 ee160a38ee
			
		
	
	
	ee160a38ee
	
	
	
		
			
			linux/tty_flip.h is included in linux/serial_core.h. But this may (and will) change in the future. Then we would get build errors such as: .../tty/serial/max3107.c: In function ‘put_data_to_circ_buf’: .../tty/serial/max3107.c:149:2: error: implicit declaration of function ‘tty_insert_flip_string’ So fix all the drviers which call tty flip buffer helpers to really include linux/tty_flip.h. And also make sure that those include linux/tty.h when operating with struct tty_struct. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
		
			
				
	
	
		
			1305 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1305 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * zs.c: Serial port driver for IOASIC DECstations.
 | |
|  *
 | |
|  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
 | |
|  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
 | |
|  *
 | |
|  * DECstation changes
 | |
|  * Copyright (C) 1998-2000 Harald Koerfgen
 | |
|  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 | |
|  *
 | |
|  * For the rest of the code the original Copyright applies:
 | |
|  * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
 | |
|  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 | |
|  *
 | |
|  *
 | |
|  * Note: for IOASIC systems the wiring is as follows:
 | |
|  *
 | |
|  * mouse/keyboard:
 | |
|  * DIN-7 MJ-4  signal        SCC
 | |
|  * 2     1     TxD       <-  A.TxD
 | |
|  * 3     4     RxD       ->  A.RxD
 | |
|  *
 | |
|  * EIA-232/EIA-423:
 | |
|  * DB-25 MMJ-6 signal        SCC
 | |
|  * 2     2     TxD       <-  B.TxD
 | |
|  * 3     5     RxD       ->  B.RxD
 | |
|  * 4           RTS       <- ~A.RTS
 | |
|  * 5           CTS       -> ~B.CTS
 | |
|  * 6     6     DSR       -> ~A.SYNC
 | |
|  * 8           CD        -> ~B.DCD
 | |
|  * 12          DSRS(DCE) -> ~A.CTS  (*)
 | |
|  * 15          TxC       ->  B.TxC
 | |
|  * 17          RxC       ->  B.RxC
 | |
|  * 20    1     DTR       <- ~A.DTR
 | |
|  * 22          RI        -> ~A.DCD
 | |
|  * 23          DSRS(DTE) <- ~B.RTS
 | |
|  *
 | |
|  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
 | |
|  *     is shared with DSRS(DTE) at pin 23.
 | |
|  *
 | |
|  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
 | |
|  * is a bit odd.  This makes the handling of port B unnecessarily
 | |
|  * complicated and prevents the use of some automatic modes of operation.
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
 | |
| #define SUPPORT_SYSRQ
 | |
| #endif
 | |
| 
 | |
| #include <linux/bug.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/irqflags.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/major.h>
 | |
| #include <linux/serial.h>
 | |
| #include <linux/serial_core.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/sysrq.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/tty_flip.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/system.h>
 | |
| 
 | |
| #include <asm/dec/interrupts.h>
 | |
| #include <asm/dec/ioasic_addrs.h>
 | |
| #include <asm/dec/system.h>
 | |
| 
 | |
| #include "zs.h"
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
 | |
| MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| 
 | |
| static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
 | |
| static char zs_version[] __initdata = "0.10";
 | |
| 
 | |
| /*
 | |
|  * It would be nice to dynamically allocate everything that
 | |
|  * depends on ZS_NUM_SCCS, so we could support any number of
 | |
|  * Z85C30s, but for now...
 | |
|  */
 | |
| #define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
 | |
| #define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
 | |
| #define ZS_CHAN_A	0		/* Index of the channel A.  */
 | |
| #define ZS_CHAN_B	1		/* Index of the channel B.  */
 | |
| #define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
 | |
| #define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
 | |
| #define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
 | |
| 					   of the 16-bit IOBUS.  */
 | |
| #define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
 | |
| 
 | |
| #define to_zport(uport) container_of(uport, struct zs_port, port)
 | |
| 
 | |
| struct zs_parms {
 | |
| 	resource_size_t scc[ZS_NUM_SCCS];
 | |
| 	int irq[ZS_NUM_SCCS];
 | |
| };
 | |
| 
 | |
| static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 | |
| 
 | |
| static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 | |
| 	0,				/* write 0 */
 | |
| 	PAR_SPEC,			/* write 1 */
 | |
| 	0,				/* write 2 */
 | |
| 	0,				/* write 3 */
 | |
| 	X16CLK | SB1,			/* write 4 */
 | |
| 	0,				/* write 5 */
 | |
| 	0, 0, 0,			/* write 6, 7, 8 */
 | |
| 	MIE | DLC | NV,			/* write 9 */
 | |
| 	NRZ,				/* write 10 */
 | |
| 	TCBR | RCBR,			/* write 11 */
 | |
| 	0, 0,				/* BRG time constant, write 12 + 13 */
 | |
| 	BRSRC | BRENABL,		/* write 14 */
 | |
| 	0,				/* write 15 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Debugging.
