1976 lines
		
	
	
	
		
			47 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1976 lines
		
	
	
	
		
			47 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/drivers/video/cyber2000fb.c
 | |
|  *
 | |
|  *  Copyright (C) 1998-2002 Russell King
 | |
|  *
 | |
|  *  MIPS and 50xx clock support
 | |
|  *  Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
 | |
|  *
 | |
|  *  32 bit support, text color and panning fixes for modes != 8 bit
 | |
|  *  Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
 | |
|  *
 | |
|  * Based on cyberfb.c.
 | |
|  *
 | |
|  * Note that we now use the new fbcon fix, var and cmap scheme.  We do
 | |
|  * still have to check which console is the currently displayed one
 | |
|  * however, especially for the colourmap stuff.
 | |
|  *
 | |
|  * We also use the new hotplug PCI subsystem.  I'm not sure if there
 | |
|  * are any such cards, but I'm erring on the side of caution.  We don't
 | |
|  * want to go pop just because someone does have one.
 | |
|  *
 | |
|  * Note that this doesn't work fully in the case of multiple CyberPro
 | |
|  * cards with grabbers.  We currently can only attach to the first
 | |
|  * CyberPro card found.
 | |
|  *
 | |
|  * When we're in truecolour mode, we power down the LUT RAM as a power
 | |
|  * saving feature.  Also, when we enter any of the powersaving modes
 | |
|  * (except soft blanking) we power down the RAMDACs.  This saves about
 | |
|  * 1W, which is roughly 8% of the power consumption of a NetWinder
 | |
|  * (which, incidentally, is about the same saving as a 2.5in hard disk
 | |
|  * entering standby mode.)
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/fb.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/i2c-algo-bit.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/system.h>
 | |
| 
 | |
| #ifdef __arm__
 | |
| #include <asm/mach-types.h>
 | |
| #endif
 | |
| 
 | |
| #include "cyber2000fb.h"
 | |
| 
 | |
| struct cfb_info {
 | |
| 	struct fb_info		fb;
 | |
| 	struct display_switch	*dispsw;
 | |
| 	struct display		*display;
 | |
| 	unsigned char		__iomem *region;
 | |
| 	unsigned char		__iomem *regs;
 | |
| 	u_int			id;
 | |
| 	u_int			irq;
 | |
| 	int			func_use_count;
 | |
| 	u_long			ref_ps;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clock divisors
 | |
| 	 */
 | |
| 	u_int			divisors[4];
 | |
| 
 | |
| 	struct {
 | |
| 		u8 red, green, blue;
 | |
| 	} palette[NR_PALETTE];
 | |
| 
 | |
| 	u_char			mem_ctl1;
 | |
| 	u_char			mem_ctl2;
 | |
| 	u_char			mclk_mult;
 | |
| 	u_char			mclk_div;
 | |
| 	/*
 | |
| 	 * RAMDAC control register is both of these or'ed together
 | |
| 	 */
 | |
| 	u_char			ramdac_ctrl;
 | |
| 	u_char			ramdac_powerdown;
 | |
| 
 | |
| 	u32			pseudo_palette[16];
 | |
| 
 | |
| 	spinlock_t		reg_b0_lock;
 | |
| 
 | |
| #ifdef CONFIG_FB_CYBER2000_DDC
 | |
| 	bool			ddc_registered;
 | |
| 	struct i2c_adapter	ddc_adapter;
 | |
| 	struct i2c_algo_bit_data	ddc_algo;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FB_CYBER2000_I2C
 | |
| 	struct i2c_adapter	i2c_adapter;
 | |
| 	struct i2c_algo_bit_data i2c_algo;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static char *default_font = "Acorn8x8";
 | |
| module_param(default_font, charp, 0);
 | |
| MODULE_PARM_DESC(default_font, "Default font name");
 | |
| 
 | |
| /*
 | |
|  * Our access methods.
 | |
|  */
 | |
| #define cyber2000fb_writel(val, reg, cfb)	writel(val, (cfb)->regs + (reg))
 | |
| #define cyber2000fb_writew(val, reg, cfb)	writew(val, (cfb)->regs + (reg))
 | |
| #define cyber2000fb_writeb(val, reg, cfb)	writeb(val, (cfb)->regs + (reg))
 | |
| 
 | |
| #define cyber2000fb_readb(reg, cfb)		readb((cfb)->regs + (reg))
 | |
| 
 | |
| static inline void
 | |
| cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
 | |
| }
 | |
| 
 | |
| static inline unsigned int
 | |
| cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_writeb(reg, 0x3ce, cfb);
 | |
| 	return cyber2000fb_readb(0x3cf, cfb);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_readb(0x3da, cfb);
 | |
| 	cyber2000fb_writeb(reg, 0x3c0, cfb);
 | |
| 	cyber2000fb_readb(0x3c1, cfb);
 | |
| 	cyber2000fb_writeb(val, 0x3c0, cfb);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
 | |
| }
 | |
| 
 | |
| /* -------------------- Hardware specific routines ------------------------- */
 | |
| 
 | |
| /*
 | |
|  * Hardware Cyber2000 Acceleration
 | |
|  */
 | |
| static void
 | |
| cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	unsigned long dst, col;
 | |
| 
 | |
| 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
 | |
| 		cfb_fillrect(info, rect);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
 | |
| 	cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
 | |
| 	cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
 | |
| 
 | |
| 	col = rect->color;
 | |
| 	if (cfb->fb.var.bits_per_pixel > 8)
 | |
| 		col = ((u32 *)cfb->fb.pseudo_palette)[col];
 | |
| 	cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
 | |
| 
 | |
| 	dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
 | |
| 	if (cfb->fb.var.bits_per_pixel == 24) {
 | |
| 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
 | |
| 		dst *= 3;
 | |
| 	}
 | |
| 
 | |
| 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
 | |
| 	cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
 | |
| 	cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
 | |
| 	cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
 | |
| }
 | |
| 
 | |
| static void
 | |
| cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
 | |
| 	unsigned long src, dst;
 | |
| 
 | |
| 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
 | |
| 		cfb_copyarea(info, region);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
 | |
| 	cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
 | |
| 	cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
 | |
| 
 | |
| 	src = region->sx + region->sy * cfb->fb.var.xres_virtual;
 | |
| 	dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
 | |
| 
 | |
| 	if (region->sx < region->dx) {
 | |
| 		src += region->width - 1;
 | |
| 		dst += region->width - 1;
 | |
| 		cmd |= CO_CMD_L_INC_LEFT;
 | |
| 	}
 | |
| 
 | |
| 	if (region->sy < region->dy) {
 | |
| 		src += (region->height - 1) * cfb->fb.var.xres_virtual;
 | |
| 		dst += (region->height - 1) * cfb->fb.var.xres_virtual;
 | |
| 		cmd |= CO_CMD_L_INC_UP;
 | |
| 	}
 | |
| 
 | |
| 	if (cfb->fb.var.bits_per_pixel == 24) {
 | |
| 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
 | |
| 		src *= 3;
 | |
| 		dst *= 3;
 | |
| 	}
 | |
| 	cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
 | |
| 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
 | |
| 	cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
 | |
| 	cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
 | |
| 	cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
 | |
| 			   CO_REG_CMD_H, cfb);
 | |
| }
 | |
| 
 | |
| static void
 | |
| cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
 | |
| {
 | |
| 	cfb_imageblit(info, image);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_sync(struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	int count = 100000;
 | |
| 
 | |
| 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
 | |
| 		if (!count--) {
 | |
| 			debug_printf("accel_wait timed out\n");
 | |
| 			cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ===========================================================================
 | |
|  */
 | |
| 
 | |
| static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
 | |
| {
 | |
| 	u_int mask = (1 << bf->length) - 1;
 | |
| 
 | |
| 	return (val >> (16 - bf->length) & mask) << bf->offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *    Set a single color register. Return != 0 for invalid regno.
