|  * Most likely, this user command will try to rmdir this cgroup.
 | |
|  *
 | |
|  * This races with the possibility that some other task will be
 | |
|  * attached to this cgroup before it is removed, or that some other
 | |
|  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 | |
|  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 | |
|  * unused, and this cgroup will be reprieved from its death sentence,
 | |
|  * to continue to serve a useful existence.  Next time it's released,
 | |
|  * we will get notified again, if it still has 'notify_on_release' set.
 | |
|  *
 | |
|  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 | |
|  * means only wait until the task is successfully execve()'d.  The
 | |
|  * separate release agent task is forked by call_usermodehelper(),
 | |
|  * then control in this thread returns here, without waiting for the
 | |
|  * release agent task.  We don't bother to wait because the caller of
 | |
|  * this routine has no use for the exit status of the release agent
 | |
|  * task, so no sense holding our caller up for that.
 | |
|  */
 | |
| static void cgroup_release_agent(struct work_struct *work)
 | |
| {
 | |
| 	BUG_ON(work != &release_agent_work);
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	raw_spin_lock(&release_list_lock);
 | |
| 	while (!list_empty(&release_list)) {
 | |
| 		char *argv[3], *envp[3];
 | |
| 		int i;
 | |
| 		char *pathbuf = NULL, *agentbuf = NULL;
 | |
| 		struct cgroup *cgrp = list_entry(release_list.next,
 | |
| 						    struct cgroup,
 | |
| 						    release_list);
 | |
| 		list_del_init(&cgrp->release_list);
 | |
| 		raw_spin_unlock(&release_list_lock);
 | |
| 		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 		if (!pathbuf)
 | |
| 			goto continue_free;
 | |
| 		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
 | |
| 			goto continue_free;
 | |
| 		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 | |
| 		if (!agentbuf)
 | |
| 			goto continue_free;
 | |
| 
 | |
| 		i = 0;
 | |
| 		argv[i++] = agentbuf;
 | |
| 		argv[i++] = pathbuf;
 | |
| 		argv[i] = NULL;
 | |
| 
 | |
| 		i = 0;
 | |
| 		/* minimal command environment */
 | |
| 		envp[i++] = "HOME=/";
 | |
| 		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 | |
| 		envp[i] = NULL;
 | |
| 
 | |
| 		/* Drop the lock while we invoke the usermode helper,
 | |
| 		 * since the exec could involve hitting disk and hence
 | |
| 		 * be a slow process */
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 | |
| 		mutex_lock(&cgroup_mutex);
 | |
|  continue_free:
 | |
| 		kfree(pathbuf);
 | |
| 		kfree(agentbuf);
 | |
| 		raw_spin_lock(&release_list_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock(&release_list_lock);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| }
 | |
| 
 | |
| static int __init cgroup_disable(char *str)
 | |
| {
 | |
| 	int i;
 | |
| 	char *token;
 | |
| 
 | |
| 	while ((token = strsep(&str, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * cgroup_disable, being at boot time, can't know about module
 | |
| 		 * subsystems, so we don't worry about them.
 | |
| 		 */
 | |
| 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
 | |
| 			struct cgroup_subsys *ss = subsys[i];
 | |
| 
 | |
| 			if (!strcmp(token, ss->name)) {
 | |
| 				ss->disabled = 1;
 | |
| 				printk(KERN_INFO "Disabling %s control group"
 | |
| 					" subsystem\n", ss->name);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cgroup_disable=", cgroup_disable);
 | |
| 
 | |
| /*
 | |
|  * Functons for CSS ID.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *To get ID other than 0, this should be called when !cgroup_is_removed().
 | |
|  */
 | |
| unsigned short css_id(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct css_id *cssid;
 | |
| 
 | |
| 	/*
 | |
| 	 * This css_id() can return correct value when somone has refcnt
 | |
| 	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
 | |
| 	 * it's unchanged until freed.