 | |
|  */
 | |
| #undef ZS_DEBUG_REGS
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reading and writing Z85C30 registers.
 | |
|  */
 | |
| static void recovery_delay(void)
 | |
| {
 | |
| 	udelay(2);
 | |
| }
 | |
| 
 | |
| static u8 read_zsreg(struct zs_port *zport, int reg)
 | |
| {
 | |
| 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 | |
| 	u8 retval;
 | |
| 
 | |
| 	if (reg != 0) {
 | |
| 		writeb(reg & 0xf, control);
 | |
| 		fast_iob();
 | |
| 		recovery_delay();
 | |
| 	}
 | |
| 	retval = readb(control);
 | |
| 	recovery_delay();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 | |
| {
 | |
| 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 | |
| 
 | |
| 	if (reg != 0) {
 | |
| 		writeb(reg & 0xf, control);
 | |
| 		fast_iob(); recovery_delay();
 | |
| 	}
 | |
| 	writeb(value, control);
 | |
| 	fast_iob();
 | |
| 	recovery_delay();
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static u8 read_zsdata(struct zs_port *zport)
 | |
| {
 | |
| 	void __iomem *data = zport->port.membase +
 | |
| 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 | |
| 	u8 retval;
 | |
| 
 | |
| 	retval = readb(data);
 | |
| 	recovery_delay();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void write_zsdata(struct zs_port *zport, u8 value)
 | |
| {
 | |
| 	void __iomem *data = zport->port.membase +
 | |
| 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 | |
| 
 | |
| 	writeb(value, data);
 | |
| 	fast_iob();
 | |
| 	recovery_delay();
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #ifdef ZS_DEBUG_REGS
 | |
| void zs_dump(void)
 | |
| {
 | |
| 	struct zs_port *zport;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 | |
| 		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 | |
| 
 | |
| 		if (!zport->scc)
 | |
| 			continue;
 | |
| 
 | |
| 		for (j = 0; j < 16; j++)
 | |
| 			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 | |
| 		printk("\n");
 | |
| 		for (j = 0; j < 16; j++)
 | |
| 			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 | |
| 		printk("\n\n");
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 | |
| {
 | |
| 	if (irq)
 | |
| 		spin_lock_irq(lock);
 | |
| 	else
 | |
| 		spin_lock(lock);
 | |
| }
 | |
| 
 | |
| static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 | |
| {
 | |
| 	if (irq)
 | |
| 		spin_unlock_irq(lock);
 | |
| 	else
 | |
| 		spin_unlock(lock);
 | |
| }
 | |
| 
 | |
| static int zs_receive_drain(struct zs_port *zport)
 | |
| {
 | |
| 	int loops = 10000;
 | |
| 
 | |
| 	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 | |
| 		read_zsdata(zport);
 | |
| 	return loops;
 | |
| }
 | |
| 
 | |
| static int zs_transmit_drain(struct zs_port *zport, int irq)
 | |
| {
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	int loops = 10000;
 | |
| 
 | |
| 	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 | |
| 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 | |
| 		udelay(2);
 | |
| 		zs_spin_lock_cond_irq(&scc->zlock, irq);
 | |
| 	}
 | |
| 	return loops;
 | |
| }
 | |
| 
 | |
| static int zs_line_drain(struct zs_port *zport, int irq)
 | |
| {
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	int loops = 10000;
 | |
| 
 | |
| 	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 | |
| 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 | |
| 		udelay(2);
 | |
| 		zs_spin_lock_cond_irq(&scc->zlock, irq);
 | |
| 	}
 | |
| 	return loops;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 | |
| {
 | |
| 	/* Let the current transmission finish.  */
 | |
| 	zs_line_drain(zport, irq);
 | |
| 	/* Load 'em up.  */
 | |
| 	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 | |
| 	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 | |