 | |
|  */
 | |
| static int
 | |
| cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
 | |
| 		      u_int transp, struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	struct fb_var_screeninfo *var = &cfb->fb.var;
 | |
| 	u32 pseudo_val;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	switch (cfb->fb.fix.visual) {
 | |
| 	default:
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pseudocolour:
 | |
| 	 *	   8     8
 | |
| 	 * pixel --/--+--/-->  red lut  --> red dac
 | |
| 	 *	      |  8
 | |
| 	 *	      +--/--> green lut --> green dac
 | |
| 	 *	      |  8
 | |
| 	 *	      +--/-->  blue lut --> blue dac
 | |
| 	 */
 | |
| 	case FB_VISUAL_PSEUDOCOLOR:
 | |
| 		if (regno >= NR_PALETTE)
 | |
| 			return 1;
 | |
| 
 | |
| 		red >>= 8;
 | |
| 		green >>= 8;
 | |
| 		blue >>= 8;
 | |
| 
 | |
| 		cfb->palette[regno].red = red;
 | |
| 		cfb->palette[regno].green = green;
 | |
| 		cfb->palette[regno].blue = blue;
 | |
| 
 | |
| 		cyber2000fb_writeb(regno, 0x3c8, cfb);
 | |
| 		cyber2000fb_writeb(red, 0x3c9, cfb);
 | |
| 		cyber2000fb_writeb(green, 0x3c9, cfb);
 | |
| 		cyber2000fb_writeb(blue, 0x3c9, cfb);
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Direct colour:
 | |
| 	 *	   n     rl
 | |
| 	 * pixel --/--+--/-->  red lut  --> red dac
 | |
| 	 *	      |  gl
 | |
| 	 *	      +--/--> green lut --> green dac
 | |
| 	 *	      |  bl
 | |
| 	 *	      +--/-->  blue lut --> blue dac
 | |
| 	 * n = bpp, rl = red length, gl = green length, bl = blue length
 | |
| 	 */
 | |
| 	case FB_VISUAL_DIRECTCOLOR:
 | |
| 		red >>= 8;
 | |
| 		green >>= 8;
 | |
| 		blue >>= 8;
 | |
| 
 | |
| 		if (var->green.length == 6 && regno < 64) {
 | |
| 			cfb->palette[regno << 2].green = green;
 | |
| 
 | |
| 			/*
 | |
| 			 * The 6 bits of the green component are applied
 | |
| 			 * to the high 6 bits of the LUT.
 | |
| 			 */
 | |
| 			cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
 | |
| 			cyber2000fb_writeb(cfb->palette[regno >> 1].red,
 | |
| 					   0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(green, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
 | |
| 					   0x3c9, cfb);
 | |
| 
 | |
| 			green = cfb->palette[regno << 3].green;
 | |
| 
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (var->green.length >= 5 && regno < 32) {
 | |
| 			cfb->palette[regno << 3].red = red;
 | |
| 			cfb->palette[regno << 3].green = green;
 | |
| 			cfb->palette[regno << 3].blue = blue;
 | |
| 
 | |
| 			/*
 | |
| 			 * The 5 bits of each colour component are
 | |
| 			 * applied to the high 5 bits of the LUT.
 | |
| 			 */
 | |
| 			cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
 | |
| 			cyber2000fb_writeb(red, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(green, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(blue, 0x3c9, cfb);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (var->green.length == 4 && regno < 16) {
 | |
| 			cfb->palette[regno << 4].red = red;
 | |
| 			cfb->palette[regno << 4].green = green;
 | |
| 			cfb->palette[regno << 4].blue = blue;
 | |
| 
 | |
| 			/*
 | |
| 			 * The 5 bits of each colour component are
 | |
| 			 * applied to the high 5 bits of the LUT.
 | |
| 			 */
 | |
| 			cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
 | |
| 			cyber2000fb_writeb(red, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(green, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(blue, 0x3c9, cfb);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Since this is only used for the first 16 colours, we
 | |
| 		 * don't have to care about overflowing for regno >= 32
 | |
| 		 */
 | |
| 		pseudo_val = regno << var->red.offset |
 | |
| 			     regno << var->green.offset |
 | |
| 			     regno << var->blue.offset;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * True colour:
 | |
| 	 *	   n     rl
 | |
| 	 * pixel --/--+--/--> red dac
 | |
| 	 *	      |  gl
 | |
| 	 *	      +--/--> green dac
 | |
| 	 *	      |  bl
 | |
| 	 *	      +--/--> blue dac
 | |
| 	 * n = bpp, rl = red length, gl = green length, bl = blue length
 | |
| 	 */
 | |
| 	case FB_VISUAL_TRUECOLOR:
 | |
| 		pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
 | |
| 		pseudo_val |= convert_bitfield(red, &var->red);
 | |
| 		pseudo_val |= convert_bitfield(green, &var->green);
 | |
| 		pseudo_val |= convert_bitfield(blue, &var->blue);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now set our pseudo palette for the CFB16/24/32 drivers.
 | |
| 	 */
 | |
| 	if (regno < 16)
 | |
| 		((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct par_info {
 | |
| 	/*
 | |
| 	 * Hardware
 | |
| 	 */
 | |
| 	u_char	clock_mult;
 | |
| 	u_char	clock_div;
 | |
| 	u_char	extseqmisc;
 | |
| 	u_char	co_pixfmt;
 | |
| 	u_char	crtc_ofl;
 | |
| 	u_char	crtc[19];
 | |
| 	u_int	width;
 | |
| 	u_int	pitch;
 | |
| 	u_int	fetch;
 | |
| 
 | |
| 	/*
 | |
| 	 * Other
 | |
| 	 */
 | |
| 	u_char	ramdac;
 | |
| };
 | |
| 
 | |
| static const u_char crtc_idx[] = {
 | |
| 	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
| 	0x08, 0x09,
 | |
| 	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
 | |
| };
 | |
| 
 | |
| static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
 | |
| 
 | |
| 	cyber2000fb_writeb(0x56, 0x3ce, cfb);
 | |
| 	i = cyber2000fb_readb(0x3cf, cfb);
 | |
| 	cyber2000fb_writeb(i | 4, 0x3cf, cfb);
 | |
| 	cyber2000fb_writeb(val, 0x3c6, cfb);
 | |
| 	cyber2000fb_writeb(i, 0x3cf, cfb);
 | |
| 	/* prevent card lock-up observed on x86 with CyberPro 2000 */
 | |
| 	cyber2000fb_readb(0x3cf, cfb);
 | |
| }
 | |
| 
 | |
| static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
 | |
| {
 | |
| 	u_int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Blank palette
 | |
| 	 */
 | |
| 	for (i = 0; i < NR_PALETTE; i++) {
 | |
| 		cyber2000fb_writeb(i, 0x3c8, cfb);
 | |
| 		cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 		cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 		cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 	}
 | |
| 
 | |
| 	cyber2000fb_writeb(0xef, 0x3c2, cfb);
 | |
| 	cyber2000_crtcw(0x11, 0x0b, cfb);
 | |
| 	cyber2000_attrw(0x11, 0x00, cfb);
 | |
| 
 | |
| 	cyber2000_seqw(0x00, 0x01, cfb);
 | |
| 	cyber2000_seqw(0x01, 0x01, cfb);
 | |
| 	cyber2000_seqw(0x02, 0x0f, cfb);
 | |
| 	cyber2000_seqw(0x03, 0x00, cfb);
 | |
| 	cyber2000_seqw(0x04, 0x0e, cfb);
 | |
| 	cyber2000_seqw(0x00, 0x03, cfb);
 | |
| 
 | |
| 	for (i = 0; i < sizeof(crtc_idx); i++)
 | |
| 		cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
 | |
| 
 | |
| 	for (i = 0x0a; i < 0x10; i++)
 | |
| 		cyber2000_crtcw(i, 0, cfb);
 | |
| 
 | |
| 	cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
 | |
| 	cyber2000_grphw(0x00, 0x00, cfb);
 | |
| 	cyber2000_grphw(0x01, 0x00, cfb);
 | |
| 	cyber2000_grphw(0x02, 0x00, cfb);
 | |
| 	cyber2000_grphw(0x03, 0x00, cfb);
 | |
| 	cyber2000_grphw(0x04, 0x00, cfb);
 | |
| 	cyber2000_grphw(0x05, 0x60, cfb);
 | |
| 	cyber2000_grphw(0x06, 0x05, cfb);
 | |
| 	cyber2000_grphw(0x07, 0x0f, cfb);
 | |
| 	cyber2000_grphw(0x08, 0xff, cfb);
 | |
| 
 | |
| 	/* Attribute controller registers */
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		cyber2000_attrw(i, i, cfb);
 | |
| 
 | |
| 	cyber2000_attrw(0x10, 0x01, cfb);
 | |
| 	cyber2000_attrw(0x11, 0x00, cfb);
 | |
| 	cyber2000_attrw(0x12, 0x0f, cfb);
 | |
| 	cyber2000_attrw(0x13, 0x00, cfb);
 | |
| 	cyber2000_attrw(0x14, 0x00, cfb);
 | |
| 
 | |
| 	/* PLL registers */
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
 | |
| 	cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
 | |
| 	cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
 | |
| 	cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
 | |
| 	cyber2000_grphw(0x90, 0x01, cfb);
 | |
| 	cyber2000_grphw(0xb9, 0x80, cfb);
 | |
| 	cyber2000_grphw(0xb9, 0x00, cfb);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| 
 | |
| 	cfb->ramdac_ctrl = hw->ramdac;
 | |
| 	cyber2000fb_write_ramdac_ctrl(cfb);
 | |
| 
 | |
| 	cyber2000fb_writeb(0x20, 0x3c0, cfb);
 | |
| 	cyber2000fb_writeb(0xff, 0x3c6, cfb);
 | |
| 
 | |
| 	cyber2000_grphw(0x14, hw->fetch, cfb);
 | |
| 	cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
 | |
| 			      ((hw->pitch >> 4) & 0x30), cfb);
 | |
| 	cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up accelerator registers
 | |
| 	 */
 | |
| 	cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
 | |
| 	cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
 | |
| 	cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
 | |
| {
 | |
| 	u_int base = var->yoffset * var->xres_virtual + var->xoffset;
 | |
| 
 | |
| 	base *= var->bits_per_pixel;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to bytes and shift two extra bits because DAC
 | |
| 	 * can only start on 4 byte aligned data.