 | |
| 	 */
 | |
| 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
 | |
| 
 | |
| 	if (cssid)
 | |
| 		return cssid->id;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(css_id);
 | |
| 
 | |
| unsigned short css_depth(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct css_id *cssid;
 | |
| 
 | |
| 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
 | |
| 
 | |
| 	if (cssid)
 | |
| 		return cssid->depth;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(css_depth);
 | |
| 
 | |
| /**
 | |
|  *  css_is_ancestor - test "root" css is an ancestor of "child"
 | |
|  * @child: the css to be tested.
 | |
|  * @root: the css supporsed to be an ancestor of the child.
 | |
|  *
 | |
|  * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 | |
|  * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 | |
|  * But, considering usual usage, the csses should be valid objects after test.
 | |
|  * Assuming that the caller will do some action to the child if this returns
 | |
|  * returns true, the caller must take "child";s reference count.
 | |
|  * If "child" is valid object and this returns true, "root" is valid, too.
 | |
|  */
 | |
| 
 | |
| bool css_is_ancestor(struct cgroup_subsys_state *child,
 | |
| 		    const struct cgroup_subsys_state *root)
 | |
| {
 | |
| 	struct css_id *child_id;
 | |
| 	struct css_id *root_id;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	child_id  = rcu_dereference(child->id);
 | |
| 	root_id = rcu_dereference(root->id);
 | |
| 	if (!child_id
 | |
| 	    || !root_id
 | |
| 	    || (child_id->depth < root_id->depth)
 | |
| 	    || (child_id->stack[root_id->depth] != root_id->id))
 | |
| 		ret = false;
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct css_id *id = css->id;
 | |
| 	/* When this is called before css_id initialization, id can be NULL */
 | |
| 	if (!id)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(!ss->use_id);
 | |
| 
 | |
| 	rcu_assign_pointer(id->css, NULL);
 | |
| 	rcu_assign_pointer(css->id, NULL);
 | |
| 	write_lock(&ss->id_lock);
 | |
| 	idr_remove(&ss->idr, id->id);
 | |
| 	write_unlock(&ss->id_lock);
 | |
| 	kfree_rcu(id, rcu_head);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_css_id);
 | |
| 
 | |
| /*
 | |
|  * This is called by init or create(). Then, calls to this function are
 | |
|  * always serialized (By cgroup_mutex() at create()).
 | |
|  */
 | |
| 
 | |
| static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
 | |
| {
 | |
| 	struct css_id *newid;
 | |
| 	int myid, error, size;
 | |
| 
 | |
| 	BUG_ON(!ss->use_id);
 | |
| 
 | |
| 	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
 | |
| 	newid = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!newid)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	/* get id */
 | |
| 	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 	write_lock(&ss->id_lock);
 | |
| 	/* Don't use 0. allocates an ID of 1-65535 */
 | |
| 	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
 | |
| 	write_unlock(&ss->id_lock);
 | |
| 
 | |
| 	/* Returns error when there are no free spaces for new ID.*/
 | |
| 	if (error) {
 | |
| 		error = -ENOSPC;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 	if (myid > CSS_ID_MAX)
 | |
| 		goto remove_idr;
 | |
| 
 | |
| 	newid->id = myid;
 | |
| 	newid->depth = depth;