| 	write_zsreg(zport, R4, regs[4]);
 | |
| 	write_zsreg(zport, R9, regs[9]);
 | |
| 	write_zsreg(zport, R1, regs[1]);
 | |
| 	write_zsreg(zport, R2, regs[2]);
 | |
| 	write_zsreg(zport, R10, regs[10]);
 | |
| 	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 | |
| 	write_zsreg(zport, R11, regs[11]);
 | |
| 	write_zsreg(zport, R12, regs[12]);
 | |
| 	write_zsreg(zport, R13, regs[13]);
 | |
| 	write_zsreg(zport, R14, regs[14]);
 | |
| 	write_zsreg(zport, R15, regs[15]);
 | |
| 	if (regs[3] & RxENABLE)
 | |
| 		write_zsreg(zport, R3, regs[3]);
 | |
| 	if (regs[5] & TxENAB)
 | |
| 		write_zsreg(zport, R5, regs[5]);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Status handling routines.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * zs_tx_empty() -- get the transmitter empty status
 | |
|  *
 | |
|  * Purpose: Let user call ioctl() to get info when the UART physically
 | |
|  * 	    is emptied.  On bus types like RS485, the transmitter must
 | |
|  * 	    release the bus after transmitting.  This must be done when
 | |
|  * 	    the transmit shift register is empty, not be done when the
 | |
|  * 	    transmit holding register is empty.  This functionality
 | |
|  * 	    allows an RS485 driver to be written in user space.
 | |
|  */
 | |
| static unsigned int zs_tx_empty(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned long flags;
 | |
| 	u8 status;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	status = read_zsreg(zport, R1);
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| 
 | |
| 	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 | |
| }
 | |
| 
 | |
| static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 | |
| 					struct zs_port *zport_b)
 | |
| {
 | |
| 	u8 status_a, status_b;
 | |
| 	unsigned int mctrl;
 | |
| 
 | |
| 	status_a = read_zsreg(zport_a, R0);
 | |
| 	status_b = read_zsreg(zport_b, R0);
 | |
| 
 | |
| 	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 | |
| 		((status_b & DCD) ? TIOCM_CAR : 0) |
 | |
| 		((status_a & DCD) ? TIOCM_RNG : 0) |
 | |
| 		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 | |
| 
 | |
| 	return mctrl;
 | |
| }
 | |
| 
 | |
| static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 | |
| {
 | |
| 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 | |
| 
 | |
| 	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 | |
| }
 | |
| 
 | |
| static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 | |
| {
 | |
| 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 | |
| 	unsigned int mmask, mctrl, delta;
 | |
| 	u8 mask_a, mask_b;
 | |
| 
 | |
| 	if (zport == zport_a)
 | |
| 		return 0;
 | |
| 
 | |
| 	mask_a = zport_a->regs[15];
 | |
| 	mask_b = zport->regs[15];
 | |
| 
 | |
| 	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 | |
| 		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 | |
| 		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 | |
| 		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 | |
| 
 | |
| 	mctrl = zport->mctrl;
 | |
| 	if (mmask) {
 | |
| 		mctrl &= ~mmask;
 | |
| 		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 | |
| 	}
 | |
| 
 | |
| 	delta = mctrl ^ zport->mctrl;
 | |
| 	if (delta)
 | |
| 		zport->mctrl = mctrl;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| static unsigned int zs_get_mctrl(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned int mctrl;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	mctrl = zs_raw_get_mctrl(zport);
 | |
| 	spin_unlock(&scc->zlock);
 | |
| 
 | |
| 	return mctrl;
 | |
| }
 | |
| 
 | |
| static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 | |
| 	u8 oldloop, newloop;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	if (zport != zport_a) {