 | |
| 	 */
 | |
| 	base >>= 5;
 | |
| 
 | |
| 	if (base >= 1 << 20)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
 | |
| 	cyber2000_crtcw(0x0c, base >> 8, cfb);
 | |
| 	cyber2000_crtcw(0x0d, base, cfb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
 | |
| 			struct fb_var_screeninfo *var)
 | |
| {
 | |
| 	u_int Htotal, Hblankend, Hsyncend;
 | |
| 	u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
 | |
| #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
 | |
| 
 | |
| 	hw->crtc[13] = hw->pitch;
 | |
| 	hw->crtc[17] = 0xe3;
 | |
| 	hw->crtc[14] = 0;
 | |
| 	hw->crtc[8]  = 0;
 | |
| 
 | |
| 	Htotal     = var->xres + var->right_margin +
 | |
| 		     var->hsync_len + var->left_margin;
 | |
| 
 | |
| 	if (Htotal > 2080)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hw->crtc[0] = (Htotal >> 3) - 5;
 | |
| 	hw->crtc[1] = (var->xres >> 3) - 1;
 | |
| 	hw->crtc[2] = var->xres >> 3;
 | |
| 	hw->crtc[4] = (var->xres + var->right_margin) >> 3;
 | |
| 
 | |
| 	Hblankend   = (Htotal - 4 * 8) >> 3;
 | |
| 
 | |
| 	hw->crtc[3] = ENCODE_BIT(Hblankend,  0, 0x1f,  0) |
 | |
| 		      ENCODE_BIT(1,          0, 0x01,  7);
 | |
| 
 | |
| 	Hsyncend    = (var->xres + var->right_margin + var->hsync_len) >> 3;
 | |
| 
 | |
| 	hw->crtc[5] = ENCODE_BIT(Hsyncend,   0, 0x1f,  0) |
 | |
| 		      ENCODE_BIT(Hblankend,  5, 0x01,  7);
 | |
| 
 | |
| 	Vdispend    = var->yres - 1;
 | |
| 	Vsyncstart  = var->yres + var->lower_margin;
 | |
| 	Vsyncend    = var->yres + var->lower_margin + var->vsync_len;
 | |
| 	Vtotal      = var->yres + var->lower_margin + var->vsync_len +
 | |
| 		      var->upper_margin - 2;
 | |
| 
 | |
| 	if (Vtotal > 2047)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	Vblankstart = var->yres + 6;
 | |
| 	Vblankend   = Vtotal - 10;
 | |
| 
 | |
| 	hw->crtc[6]  = Vtotal;
 | |
| 	hw->crtc[7]  = ENCODE_BIT(Vtotal,     8, 0x01,  0) |
 | |
| 			ENCODE_BIT(Vdispend,   8, 0x01,  1) |
 | |
| 			ENCODE_BIT(Vsyncstart, 8, 0x01,  2) |
 | |
| 			ENCODE_BIT(Vblankstart, 8, 0x01,  3) |
 | |
| 			ENCODE_BIT(1,          0, 0x01,  4) |
 | |
| 			ENCODE_BIT(Vtotal,     9, 0x01,  5) |
 | |
| 			ENCODE_BIT(Vdispend,   9, 0x01,  6) |
 | |
| 			ENCODE_BIT(Vsyncstart, 9, 0x01,  7);
 | |
| 	hw->crtc[9]  = ENCODE_BIT(0,          0, 0x1f,  0) |
 | |
| 			ENCODE_BIT(Vblankstart, 9, 0x01,  5) |
 | |
| 			ENCODE_BIT(1,          0, 0x01,  6);
 | |
| 	hw->crtc[10] = Vsyncstart;
 | |
| 	hw->crtc[11] = ENCODE_BIT(Vsyncend,   0, 0x0f,  0) |
 | |
| 		       ENCODE_BIT(1,          0, 0x01,  7);
 | |
| 	hw->crtc[12] = Vdispend;
 | |
| 	hw->crtc[15] = Vblankstart;
 | |
| 	hw->crtc[16] = Vblankend;
 | |
| 	hw->crtc[18] = 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * overflow - graphics reg 0x11
 | |
| 	 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
 | |
| 	 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
 | |
| 	 */
 | |
| 	hw->crtc_ofl =
 | |
| 		ENCODE_BIT(Vtotal, 10, 0x01, 0) |
 | |
| 		ENCODE_BIT(Vdispend, 10, 0x01, 1) |
 | |
| 		ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
 | |
| 		ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
 | |
| 		EXT_CRT_VRTOFL_LINECOMP10;
 | |
| 
 | |
| 	/* woody: set the interlaced bit... */
 | |
| 	/* FIXME: what about doublescan? */
 | |
| 	if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
 | |
| 		hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following was discovered by a good monitor, bit twiddling, theorising
 | |
|  * and but mostly luck.  Strangely, it looks like everyone elses' PLL!
 | |
|  *
 | |
|  * Clock registers:
 | |
|  *   fclock = fpll / div2
 | |
|  *   fpll   = fref * mult / div1
 | |
|  * where:
 | |
|  *   fref = 14.318MHz (69842ps)
 | |
|  *   mult = reg0xb0.7:0
 | |
|  *   div1 = (reg0xb1.5:0 + 1)
 | |
|  *   div2 =  2^(reg0xb1.7:6)
 | |
|  *   fpll should be between 115 and 260 MHz
 | |
|  *  (8696ps and 3846ps)
 | |
|  */
 | |
| static int
 | |
| cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
 | |
| 			 struct fb_var_screeninfo *var)
 | |
| {
 | |
| 	u_long pll_ps = var->pixclock;
 | |
| 	const u_long ref_ps = cfb->ref_ps;
 | |
| 	u_int div2, t_div1, best_div1, best_mult;
 | |
| 	int best_diff;
 | |
| 	int vco;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1:
 | |
| 	 *   find div2 such that 115MHz < fpll < 260MHz
 | |
| 	 *   and 0 <= div2 < 4
 | |
| 	 */
 | |
| 	for (div2 = 0; div2 < 4; div2++) {
 | |
| 		u_long new_pll;
 | |
| 
 | |
| 		new_pll = pll_ps / cfb->divisors[div2];
 | |
| 		if (8696 > new_pll && new_pll > 3846) {
 | |
| 			pll_ps = new_pll;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (div2 == 4)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2:
 | |
| 	 *  Given pll_ps and ref_ps, find:
 | |
| 	 *    pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
 | |
| 	 *  where { 1 < best_div1 < 32, 1 < best_mult < 256 }
 | |
| 	 *    pll_ps_calc = best_div1 / (ref_ps * best_mult)
 | |
| 	 */
 | |
| 	best_diff = 0x7fffffff;
 | |
| 	best_mult = 2;
 | |
| 	best_div1 = 32;
 | |
| 	for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
 | |
| 		u_int rr, t_mult, t_pll_ps;
 | |
| 		int diff;
 | |
| 
 | |
| 		/*
 | |
| 		 * Find the multiplier for this divisor
 | |
| 		 */
 | |
| 		rr = ref_ps * t_div1;
 | |
| 		t_mult = (rr + pll_ps / 2) / pll_ps;
 | |
| 
 | |
| 		/*
 | |
| 		 * Is the multiplier within the correct range?
 | |
| 		 */
 | |
| 		if (t_mult > 256 || t_mult < 2)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the actual clock period from this multiplier
 | |
| 		 * and divisor, and estimate the error.
 | |
| 		 */
 | |
| 		t_pll_ps = (rr + t_mult / 2) / t_mult;
 | |
| 		diff = pll_ps - t_pll_ps;
 | |
| 		if (diff < 0)
 | |
| 			diff = -diff;
 | |
| 
 | |
| 		if (diff < best_diff) {
 | |
| 			best_diff = diff;
 | |
| 			best_mult = t_mult;
 | |
| 			best_div1 = t_div1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we hit an exact value, there is no point in continuing.