 | |
| 	return newid;
 | |
| remove_idr:
 | |
| 	error = -ENOSPC;
 | |
| 	write_lock(&ss->id_lock);
 | |
| 	idr_remove(&ss->idr, myid);
 | |
| 	write_unlock(&ss->id_lock);
 | |
| err_out:
 | |
| 	kfree(newid);
 | |
| 	return ERR_PTR(error);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
 | |
| 					    struct cgroup_subsys_state *rootcss)
 | |
| {
 | |
| 	struct css_id *newid;
 | |
| 
 | |
| 	rwlock_init(&ss->id_lock);
 | |
| 	idr_init(&ss->idr);
 | |
| 
 | |
| 	newid = get_new_cssid(ss, 0);
 | |
| 	if (IS_ERR(newid))
 | |
| 		return PTR_ERR(newid);
 | |
| 
 | |
| 	newid->stack[0] = newid->id;
 | |
| 	newid->css = rootcss;
 | |
| 	rootcss->id = newid;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
 | |
| 			struct cgroup *child)
 | |
| {
 | |
| 	int subsys_id, i, depth = 0;
 | |
| 	struct cgroup_subsys_state *parent_css, *child_css;
 | |
| 	struct css_id *child_id, *parent_id;
 | |
| 
 | |
| 	subsys_id = ss->subsys_id;
 | |
| 	parent_css = parent->subsys[subsys_id];
 | |
| 	child_css = child->subsys[subsys_id];
 | |
| 	parent_id = parent_css->id;
 | |
| 	depth = parent_id->depth + 1;
 | |
| 
 | |
| 	child_id = get_new_cssid(ss, depth);
 | |
| 	if (IS_ERR(child_id))
 | |
| 		return PTR_ERR(child_id);
 | |
| 
 | |
| 	for (i = 0; i < depth; i++)
 | |
| 		child_id->stack[i] = parent_id->stack[i];
 | |
| 	child_id->stack[depth] = child_id->id;
 | |
| 	/*
 | |
| 	 * child_id->css pointer will be set after this cgroup is available
 | |
| 	 * see cgroup_populate_dir()
 | |
| 	 */
 | |
| 	rcu_assign_pointer(child_css->id, child_id);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_lookup - lookup css by id
 | |
|  * @ss: cgroup subsys to be looked into.
 | |
|  * @id: the id
 | |
|  *
 | |
|  * Returns pointer to cgroup_subsys_state if there is valid one with id.
 | |
|  * NULL if not. Should be called under rcu_read_lock()
 | |
|  */
 | |
| struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
 | |
| {
 | |
| 	struct css_id *cssid = NULL;
 | |
| 
 | |
| 	BUG_ON(!ss->use_id);
 | |
| 	cssid = idr_find(&ss->idr, id);
 | |
| 
 | |
| 	if (unlikely(!cssid))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rcu_dereference(cssid->css);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(css_lookup);
 | |
| 
 | |
| /**
 | |
|  * css_get_next - lookup next cgroup under specified hierarchy.
 | |
|  * @ss: pointer to subsystem
 | |
|  * @id: current position of iteration.
 | |
|  * @root: pointer to css. search tree under this.
 | |
|  * @foundid: position of found object.
 | |
|  *
 | |
|  * Search next css under the specified hierarchy of rootid. Calling under
 | |
|  * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 | |
|  */
 | |
| struct cgroup_subsys_state *
 | |
| css_get_next(struct cgroup_subsys *ss, int id,
 | |
| 	     struct cgroup_subsys_state *root, int *foundid)
 | |
| {
 | |
| 	struct cgroup_subsys_state *ret = NULL;
 | |
| 	struct css_id *tmp;
 | |
| 	int tmpid;
 | |
| 	int rootid = css_id(root);
 | |
| 	int depth = css_depth(root);
 | |
| 
 | |
| 	if (!rootid)
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(!ss->use_id);
 | |
| 	/* fill start point for scan */
 | |
| 	tmpid = id;
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * scan next entry from bitmap(tree), tmpid is updated after
 | |
| 		 * idr_get_next().