 | |
| 		if (mctrl & TIOCM_DTR)
 | |
| 			zport_a->regs[5] |= DTR;
 | |
| 		else
 | |
| 			zport_a->regs[5] &= ~DTR;
 | |
| 		if (mctrl & TIOCM_RTS)
 | |
| 			zport_a->regs[5] |= RTS;
 | |
| 		else
 | |
| 			zport_a->regs[5] &= ~RTS;
 | |
| 		write_zsreg(zport_a, R5, zport_a->regs[5]);
 | |
| 	}
 | |
| 
 | |
| 	/* Rarely modified, so don't poke at hardware unless necessary. */
 | |
| 	oldloop = zport->regs[14];
 | |
| 	newloop = oldloop;
 | |
| 	if (mctrl & TIOCM_LOOP)
 | |
| 		newloop |= LOOPBAK;
 | |
| 	else
 | |
| 		newloop &= ~LOOPBAK;
 | |
| 	if (newloop != oldloop) {
 | |
| 		zport->regs[14] = newloop;
 | |
| 		write_zsreg(zport, R14, zport->regs[14]);
 | |
| 	}
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_raw_stop_tx(struct zs_port *zport)
 | |
| {
 | |
| 	write_zsreg(zport, R0, RES_Tx_P);
 | |
| 	zport->tx_stopped = 1;
 | |
| }
 | |
| 
 | |
| static void zs_stop_tx(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	zs_raw_stop_tx(zport);
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_raw_transmit_chars(struct zs_port *);
 | |
| 
 | |
| static void zs_start_tx(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	if (zport->tx_stopped) {
 | |
| 		zs_transmit_drain(zport, 0);
 | |
| 		zport->tx_stopped = 0;
 | |
| 		zs_raw_transmit_chars(zport);
 | |
| 	}
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_stop_rx(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	zport->regs[15] &= ~BRKIE;
 | |
| 	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 | |
| 	zport->regs[1] |= RxINT_DISAB;
 | |
| 
 | |
| 	if (zport != zport_a) {
 | |
| 		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 | |
| 		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 | |
| 		write_zsreg(zport_a, R15, zport_a->regs[15]);
 | |
| 		if (!(zport_a->regs[15] & BRKIE)) {
 | |
| 			zport_a->regs[1] &= ~EXT_INT_ENAB;
 | |
| 			write_zsreg(zport_a, R1, zport_a->regs[1]);
 | |
| 		}
 | |
| 
 | |
| 		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 | |
| 		zport->regs[15] &= ~(DCDIE | CTSIE);
 | |
| 		zport->regs[1] &= ~EXT_INT_ENAB;
 | |
| 	} else {
 | |
| 		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 | |
| 		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 | |
| 			zport->regs[1] &= ~EXT_INT_ENAB;
 | |
| 	}
 | |
| 
 | |
| 	write_zsreg(zport, R15, zport->regs[15]);
 | |
| 	write_zsreg(zport, R1, zport->regs[1]);
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_enable_ms(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 | |
| 
 | |
| 	if (zport == zport_a)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 
 | |
| 	/* Clear Ext interrupts if not being handled already.  */
 | |
| 	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 | |
| 		write_zsreg(zport_a, R0, RES_EXT_INT);
 | |
| 
 | |
| 	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 | |
| 	zport_a->regs[1] |= EXT_INT_ENAB;
 | |
| 	zport_a->regs[15] |= DCDIE | SYNCIE;
 | |
| 
 | |
| 	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 | |
| 	zport->regs[15] |= DCDIE | CTSIE;
 | |
| 
 | |
| 	zs_raw_xor_mctrl(zport);
 | |
| 
 | |
| 	write_zsreg(zport_a, R1, zport_a->regs[1]);
 | |
| 	write_zsreg(zport_a, R15, zport_a->regs[15]);
 | |
| 	write_zsreg(zport, R15, zport->regs[15]);
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_break_ctl(struct uart_port *uport, int break_state)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	if (break_state == -1)
 | |
| 		zport->regs[5] |= SND_BRK;
 | |
| 	else
 | |
| 		zport->regs[5] &= ~SND_BRK;
 | |
| 	write_zsreg(zport, R5, zport->regs[5]);
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Interrupt handling routines.