 | |
| 		 */
 | |
| 		if (diff == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3:
 | |
| 	 *  combine values
 | |
| 	 */
 | |
| 	hw->clock_mult = best_mult - 1;
 | |
| 	hw->clock_div  = div2 << 6 | (best_div1 - 1);
 | |
| 
 | |
| 	vco = ref_ps * best_div1 / best_mult;
 | |
| 	if ((ref_ps == 40690) && (vco < 5556))
 | |
| 		/* Set VFSEL when VCO > 180MHz (5.556 ps). */
 | |
| 		hw->clock_div |= EXT_DCLK_DIV_VFSEL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *    Set the User Defined Part of the Display
 | |
|  */
 | |
| static int
 | |
| cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	struct par_info hw;
 | |
| 	unsigned int mem;
 | |
| 	int err;
 | |
| 
 | |
| 	var->transp.msb_right	= 0;
 | |
| 	var->red.msb_right	= 0;
 | |
| 	var->green.msb_right	= 0;
 | |
| 	var->blue.msb_right	= 0;
 | |
| 	var->transp.offset	= 0;
 | |
| 	var->transp.length	= 0;
 | |
| 
 | |
| 	switch (var->bits_per_pixel) {
 | |
| 	case 8:	/* PSEUDOCOLOUR, 256 */
 | |
| 		var->red.offset		= 0;
 | |
| 		var->red.length		= 8;
 | |
| 		var->green.offset	= 0;
 | |
| 		var->green.length	= 8;
 | |
| 		var->blue.offset	= 0;
 | |
| 		var->blue.length	= 8;
 | |
| 		break;
 | |
| 
 | |
| 	case 16:/* DIRECTCOLOUR, 64k or 32k */
 | |
| 		switch (var->green.length) {
 | |
| 		case 6: /* RGB565, 64k */
 | |
| 			var->red.offset		= 11;
 | |
| 			var->red.length		= 5;
 | |
| 			var->green.offset	= 5;
 | |
| 			var->green.length	= 6;
 | |
| 			var->blue.offset	= 0;
 | |
| 			var->blue.length	= 5;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 		case 5: /* RGB555, 32k */
 | |
| 			var->red.offset		= 10;
 | |
| 			var->red.length		= 5;
 | |
| 			var->green.offset	= 5;
 | |
| 			var->green.length	= 5;
 | |
| 			var->blue.offset	= 0;
 | |
| 			var->blue.length	= 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 4: /* RGB444, 4k + transparency? */
 | |
| 			var->transp.offset	= 12;
 | |
| 			var->transp.length	= 4;
 | |
| 			var->red.offset		= 8;
 | |
| 			var->red.length		= 4;
 | |
| 			var->green.offset	= 4;
 | |
| 			var->green.length	= 4;
 | |
| 			var->blue.offset	= 0;
 | |
| 			var->blue.length	= 4;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 24:/* TRUECOLOUR, 16m */
 | |
| 		var->red.offset		= 16;
 | |
| 		var->red.length		= 8;
 | |
| 		var->green.offset	= 8;
 | |
| 		var->green.length	= 8;
 | |
| 		var->blue.offset	= 0;
 | |
| 		var->blue.length	= 8;
 | |
| 		break;
 | |
| 
 | |
| 	case 32:/* TRUECOLOUR, 16m */
 | |
| 		var->transp.offset	= 24;
 | |
| 		var->transp.length	= 8;
 | |
| 		var->red.offset		= 16;
 | |
| 		var->red.length		= 8;
 | |
| 		var->green.offset	= 8;
 | |
| 		var->green.length	= 8;
 | |
| 		var->blue.offset	= 0;
 | |
| 		var->blue.length	= 8;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
 | |
| 	if (mem > cfb->fb.fix.smem_len)
 | |
| 		var->yres_virtual = cfb->fb.fix.smem_len * 8 /
 | |
| 				    (var->bits_per_pixel * var->xres_virtual);
 | |
| 
 | |
| 	if (var->yres > var->yres_virtual)
 | |
| 		var->yres = var->yres_virtual;
 | |
| 	if (var->xres > var->xres_virtual)
 | |
| 		var->xres = var->xres_virtual;
 | |
| 
 | |
| 	err = cyber2000fb_decode_clock(&hw, cfb, var);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = cyber2000fb_decode_crtc(&hw, cfb, var);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_set_par(struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	struct fb_var_screeninfo *var = &cfb->fb.var;
 | |
| 	struct par_info hw;
 | |
| 	unsigned int mem;
 | |
| 
 | |
| 	hw.width = var->xres_virtual;
 | |
| 	hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
 | |
| 
 | |
| 	switch (var->bits_per_pixel) {
 | |
| 	case 8:
 | |
| 		hw.co_pixfmt		= CO_PIXFMT_8BPP;
 | |
| 		hw.pitch		= hw.width >> 3;
 | |
| 		hw.extseqmisc		= EXT_SEQ_MISC_8;
 | |
| 		break;
 | |
| 
 | |
| 	case 16:
 | |
| 		hw.co_pixfmt		= CO_PIXFMT_16BPP;
 | |
| 		hw.pitch		= hw.width >> 2;
 | |
| 
 | |
| 		switch (var->green.length) {
 | |
| 		case 6: /* RGB565, 64k */
 | |
| 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB565;
 | |
| 			break;
 | |
| 		case 5: /* RGB555, 32k */
 | |
| 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB555;
 | |
| 			break;
 | |
| 		case 4: /* RGB444, 4k + transparency? */
 | |
| 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB444;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 24:/* TRUECOLOUR, 16m */
 | |
| 		hw.co_pixfmt		= CO_PIXFMT_24BPP;
 | |
| 		hw.width		*= 3;
 | |
| 		hw.pitch		= hw.width >> 3;
 | |
| 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
 | |
| 		hw.extseqmisc		= EXT_SEQ_MISC_24_RGB888;
 | |
| 		break;
 | |
| 
 | |
| 	case 32:/* TRUECOLOUR, 16m */
 | |
| 		hw.co_pixfmt		= CO_PIXFMT_32BPP;
 | |
| 		hw.pitch		= hw.width >> 1;
 | |
| 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
 | |
| 		hw.extseqmisc		= EXT_SEQ_MISC_32;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sigh, this is absolutely disgusting, but caused by
 | |
| 	 * the way the fbcon developers want to separate out
 | |
| 	 * the "checking" and the "setting" of the video mode.
 | |
| 	 *
 | |
| 	 * If the mode is not suitable for the hardware here,
 | |
| 	 * we can't prevent it being set by returning an error.
 | |
| 	 *
 | |
| 	 * In theory, since NetWinders contain just one VGA card,
 | |
| 	 * we should never end up hitting this problem.
 | |
| 	 */
 | |
| 	BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
 | |
| 	BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
 | |
| 
 | |
| 	hw.width -= 1;
 | |
| 	hw.fetch = hw.pitch;
 | |
| 	if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
 | |
| 		hw.fetch <<= 1;
 | |
| 	hw.fetch += 1;
 | |
| 
 | |
| 	cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Same here - if the size of the video mode exceeds the
 | |
| 	 * available RAM, we can't prevent this mode being set.
 | |
| 	 *
 | |
| 	 * In theory, since NetWinders contain just one VGA card,
 | |
| 	 * we should never end up hitting this problem.
 | |
| 	 */
 | |
| 	mem = cfb->fb.fix.line_length * var->yres_virtual;
 | |
| 	BUG_ON(mem > cfb->fb.fix.smem_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * 8bpp displays are always pseudo colour.  16bpp and above
 | |
| 	 * are direct colour or true colour, depending on whether
 | |
| 	 * the RAMDAC palettes are bypassed.  (Direct colour has
 | |
| 	 * palettes, true colour does not.)
 | |
| 	 */
 | |
| 	if (var->bits_per_pixel == 8)
 | |
| 		cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
 | |
| 	else if (hw.ramdac & RAMDAC_BYPASS)
 | |
| 		cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
 | |
| 	else
 | |
| 		cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
 | |
| 
 | |
| 	cyber2000fb_set_timing(cfb, &hw);
 | |
| 	cyber2000fb_update_start(cfb, var);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *    Pan or Wrap the Display
 | |
|  */
 | |
| static int
 | |
| cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 
 | |
| 	if (cyber2000fb_update_start(cfb, var))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cfb->fb.var.xoffset = var->xoffset;
 | |
| 	cfb->fb.var.yoffset = var->yoffset;
 | |
| 
 | |
| 	if (var->vmode & FB_VMODE_YWRAP) {
 | |
| 		cfb->fb.var.vmode |= FB_VMODE_YWRAP;
 | |
| 	} else {
 | |
| 		cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *    (Un)Blank the display.