 | |
| 		 */
 | |
| 		read_lock(&ss->id_lock);
 | |
| 		tmp = idr_get_next(&ss->idr, &tmpid);
 | |
| 		read_unlock(&ss->id_lock);
 | |
| 
 | |
| 		if (!tmp)
 | |
| 			break;
 | |
| 		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
 | |
| 			ret = rcu_dereference(tmp->css);
 | |
| 			if (ret) {
 | |
| 				*foundid = tmpid;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		/* continue to scan from next id */
 | |
| 		tmpid = tmpid + 1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get corresponding css from file open on cgroupfs directory
 | |
|  */
 | |
| struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct inode *inode;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	inode = f->f_dentry->d_inode;
 | |
| 	/* check in cgroup filesystem dir */
 | |
| 	if (inode->i_op != &cgroup_dir_inode_operations)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* get cgroup */
 | |
| 	cgrp = __d_cgrp(f->f_dentry);
 | |
| 	css = cgrp->subsys[id];
 | |
| 	return css ? css : ERR_PTR(-ENOENT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_DEBUG
 | |
| static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
 | |
| 						   struct cgroup *cont)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
 | |
| 
 | |
| 	if (!css)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	return css;
 | |
| }
 | |
| 
 | |
| static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	kfree(cont->subsys[debug_subsys_id]);
 | |
| }
 | |
| 
 | |
| static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return atomic_read(&cont->count);
 | |
| }
 | |
| 
 | |
| static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return cgroup_task_count(cont);
 | |
| }
 | |
| 
 | |
| static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return (u64)(unsigned long)current->cgroups;
 | |
| }
 | |
| 
 | |
| static u64 current_css_set_refcount_read(struct cgroup *cont,
 | |
| 					   struct cftype *cft)
 | |
| {
 | |
| 	u64 count;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	count = atomic_read(¤t->cgroups->refcount);
 | |
| 	rcu_read_unlock();
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int current_css_set_cg_links_read(struct cgroup *cont,
 | |
| 					 struct cftype *cft,
 | |
| 					 struct seq_file *seq)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 	struct css_set *cg;
 | |
| 
 | |
| 	read_lock(&css_set_lock);
 | |
| 	rcu_read_lock();
 | |
| 	cg = rcu_dereference(current->cgroups);
 | |
| 	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
 | |
| 		struct cgroup *c = link->cgrp;
 | |
| 		const char *name;
 | |
| 
 | |
| 		if (c->dentry)
 | |
| 			name = c->dentry->d_name.name;
 | |
| 		else
 | |
| 			name = "?";
 | |
| 		seq_printf(seq, "Root %d group %s\n",
 | |
| 			   c->root->hierarchy_id, name);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	read_unlock(&css_set_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MAX_TASKS_SHOWN_PER_CSS 25
 | |
| static int cgroup_css_links_read(struct cgroup *cont,
 | |
| 				 struct cftype *cft,
 | |
| 				 struct seq_file *seq)
 | |
| {
 | |
| 	struct cg_cgroup_link *link;
 | |
| 
 | |
| 	read_lock(&css_set_lock);
 | |
| 	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
 | |
| 		struct css_set *cg = link->cg;
 | |
| 		struct task_struct *task;
 | |
| 		int count = 0;
 | |
| 		seq_printf(seq, "css_set %p\n", cg);
 | |
| 		list_for_each_entry(task, &cg->tasks, cg_list) {
 | |
| 			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
 | |
| 				seq_puts(seq, "  ...\n");
 | |
| 				break;
 | |
| 			} else {
 | |
| 				seq_printf(seq, "  task %d\n",
 | |
| 					   task_pid_vnr(task));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&css_set_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
 | |
| }
 | |
| 
 | |
| static struct cftype debug_files[] =  {
 | |
| 	{
 | |
| 		.name = "cgroup_refcount",
 | |
| 		.read_u64 = cgroup_refcount_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "taskcount",
 | |
| 		.read_u64 = debug_taskcount_read,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "current_css_set",
 | |
| 		.read_u64 = current_css_set_read,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "current_css_set_refcount",
 | |
| 		.read_u64 = current_css_set_refcount_read,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "current_css_set_cg_links",
 | |
| 		.read_seq_string = current_css_set_cg_links_read,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cgroup_css_links",
 | |
| 		.read_seq_string = cgroup_css_links_read,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "releasable",
 | |
| 		.read_u64 = releasable_read,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	return cgroup_add_files(cont, ss, debug_files,
 | |
| 				ARRAY_SIZE(debug_files));
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys debug_subsys = {
 | |
| 	.name = "debug",
 | |
| 	.create = debug_create,
 | |
| 	.destroy = debug_destroy,
 | |
| 	.populate = debug_populate,
 | |
| 	.subsys_id = debug_subsys_id,
 | |
| };
 | |
| #endif /* CONFIG_CGROUP_DEBUG */
 |