 | |
|  */
 | |
| #define Rx_BRK 0x0100			/* BREAK event software flag.  */
 | |
| #define Rx_SYS 0x0200			/* SysRq event software flag.  */
 | |
| 
 | |
| static void zs_receive_chars(struct zs_port *zport)
 | |
| {
 | |
| 	struct uart_port *uport = &zport->port;
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	struct uart_icount *icount;
 | |
| 	unsigned int avail, status, ch, flag;
 | |
| 	int count;
 | |
| 
 | |
| 	for (count = 16; count; count--) {
 | |
| 		spin_lock(&scc->zlock);
 | |
| 		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 | |
| 		spin_unlock(&scc->zlock);
 | |
| 		if (!avail)
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock(&scc->zlock);
 | |
| 		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 | |
| 		ch = read_zsdata(zport);
 | |
| 		spin_unlock(&scc->zlock);
 | |
| 
 | |
| 		flag = TTY_NORMAL;
 | |
| 
 | |
| 		icount = &uport->icount;
 | |
| 		icount->rx++;
 | |
| 
 | |
| 		/* Handle the null char got when BREAK is removed.  */
 | |
| 		if (!ch)
 | |
| 			status |= zport->tty_break;
 | |
| 		if (unlikely(status &
 | |
| 			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 | |
| 			zport->tty_break = 0;
 | |
| 
 | |
| 			/* Reset the error indication.  */
 | |
| 			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 | |
| 				spin_lock(&scc->zlock);
 | |
| 				write_zsreg(zport, R0, ERR_RES);
 | |
| 				spin_unlock(&scc->zlock);
 | |
| 			}
 | |
| 
 | |
| 			if (status & (Rx_SYS | Rx_BRK)) {
 | |
| 				icount->brk++;
 | |
| 				/* SysRq discards the null char.  */
 | |
| 				if (status & Rx_SYS)
 | |
| 					continue;
 | |
| 			} else if (status & FRM_ERR)
 | |
| 				icount->frame++;
 | |
| 			else if (status & PAR_ERR)
 | |
| 				icount->parity++;
 | |
| 			if (status & Rx_OVR)
 | |
| 				icount->overrun++;
 | |
| 
 | |
| 			status &= uport->read_status_mask;
 | |
| 			if (status & Rx_BRK)
 | |
| 				flag = TTY_BREAK;
 | |
| 			else if (status & FRM_ERR)
 | |
| 				flag = TTY_FRAME;
 | |
| 			else if (status & PAR_ERR)
 | |
| 				flag = TTY_PARITY;
 | |
| 		}
 | |
| 
 | |
| 		if (uart_handle_sysrq_char(uport, ch))
 | |
| 			continue;
 | |
| 
 | |
| 		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 | |
| 	}
 | |
| 
 | |
| 	tty_flip_buffer_push(uport->state->port.tty);
 | |
| }
 | |
| 
 | |
| static void zs_raw_transmit_chars(struct zs_port *zport)
 | |
| {
 | |
| 	struct circ_buf *xmit = &zport->port.state->xmit;
 | |
| 
 | |
| 	/* XON/XOFF chars.  */
 | |
| 	if (zport->port.x_char) {
 | |
| 		write_zsdata(zport, zport->port.x_char);
 | |
| 		zport->port.icount.tx++;
 | |
| 		zport->port.x_char = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If nothing to do or stopped or hardware stopped.  */
 | |
| 	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 | |
| 		zs_raw_stop_tx(zport);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Send char.  */
 | |
| 	write_zsdata(zport, xmit->buf[xmit->tail]);
 | |
| 	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 | |
| 	zport->port.icount.tx++;
 | |
| 
 | |
| 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 | |
| 		uart_write_wakeup(&zport->port);
 | |
| 
 | |
| 	/* Are we are done?  */
 | |
| 	if (uart_circ_empty(xmit))
 | |
| 		zs_raw_stop_tx(zport);
 | |
| }
 | |
| 
 | |
| static void zs_transmit_chars(struct zs_port *zport)
 | |
| {
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 	zs_raw_transmit_chars(zport);
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 | |
| {
 | |
| 	struct uart_port *uport = &zport->port;
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned int delta;
 | |
| 	u8 status, brk;
 | |
| 
 | |
| 	spin_lock(&scc->zlock);
 | |
| 
 | |
| 	/* Get status from Read Register 0.  */
 | |
| 	status = read_zsreg(zport, R0);
 | |
| 
 | |
| 	if (zport->regs[15] & BRKIE) {
 | |
| 		brk = status & BRK_ABRT;
 | |
| 		if (brk && !zport->brk) {
 | |
| 			spin_unlock(&scc->zlock);
 | |
| 			if (uart_handle_break(uport))
 | |
| 				zport->tty_break = Rx_SYS;
 | |
| 			else
 | |
| 				zport->tty_break = Rx_BRK;
 | |
| 			spin_lock(&scc->zlock);
 | |
| 		}
 | |
| 		zport->brk = brk;
 | |
| 	}
 | |
| 
 | |
| 	if (zport != zport_a) {
 | |
| 		delta = zs_raw_xor_mctrl(zport);
 | |
| 		spin_unlock(&scc->zlock);
 | |
| 
 | |
| 		if (delta & TIOCM_CTS)
 | |
| 			uart_handle_cts_change(uport,
 | |
| 					       zport->mctrl & TIOCM_CTS);
 | |
| 		if (delta & TIOCM_CAR)
 | |
| 			uart_handle_dcd_change(uport,
 | |
| 					       zport->mctrl & TIOCM_CAR);
 | |
| 		if (delta & TIOCM_RNG)
 | |
| 			uport->icount.dsr++;
 | |
| 		if (delta & TIOCM_DSR)
 | |
| 			uport->icount.rng++;
 | |
| 
 | |
| 		if (delta)
 | |
| 			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 | |
| 
 | |
| 		spin_lock(&scc->zlock);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the status condition...  */
 | |
| 	write_zsreg(zport, R0, RES_EXT_INT);
 | |
| 
 | |
| 	spin_unlock(&scc->zlock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the Z85C30 driver's generic interrupt routine.