 | |
|  *
 | |
|  *  Blank the screen if blank_mode != 0, else unblank. If
 | |
|  *  blank == NULL then the caller blanks by setting the CLUT
 | |
|  *  (Color Look Up Table) to all black. Return 0 if blanking
 | |
|  *  succeeded, != 0 if un-/blanking failed due to e.g. a
 | |
|  *  video mode which doesn't support it. Implements VESA
 | |
|  *  suspend and powerdown modes on hardware that supports
 | |
|  *  disabling hsync/vsync:
 | |
|  *    blank_mode == 2: suspend vsync
 | |
|  *    blank_mode == 3: suspend hsync
 | |
|  *    blank_mode == 4: powerdown
 | |
|  *
 | |
|  *  wms...Enable VESA DMPS compatible powerdown mode
 | |
|  *  run "setterm -powersave powerdown" to take advantage
 | |
|  */
 | |
| static int cyber2000fb_blank(int blank, struct fb_info *info)
 | |
| {
 | |
| 	struct cfb_info *cfb = (struct cfb_info *)info;
 | |
| 	unsigned int sync = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (blank) {
 | |
| 	case FB_BLANK_POWERDOWN:	/* powerdown - both sync lines down */
 | |
| 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
 | |
| 		break;
 | |
| 	case FB_BLANK_HSYNC_SUSPEND:	/* hsync off */
 | |
| 		sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
 | |
| 		break;
 | |
| 	case FB_BLANK_VSYNC_SUSPEND:	/* vsync off */
 | |
| 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
 | |
| 		break;
 | |
| 	case FB_BLANK_NORMAL:		/* soft blank */
 | |
| 	default:			/* unblank */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
 | |
| 
 | |
| 	if (blank <= 1) {
 | |
| 		/* turn on ramdacs */
 | |
| 		cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
 | |
| 					   RAMDAC_RAMPWRDN);
 | |
| 		cyber2000fb_write_ramdac_ctrl(cfb);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Soft blank/unblank the display.
 | |
| 	 */
 | |
| 	if (blank) {	/* soft blank */
 | |
| 		for (i = 0; i < NR_PALETTE; i++) {
 | |
| 			cyber2000fb_writeb(i, 0x3c8, cfb);
 | |
| 			cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(0, 0x3c9, cfb);
 | |
| 		}
 | |
| 	} else {	/* unblank */
 | |
| 		for (i = 0; i < NR_PALETTE; i++) {
 | |
| 			cyber2000fb_writeb(i, 0x3c8, cfb);
 | |
| 			cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
 | |
| 			cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (blank >= 2) {
 | |
| 		/* turn off ramdacs */
 | |
| 		cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
 | |
| 					 RAMDAC_RAMPWRDN;
 | |
| 		cyber2000fb_write_ramdac_ctrl(cfb);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct fb_ops cyber2000fb_ops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.fb_check_var	= cyber2000fb_check_var,
 | |
| 	.fb_set_par	= cyber2000fb_set_par,
 | |
| 	.fb_setcolreg	= cyber2000fb_setcolreg,
 | |
| 	.fb_blank	= cyber2000fb_blank,
 | |
| 	.fb_pan_display	= cyber2000fb_pan_display,
 | |
| 	.fb_fillrect	= cyber2000fb_fillrect,
 | |
| 	.fb_copyarea	= cyber2000fb_copyarea,
 | |
| 	.fb_imageblit	= cyber2000fb_imageblit,
 | |
| 	.fb_sync	= cyber2000fb_sync,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the only "static" reference to the internal data structures
 | |
|  * of this driver.  It is here solely at the moment to support the other
 | |
|  * CyberPro modules external to this driver.
 | |
|  */
 | |
| static struct cfb_info *int_cfb_info;
 | |
| 
 | |
| /*
 | |
|  * Enable access to the extended registers
 | |
|  */
 | |
| void cyber2000fb_enable_extregs(struct cfb_info *cfb)
 | |
| {
 | |
| 	cfb->func_use_count += 1;
 | |
| 
 | |
| 	if (cfb->func_use_count == 1) {
 | |
| 		int old;
 | |
| 
 | |
| 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
 | |
| 		old |= EXT_FUNC_CTL_EXTREGENBL;
 | |
| 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(cyber2000fb_enable_extregs);
 | |
| 
 | |
| /*
 | |
|  * Disable access to the extended registers
 | |
|  */
 | |
| void cyber2000fb_disable_extregs(struct cfb_info *cfb)
 | |
| {
 | |
| 	if (cfb->func_use_count == 1) {
 | |
| 		int old;
 | |
| 
 | |
| 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
 | |
| 		old &= ~EXT_FUNC_CTL_EXTREGENBL;
 | |
| 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
 | |
| 	}
 | |
| 
 | |
| 	if (cfb->func_use_count == 0)
 | |
| 		printk(KERN_ERR "disable_extregs: count = 0\n");
 | |
| 	else
 | |
| 		cfb->func_use_count -= 1;
 | |
| }
 | |
| EXPORT_SYMBOL(cyber2000fb_disable_extregs);
 | |
| 
 | |
| /*
 | |
|  * Attach a capture/tv driver to the core CyberX0X0 driver.
 | |
|  */
 | |
| int cyber2000fb_attach(struct cyberpro_info *info, int idx)
 | |
| {
 | |
| 	if (int_cfb_info != NULL) {
 | |
| 		info->dev	      = int_cfb_info->fb.device;
 | |
| #ifdef CONFIG_FB_CYBER2000_I2C
 | |
| 		info->i2c	      = &int_cfb_info->i2c_adapter;
 | |
| #else
 | |
| 		info->i2c	      = NULL;
 | |
| #endif
 | |
| 		info->regs	      = int_cfb_info->regs;
 | |
| 		info->irq             = int_cfb_info->irq;
 | |
| 		info->fb	      = int_cfb_info->fb.screen_base;
 | |
| 		info->fb_size	      = int_cfb_info->fb.fix.smem_len;
 | |
| 		info->info	      = int_cfb_info;
 | |
| 
 | |
| 		strlcpy(info->dev_name, int_cfb_info->fb.fix.id,
 | |
| 			sizeof(info->dev_name));
 | |
| 	}
 | |
| 
 | |
| 	return int_cfb_info != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(cyber2000fb_attach);
 | |
| 
 | |
| /*
 | |
|  * Detach a capture/tv driver from the core CyberX0X0 driver.
 | |
|  */
 | |
| void cyber2000fb_detach(int idx)
 | |
| {
 | |
| }
 | |
| EXPORT_SYMBOL(cyber2000fb_detach);
 | |
| 
 | |
| #ifdef CONFIG_FB_CYBER2000_DDC
 | |
| 
 | |
| #define DDC_REG		0xb0
 | |
| #define DDC_SCL_OUT	(1 << 0)
 | |
| #define DDC_SDA_OUT	(1 << 4)
 | |
| #define DDC_SCL_IN	(1 << 2)
 | |
| #define DDC_SDA_IN	(1 << 6)
 | |
| 
 | |
| static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
 | |
| {
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	cyber2000fb_writew(0x1bf, 0x3ce, cfb);
 | |
| }
 | |
| 
 | |
| static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
 | |
| {
 | |
| 	cyber2000fb_writew(0x0bf, 0x3ce, cfb);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cyber2000fb_ddc_setscl(void *data, int val)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	unsigned char reg;
 | |
| 
 | |
| 	cyber2000fb_enable_ddc(cfb);
 | |
| 	reg = cyber2000_grphr(DDC_REG, cfb);
 | |
| 	if (!val)	/* bit is inverted */
 | |
| 		reg |= DDC_SCL_OUT;
 | |
| 	else
 | |
| 		reg &= ~DDC_SCL_OUT;
 | |
| 	cyber2000_grphw(DDC_REG, reg, cfb);
 | |
| 	cyber2000fb_disable_ddc(cfb);
 | |
| }
 | |
| 
 | |
| static void cyber2000fb_ddc_setsda(void *data, int val)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	unsigned char reg;
 | |
| 
 | |
| 	cyber2000fb_enable_ddc(cfb);
 | |
| 	reg = cyber2000_grphr(DDC_REG, cfb);
 | |
| 	if (!val)	/* bit is inverted */
 | |
| 		reg |= DDC_SDA_OUT;
 | |
| 	else
 | |
| 		reg &= ~DDC_SDA_OUT;
 | |
| 	cyber2000_grphw(DDC_REG, reg, cfb);
 | |
| 	cyber2000fb_disable_ddc(cfb);
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_ddc_getscl(void *data)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	int retval;
 | |
| 
 | |
| 	cyber2000fb_enable_ddc(cfb);
 | |
| 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
 | |
| 	cyber2000fb_disable_ddc(cfb);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_ddc_getsda(void *data)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	int retval;
 | |
| 
 | |
| 	cyber2000fb_enable_ddc(cfb);
 | |
| 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
 | |
| 	cyber2000fb_disable_ddc(cfb);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int __devinit cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
 | |
| {
 | |
| 	strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
 | |
| 		sizeof(cfb->ddc_adapter.name));
 | |
| 	cfb->ddc_adapter.owner		= THIS_MODULE;
 | |
| 	cfb->ddc_adapter.class		= I2C_CLASS_DDC;
 | |
| 	cfb->ddc_adapter.algo_data	= &cfb->ddc_algo;
 | |
| 	cfb->ddc_adapter.dev.parent	= cfb->fb.device;
 | |
| 	cfb->ddc_algo.setsda		= cyber2000fb_ddc_setsda;
 | |
| 	cfb->ddc_algo.setscl		= cyber2000fb_ddc_setscl;
 | |
| 	cfb->ddc_algo.getsda		= cyber2000fb_ddc_getsda;
 | |
| 	cfb->ddc_algo.getscl		= cyber2000fb_ddc_getscl;
 | |
| 	cfb->ddc_algo.udelay		= 10;
 | |
| 	cfb->ddc_algo.timeout		= 20;
 | |
| 	cfb->ddc_algo.data		= cfb;
 | |
| 
 | |
| 	i2c_set_adapdata(&cfb->ddc_adapter, cfb);
 | |
| 
 | |
| 	return i2c_bit_add_bus(&cfb->ddc_adapter);
 | |
| }
 | |
| #endif /* CONFIG_FB_CYBER2000_DDC */
 | |
| 
 | |
| #ifdef CONFIG_FB_CYBER2000_I2C
 | |
| static void cyber2000fb_i2c_setsda(void *data, int state)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	unsigned int latch2;
 | |
| 
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
 | |
| 	latch2 &= EXT_LATCH2_I2C_CLKEN;
 | |
| 	if (state)
 | |
| 		latch2 |= EXT_LATCH2_I2C_DATEN;
 | |
| 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| }
 | |
| 
 | |
| static void cyber2000fb_i2c_setscl(void *data, int state)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	unsigned int latch2;
 | |
| 
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
 | |
| 	latch2 &= EXT_LATCH2_I2C_DATEN;
 | |
| 	if (state)
 | |
| 		latch2 |= EXT_LATCH2_I2C_CLKEN;
 | |
| 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_i2c_getsda(void *data)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cyber2000fb_i2c_getscl(void *data)
 | |
| {
 | |
| 	struct cfb_info *cfb = data;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&cfb->reg_b0_lock);
 | |
| 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
 | |
| 	spin_unlock(&cfb->reg_b0_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __devinit cyber2000fb_i2c_register(struct cfb_info *cfb)
 | |
| {
 | |
| 	strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
 | |
| 		sizeof(cfb->i2c_adapter.name));
 | |
| 	cfb->i2c_adapter.owner = THIS_MODULE;
 | |
| 	cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
 | |
| 	cfb->i2c_adapter.dev.parent = cfb->fb.device;
 | |
| 	cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
 | |
| 	cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
 | |
| 	cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
 | |
| 	cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
 | |
| 	cfb->i2c_algo.udelay = 5;
 | |
| 	cfb->i2c_algo.timeout = msecs_to_jiffies(100);
 | |
| 	cfb->i2c_algo.data = cfb;
 | |
| 
 | |
| 	return i2c_bit_add_bus(&cfb->i2c_adapter);
 | |
| }
 | |
| 
 | |
| static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
 | |
| {
 | |
| 	i2c_del_adapter(&cfb->i2c_adapter);
 | |
| }
 | |
| #else
 | |
| #define cyber2000fb_i2c_register(cfb)	(0)
 | |
| #define cyber2000fb_i2c_unregister(cfb)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * These parameters give
 | |
|  * 640x480, hsync 31.5kHz, vsync 60Hz
 | |
|  */
 | |
| static struct fb_videomode __devinitdata cyber2000fb_default_mode = {
 | |
| 	.refresh	= 60,
 | |
| 	.xres		= 640,
 | |
| 	.yres		= 480,
 | |
| 	.pixclock	= 39722,
 | |
| 	.left_margin	= 56,
 | |
| 	.right_margin	= 16,
 | |
| 	.upper_margin	= 34,
 | |
| 	.lower_margin	= 9,
 | |
| 	.hsync_len	= 88,
 | |
| 	.vsync_len	= 2,
 | |
| 	.sync		= FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
 | |
| 	.vmode		= FB_VMODE_NONINTERLACED
 | |
| };
 | |
| 
 | |
| static char igs_regs[] = {
 | |
| 	EXT_CRT_IRQ,		0,
 | |
| 	EXT_CRT_TEST,		0,
 | |
| 	EXT_SYNC_CTL,		0,
 | |
| 	EXT_SEG_WRITE_PTR,	0,
 | |
| 	EXT_SEG_READ_PTR,	0,
 | |
| 	EXT_BIU_MISC,		EXT_BIU_MISC_LIN_ENABLE |
 | |
| 				EXT_BIU_MISC_COP_ENABLE |
 | |
| 				EXT_BIU_MISC_COP_BFC,
 | |
| 	EXT_FUNC_CTL,		0,
 | |
| 	CURS_H_START,		0,
 | |
| 	CURS_H_START + 1,	0,
 | |
| 	CURS_H_PRESET,		0,
 | |
| 	CURS_V_START,		0,
 | |
| 	CURS_V_START + 1,	0,
 | |
| 	CURS_V_PRESET,		0,
 | |
| 	CURS_CTL,		0,
 | |
| 	EXT_ATTRIB_CTL,		EXT_ATTRIB_CTL_EXT,
 | |
| 	EXT_OVERSCAN_RED,	0,
 | |
| 	EXT_OVERSCAN_GREEN,	0,
 | |
| 	EXT_OVERSCAN_BLUE,	0,
 | |
| 
 | |
| 	/* some of these are questionable when we have a BIOS */
 | |
| 	EXT_MEM_CTL0,		EXT_MEM_CTL0_7CLK |
 | |
| 				EXT_MEM_CTL0_RAS_1 |
 | |
| 				EXT_MEM_CTL0_MULTCAS,
 | |
| 	EXT_HIDDEN_CTL1,	0x30,
 | |
| 	EXT_FIFO_CTL,		0x0b,
 | |
| 	EXT_FIFO_CTL + 1,	0x17,
 | |
| 	0x76,			0x00,
 | |
| 	EXT_HIDDEN_CTL4,	0xc8
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialise the CyberPro hardware.  On the CyberPro5XXXX,
 | |
|  * ensure that we're using the correct PLL (5XXX's may be
 | |
|  * programmed to use an additional set of PLLs.)