 | |
|  */
 | |
| static irqreturn_t zs_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct zs_scc *scc = dev_id;
 | |
| 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 | |
| 	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 | |
| 	irqreturn_t status = IRQ_NONE;
 | |
| 	u8 zs_intreg;
 | |
| 	int count;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: The read register 3, which holds the irq status,
 | |
| 	 *       does so for both channels on each chip.  Although
 | |
| 	 *       the status value itself must be read from the A
 | |
| 	 *       channel and is only valid when read from channel A.
 | |
| 	 *       Yes... broken hardware...
 | |
| 	 */
 | |
| 	for (count = 16; count; count--) {
 | |
| 		spin_lock(&scc->zlock);
 | |
| 		zs_intreg = read_zsreg(zport_a, R3);
 | |
| 		spin_unlock(&scc->zlock);
 | |
| 		if (!zs_intreg)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We do not like losing characters, so we prioritise
 | |
| 		 * interrupt sources a little bit differently than
 | |
| 		 * the SCC would, was it allowed to.
 | |
| 		 */
 | |
| 		if (zs_intreg & CHBRxIP)
 | |
| 			zs_receive_chars(zport_b);
 | |
| 		if (zs_intreg & CHARxIP)
 | |
| 			zs_receive_chars(zport_a);
 | |
| 		if (zs_intreg & CHBEXT)
 | |
| 			zs_status_handle(zport_b, zport_a);
 | |
| 		if (zs_intreg & CHAEXT)
 | |
| 			zs_status_handle(zport_a, zport_a);
 | |
| 		if (zs_intreg & CHBTxIP)
 | |
| 			zs_transmit_chars(zport_b);
 | |
| 		if (zs_intreg & CHATxIP)
 | |
| 			zs_transmit_chars(zport_a);
 | |
| 
 | |
| 		status = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Finally, routines used to initialize the serial port.
 | |
|  */
 | |
| static int zs_startup(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned long flags;
 | |
| 	int irq_guard;
 | |
| 	int ret;
 | |
| 
 | |
| 	irq_guard = atomic_add_return(1, &scc->irq_guard);
 | |
| 	if (irq_guard == 1) {
 | |
| 		ret = request_irq(zport->port.irq, zs_interrupt,
 | |
| 				  IRQF_SHARED, "scc", scc);
 | |
| 		if (ret) {
 | |
| 			atomic_add(-1, &scc->irq_guard);
 | |
| 			printk(KERN_ERR "zs: can't get irq %d\n",
 | |
| 			       zport->port.irq);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 
 | |
| 	/* Clear the receive FIFO.  */
 | |
| 	zs_receive_drain(zport);
 | |
| 
 | |
| 	/* Clear the interrupt registers.  */
 | |
| 	write_zsreg(zport, R0, ERR_RES);
 | |
| 	write_zsreg(zport, R0, RES_Tx_P);
 | |
| 	/* But Ext only if not being handled already.  */
 | |
| 	if (!(zport->regs[1] & EXT_INT_ENAB))
 | |
| 		write_zsreg(zport, R0, RES_EXT_INT);
 | |
| 
 | |
| 	/* Finally, enable sequencing and interrupts.  */
 | |
| 	zport->regs[1] &= ~RxINT_MASK;
 | |
| 	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 | |
| 	zport->regs[3] |= RxENABLE;
 | |
| 	zport->regs[15] |= BRKIE;
 | |
| 	write_zsreg(zport, R1, zport->regs[1]);
 | |
| 	write_zsreg(zport, R3, zport->regs[3]);
 | |
| 	write_zsreg(zport, R5, zport->regs[5]);
 | |
| 	write_zsreg(zport, R15, zport->regs[15]);
 | |
| 
 | |
| 	/* Record the current state of RR0.  */
 | |
| 	zport->mctrl = zs_raw_get_mctrl(zport);
 | |
| 	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 | |
| 
 | |
| 	zport->tx_stopped = 1;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void zs_shutdown(struct uart_port *uport)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned long flags;
 | |