 | |
|  */
 | |
| static void cyberpro_init_hw(struct cfb_info *cfb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(igs_regs); i += 2)
 | |
| 		cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
 | |
| 
 | |
| 	if (cfb->id == ID_CYBERPRO_5000) {
 | |
| 		unsigned char val;
 | |
| 		cyber2000fb_writeb(0xba, 0x3ce, cfb);
 | |
| 		val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
 | |
| 		cyber2000fb_writeb(val, 0x3cf, cfb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct cfb_info __devinit *cyberpro_alloc_fb_info(unsigned int id,
 | |
| 							 char *name)
 | |
| {
 | |
| 	struct cfb_info *cfb;
 | |
| 
 | |
| 	cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
 | |
| 	if (!cfb)
 | |
| 		return NULL;
 | |
| 
 | |
| 
 | |
| 	cfb->id			= id;
 | |
| 
 | |
| 	if (id == ID_CYBERPRO_5000)
 | |
| 		cfb->ref_ps	= 40690; /* 24.576 MHz */
 | |
| 	else
 | |
| 		cfb->ref_ps	= 69842; /* 14.31818 MHz (69841?) */
 | |
| 
 | |
| 	cfb->divisors[0]	= 1;
 | |
| 	cfb->divisors[1]	= 2;
 | |
| 	cfb->divisors[2]	= 4;
 | |
| 
 | |
| 	if (id == ID_CYBERPRO_2000)
 | |
| 		cfb->divisors[3] = 8;
 | |
| 	else
 | |
| 		cfb->divisors[3] = 6;
 | |
| 
 | |
| 	strcpy(cfb->fb.fix.id, name);
 | |
| 
 | |
| 	cfb->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
 | |
| 	cfb->fb.fix.type_aux	= 0;
 | |
| 	cfb->fb.fix.xpanstep	= 0;
 | |
| 	cfb->fb.fix.ypanstep	= 1;
 | |
| 	cfb->fb.fix.ywrapstep	= 0;
 | |
| 
 | |
| 	switch (id) {
 | |
| 	case ID_IGA_1682:
 | |
| 		cfb->fb.fix.accel = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case ID_CYBERPRO_2000:
 | |
| 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
 | |
| 		break;
 | |
| 
 | |
| 	case ID_CYBERPRO_2010:
 | |
| 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
 | |
| 		break;
 | |
| 
 | |
| 	case ID_CYBERPRO_5000:
 | |
| 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	cfb->fb.var.nonstd	= 0;
 | |
| 	cfb->fb.var.activate	= FB_ACTIVATE_NOW;
 | |
| 	cfb->fb.var.height	= -1;
 | |
| 	cfb->fb.var.width	= -1;
 | |
| 	cfb->fb.var.accel_flags	= FB_ACCELF_TEXT;
 | |
| 
 | |
| 	cfb->fb.fbops		= &cyber2000fb_ops;
 | |
| 	cfb->fb.flags		= FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
 | |
| 	cfb->fb.pseudo_palette	= cfb->pseudo_palette;
 | |
| 
 | |
| 	spin_lock_init(&cfb->reg_b0_lock);
 | |
| 
 | |
| 	fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
 | |
| 
 | |
| 	return cfb;
 | |
| }
 | |
| 
 | |
| static void cyberpro_free_fb_info(struct cfb_info *cfb)
 | |
| {
 | |
| 	if (cfb) {
 | |
| 		/*
 | |
| 		 * Free the colourmap
 | |
| 		 */
 | |
| 		fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
 | |
| 
 | |
| 		kfree(cfb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse Cyber2000fb options.  Usage:
 | |
|  *  video=cyber2000:font:fontname
 | |
|  */
 | |
| #ifndef MODULE
 | |
| static int cyber2000fb_setup(char *options)
 | |
| {
 | |
| 	char *opt;
 | |
| 
 | |
| 	if (!options || !*options)
 | |
| 		return 0;
 | |
| 
 | |
| 	while ((opt = strsep(&options, ",")) != NULL) {
 | |
| 		if (!*opt)
 | |
| 			continue;
 | |
| 
 | |
| 		if (strncmp(opt, "font:", 5) == 0) {
 | |
| 			static char default_font_storage[40];
 | |
| 
 | |
| 			strlcpy(default_font_storage, opt + 5,
 | |
| 				sizeof(default_font_storage));
 | |
| 			default_font = default_font_storage;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif  /*  MODULE  */
 | |
| 
 | |
| /*
 | |
|  * The CyberPro chips can be placed on many different bus types.
 | |
|  * This probe function is common to all bus types.  The bus-specific
 | |
|  * probe function is expected to have:
 | |
|  *  - enabled access to the linear memory region
 | |
|  *  - memory mapped access to the registers
 | |
|  *  - initialised mem_ctl1 and mem_ctl2 appropriately.
 | |
|  */
 | |
| static int __devinit cyberpro_common_probe(struct cfb_info *cfb)
 | |
| {
 | |
| 	u_long smem_size;
 | |
| 	u_int h_sync, v_sync;
 | |
| 	int err;
 | |
| 
 | |
| 	cyberpro_init_hw(cfb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the video RAM size and width from the VGA register.
 | |
| 	 * This should have been already initialised by the BIOS,
 | |
| 	 * but if it's garbage, claim default 1MB VRAM (woody)
 | |
| 	 */
 | |
| 	cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
 | |
| 	cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the size of the memory.
 | |
| 	 */
 | |
| 	switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
 | |
| 	case MEM_CTL2_SIZE_4MB:
 | |
| 		smem_size = 0x00400000;
 | |
| 		break;
 | |
| 	case MEM_CTL2_SIZE_2MB:
 | |
| 		smem_size = 0x00200000;
 | |
| 		break;
 | |
| 	case MEM_CTL2_SIZE_1MB:
 | |
| 		smem_size = 0x00100000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		smem_size = 0x00100000;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	cfb->fb.fix.smem_len   = smem_size;
 | |
| 	cfb->fb.fix.mmio_len   = MMIO_SIZE;
 | |
| 	cfb->fb.screen_base    = cfb->region;
 | |
| 
 | |
| #ifdef CONFIG_FB_CYBER2000_DDC
 | |
| 	if (cyber2000fb_setup_ddc_bus(cfb) == 0)
 | |
| 		cfb->ddc_registered = true;
 | |
| #endif
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
 | |
| 			  &cyber2000fb_default_mode, 8)) {
 | |
| 		printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
 | |
| 			(cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
 | |
| 
 | |
| 	if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
 | |
| 		cfb->fb.var.yres_virtual = cfb->fb.var.yres;
 | |
| 
 | |
| /*	fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the hsync and vsync frequencies.  Note that
 | |
| 	 * we split the 1e12 constant up so that we can preserve
 | |
| 	 * the precision and fit the results into 32-bit registers.
 | |
| 	 *  (1953125000 * 512 = 1e12)
 | |
| 	 */
 | |
| 	h_sync = 1953125000 / cfb->fb.var.pixclock;
 | |
| 	h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
 | |
| 		 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
 | |
| 	v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
 | |
| 		 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
 | |
| 
 | |
| 	printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
 | |
| 		cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
 | |
| 		cfb->fb.var.xres, cfb->fb.var.yres,
 | |
| 		h_sync / 1000, h_sync % 1000, v_sync);
 | |
| 
 | |
| 	err = cyber2000fb_i2c_register(cfb);
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	err = register_framebuffer(&cfb->fb);
 | |
| 	if (err)
 | |
| 		cyber2000fb_i2c_unregister(cfb);
 | |
| 
 | |
| failed:
 | |
| #ifdef CONFIG_FB_CYBER2000_DDC
 | |
| 	if (err && cfb->ddc_registered)
 | |
| 		i2c_del_adapter(&cfb->ddc_adapter);
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __devexit cyberpro_common_remove(struct cfb_info *cfb)
 | |
| {
 | |
| 	unregister_framebuffer(&cfb->fb);
 | |
| #ifdef CONFIG_FB_CYBER2000_DDC
 | |
| 	if (cfb->ddc_registered)
 | |
| 		i2c_del_adapter(&cfb->ddc_adapter);
 | |
| #endif
 | |
| 	cyber2000fb_i2c_unregister(cfb);
 | |
| }
 | |
| 
 | |
| static void cyberpro_common_resume(struct cfb_info *cfb)
 | |
| {
 | |
| 	cyberpro_init_hw(cfb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
 | |
| 	 */
 | |
| 	cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
 | |
| 	cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the old video mode and the palette.
 | |
| 	 * We also need to tell fbcon to redraw the console.
 | |
| 	 */
 | |
| 	cyber2000fb_set_par(&cfb->fb);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_SHARK
 | |
| 
 | |
| #include <mach/framebuffer.h>
 | |
| 
 | |
| static int __devinit cyberpro_vl_probe(void)
 | |
| {
 | |
| 	struct cfb_info *cfb;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	if (!request_mem_region(FB_START, FB_SIZE, "CyberPro2010"))
 | |
| 		return err;
 | |
| 
 | |
| 	cfb = cyberpro_alloc_fb_info(ID_CYBERPRO_2010, "CyberPro2010");
 | |
| 	if (!cfb)
 | |
| 		goto failed_release;
 | |
| 
 | |
| 	cfb->irq = -1;
 | |
| 	cfb->region = ioremap(FB_START, FB_SIZE);
 | |
| 	if (!cfb->region)
 | |
| 		goto failed_ioremap;
 | |
| 
 | |
| 	cfb->regs = cfb->region + MMIO_OFFSET;
 | |
| 	cfb->fb.device = NULL;
 | |
| 	cfb->fb.fix.mmio_start = FB_START + MMIO_OFFSET;
 | |
| 	cfb->fb.fix.smem_start = FB_START;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bring up the hardware.  This is expected to enable access
 | |
| 	 * to the linear memory region, and allow access to the memory
 | |
| 	 * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be
 | |
| 	 * initialised.
 | |
| 	 */
 | |
| 	cyber2000fb_writeb(0x18, 0x46e8, cfb);
 | |
| 	cyber2000fb_writeb(0x01, 0x102, cfb);
 | |
| 	cyber2000fb_writeb(0x08, 0x46e8, cfb);
 | |
| 	cyber2000fb_writeb(EXT_BIU_MISC, 0x3ce, cfb);
 | |
| 	cyber2000fb_writeb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf, cfb);
 | |
| 
 | |
| 	cfb->mclk_mult = 0xdb;
 | |
| 	cfb->mclk_div  = 0x54;
 | |
| 
 | |
| 	err = cyberpro_common_probe(cfb);
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	if (int_cfb_info == NULL)
 | |
| 		int_cfb_info = cfb;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failed:
 | |
| 	iounmap(cfb->region);
 | |
| failed_ioremap:
 | |
| 	cyberpro_free_fb_info(cfb);
 | |
| failed_release:
 | |
| 	release_mem_region(FB_START, FB_SIZE);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_ARCH_SHARK */
 | |
| 
 | |
| /*
 | |
|  * PCI specific support.
 | |
|  */
 | |
| #ifdef CONFIG_PCI
 | |
| /*
 | |
|  * We need to wake up the CyberPro, and make sure its in linear memory
 | |
|  * mode.  Unfortunately, this is specific to the platform and card that
 | |
|  * we are running on.
 | |
|  *
 | |
|  * On x86 and ARM, should we be initialising the CyberPro first via the
 | |
|  * IO registers, and then the MMIO registers to catch all cases?  Can we
 | |
|  * end up in the situation where the chip is in MMIO mode, but not awake
 | |
|  * on an x86 system?
 | |
|  */
 | |
| static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
 | |
| {
 | |
| 	unsigned char val;
 | |
| 
 | |
| #if defined(__sparc_v9__)
 | |
| #error "You lose, consult DaveM."
 | |
| #elif defined(__sparc__)
 | |
| 	/*
 | |
| 	 * SPARC does not have an "outb" instruction, so we generate
 | |
| 	 * I/O cycles storing into a reserved memory space at
 | |
| 	 * physical address 0x3000000
 | |
| 	 */
 | |
| 	unsigned char __iomem *iop;
 | |
| 
 | |
| 	iop = ioremap(0x3000000, 0x5000);
 | |
| 	if (iop == NULL) {
 | |
| 		printk(KERN_ERR "iga5000: cannot map I/O\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	writeb(0x18, iop + 0x46e8);
 | |
| 	writeb(0x01, iop + 0x102);
 | |
| 	writeb(0x08, iop + 0x46e8);
 | |
| 	writeb(EXT_BIU_MISC, iop + 0x3ce);
 | |
| 	writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
 | |
| 
 | |
| 	iounmap(iop);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Most other machine types are "normal", so
 | |
| 	 * we use the standard IO-based wakeup.
 | |
| 	 */
 | |
| 	outb(0x18, 0x46e8);
 | |
| 	outb(0x01, 0x102);
 | |
| 	outb(0x08, 0x46e8);
 | |
| 	outb(EXT_BIU_MISC, 0x3ce);
 | |
| 	outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow the CyberPro to accept PCI burst accesses
 | |
| 	 */
 | |
| 	if (cfb->id == ID_CYBERPRO_2010) {
 | |
| 		printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
 | |
| 		       cfb->fb.fix.id);
 | |
| 	} else {
 | |
| 		val = cyber2000_grphr(EXT_BUS_CTL, cfb);
 | |
| 		if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
 | |
| 			printk(KERN_INFO "%s: enabling PCI bursts\n",
 | |
| 				cfb->fb.fix.id);
 | |
| 
 | |
| 			val |= EXT_BUS_CTL_PCIBURST_WRITE;
 | |
| 
 | |
| 			if (cfb->id == ID_CYBERPRO_5000)
 | |
| 				val |= EXT_BUS_CTL_PCIBURST_READ;
 | |
| 
 | |
| 			cyber2000_grphw(EXT_BUS_CTL, val, cfb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| cyberpro_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 | |
| {
 | |
| 	struct cfb_info *cfb;
 | |
| 	char name[16];
 | |
| 	int err;
 | |
| 
 | |
| 	sprintf(name, "CyberPro%4X", id->device);
 | |
| 
 | |
| 	err = pci_enable_device(dev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	cfb = cyberpro_alloc_fb_info(id->driver_data, name);
 | |
| 	if (!cfb)
 | |
| 		goto failed_release;
 | |
| 
 | |
| 	err = pci_request_regions(dev, cfb->fb.fix.id);
 | |
| 	if (err)
 | |
| 		goto failed_regions;
 | |
| 
 | |
| 	cfb->irq = dev->irq;
 | |
| 	cfb->region = pci_ioremap_bar(dev, 0);
 | |
| 	if (!cfb->region)
 | |
| 		goto failed_ioremap;
 | |
| 
 | |
| 	cfb->regs = cfb->region + MMIO_OFFSET;
 | |
| 	cfb->fb.device = &dev->dev;
 | |
| 	cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
 | |
| 	cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bring up the hardware.  This is expected to enable access
 | |
| 	 * to the linear memory region, and allow access to the memory
 | |
| 	 * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be
 | |
| 	 * initialised.
 | |
| 	 */
 | |
| 	err = cyberpro_pci_enable_mmio(cfb);
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use MCLK from BIOS. FIXME: what about hotplug?
 | |
| 	 */
 | |
| 	cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
 | |
| 	cfb->mclk_div  = cyber2000_grphr(EXT_MCLK_DIV, cfb);
 | |
| 
 | |
| #ifdef __arm__
 | |
| 	/*
 | |
| 	 * MCLK on the NetWinder and the Shark is fixed at 75MHz
 | |
| 	 */
 | |
| 	if (machine_is_netwinder()) {
 | |
| 		cfb->mclk_mult = 0xdb;
 | |
| 		cfb->mclk_div  = 0x54;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	err = cyberpro_common_probe(cfb);
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Our driver data
 | |
| 	 */
 | |
| 	pci_set_drvdata(dev, cfb);
 | |
| 	if (int_cfb_info == NULL)
 | |
| 		int_cfb_info = cfb;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failed:
 | |
| 	iounmap(cfb->region);
 | |
| failed_ioremap:
 | |
| 	pci_release_regions(dev);
 | |
| failed_regions:
 | |
| 	cyberpro_free_fb_info(cfb);
 | |
| failed_release:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __devexit cyberpro_pci_remove(struct pci_dev *dev)
 | |
| {
 | |
| 	struct cfb_info *cfb = pci_get_drvdata(dev);
 | |
| 
 | |
| 	if (cfb) {
 | |
| 		cyberpro_common_remove(cfb);
 | |
| 		iounmap(cfb->region);
 | |
| 		cyberpro_free_fb_info(cfb);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure that the driver data is no longer
 | |
| 		 * valid.
 | |
| 		 */
 | |
| 		pci_set_drvdata(dev, NULL);
 | |
| 		if (cfb == int_cfb_info)
 | |
| 			int_cfb_info = NULL;
 | |
| 
 | |
| 		pci_release_regions(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-initialise the CyberPro hardware
 | |
|  */
 | |
| static int cyberpro_pci_resume(struct pci_dev *dev)
 | |
| {
 | |
| 	struct cfb_info *cfb = pci_get_drvdata(dev);
 | |
| 
 | |
| 	if (cfb) {
 | |
| 		cyberpro_pci_enable_mmio(cfb);
 | |
| 		cyberpro_common_resume(cfb);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pci_device_id cyberpro_pci_table[] = {
 | |
| /*	Not yet
 | |
|  *	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
 | |
|  *		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
 | |
|  */
 | |
| 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
 | |
| 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
 | |
| 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
 | |
| 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
 | |
| 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
 | |
| 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
 | |
| 
 | |
| static struct pci_driver cyberpro_driver = {
 | |
| 	.name		= "CyberPro",
 | |
| 	.probe		= cyberpro_pci_probe,
 | |
| 	.remove		= __devexit_p(cyberpro_pci_remove),
 | |
| 	.suspend	= cyberpro_pci_suspend,
 | |
| 	.resume		= cyberpro_pci_resume,
 | |
| 	.id_table	= cyberpro_pci_table
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * I don't think we can use the "module_init" stuff here because
 | |
|  * the fbcon stuff may not be initialised yet.  Hence the #ifdef
 | |
|  * around module_init.
 | |
|  *
 | |
|  * Tony: "module_init" is now required
 | |
|  */
 | |
| static int __init cyber2000fb_init(void)
 | |
| {
 | |
| 	int ret = -1, err;
 | |
| 
 | |
| #ifndef MODULE
 | |
| 	char *option = NULL;
 | |
| 
 | |
| 	if (fb_get_options("cyber2000fb", &option))
 | |
| 		return -ENODEV;
 | |
| 	cyber2000fb_setup(option);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_SHARK
 | |
| 	err = cyberpro_vl_probe();
 | |
| 	if (!err)
 | |
| 		ret = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_PCI
 | |
| 	err = pci_register_driver(&cyberpro_driver);
 | |
| 	if (!err)
 | |
| 		ret = 0;
 | |
| #endif
 | |
| 
 | |
| 	return ret ? err : 0;
 | |
| }
 | |
| module_init(cyber2000fb_init);
 | |
| 
 | |
| #ifndef CONFIG_ARCH_SHARK
 | |
| static void __exit cyberpro_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&cyberpro_driver);
 | |
| }
 | |
| module_exit(cyberpro_exit);
 | |
| #endif
 | |
| 
 | |
| MODULE_AUTHOR("Russell King");
 | |
| MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
 | |
| MODULE_LICENSE("GPL");
 | 