| 	int irq_guard;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 
 | |
| 	zport->regs[3] &= ~RxENABLE;
 | |
| 	write_zsreg(zport, R5, zport->regs[5]);
 | |
| 	write_zsreg(zport, R3, zport->regs[3]);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| 
 | |
| 	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 | |
| 	if (!irq_guard)
 | |
| 		free_irq(zport->port.irq, scc);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void zs_reset(struct zs_port *zport)
 | |
| {
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	int irq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	irq = !irqs_disabled_flags(flags);
 | |
| 	if (!scc->initialised) {
 | |
| 		/* Reset the pointer first, just in case...  */
 | |
| 		read_zsreg(zport, R0);
 | |
| 		/* And let the current transmission finish.  */
 | |
| 		zs_line_drain(zport, irq);
 | |
| 		write_zsreg(zport, R9, FHWRES);
 | |
| 		udelay(10);
 | |
| 		write_zsreg(zport, R9, 0);
 | |
| 		scc->initialised = 1;
 | |
| 	}
 | |
| 	load_zsregs(zport, zport->regs, irq);
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| }
 | |
| 
 | |
| static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 | |
| 			   struct ktermios *old_termios)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 | |
| 	int irq;
 | |
| 	unsigned int baud, brg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	irq = !irqs_disabled_flags(flags);
 | |
| 
 | |
| 	/* Byte size.  */
 | |
| 	zport->regs[3] &= ~RxNBITS_MASK;
 | |
| 	zport->regs[5] &= ~TxNBITS_MASK;
 | |
| 	switch (termios->c_cflag & CSIZE) {
 | |
| 	case CS5:
 | |
| 		zport->regs[3] |= Rx5;
 | |
| 		zport->regs[5] |= Tx5;
 | |
| 		break;
 | |
| 	case CS6:
 | |
| 		zport->regs[3] |= Rx6;
 | |
| 		zport->regs[5] |= Tx6;
 | |
| 		break;
 | |
| 	case CS7:
 | |
| 		zport->regs[3] |= Rx7;
 | |
| 		zport->regs[5] |= Tx7;
 | |
| 		break;
 | |
| 	case CS8:
 | |
| 	default:
 | |
| 		zport->regs[3] |= Rx8;
 | |
| 		zport->regs[5] |= Tx8;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Parity and stop bits.  */
 | |
| 	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 | |
| 	if (termios->c_cflag & CSTOPB)
 | |
| 		zport->regs[4] |= SB2;
 | |
| 	else
 | |
| 		zport->regs[4] |= SB1;
 | |
| 	if (termios->c_cflag & PARENB)
 | |
| 		zport->regs[4] |= PAR_ENA;
 | |
| 	if (!(termios->c_cflag & PARODD))
 | |
| 		zport->regs[4] |= PAR_EVEN;
 | |
| 	switch (zport->clk_mode) {
 | |
| 	case 64:
 | |
| 		zport->regs[4] |= X64CLK;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		zport->regs[4] |= X32CLK;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		zport->regs[4] |= X16CLK;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		zport->regs[4] |= X1CLK;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 | |
| 				  uport->uartclk / zport->clk_mode / 4);
 | |
| 
 | |
| 	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 | |
| 	zport->regs[12] = brg & 0xff;
 | |
| 	zport->regs[13] = (brg >> 8) & 0xff;
 | |
| 
 | |
| 	uart_update_timeout(uport, termios->c_cflag, baud);
 | |
| 
 | |
| 	uport->read_status_mask = Rx_OVR;
 | |
| 	if (termios->c_iflag & INPCK)
 | |
| 		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 | |
| 	if (termios->c_iflag & (BRKINT | PARMRK))
 | |
| 		uport->read_status_mask |= Rx_BRK;
 | |
| 
 | |
| 	uport->ignore_status_mask = 0;
 | |
| 	if (termios->c_iflag & IGNPAR)
 | |
| 		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 | |
| 	if (termios->c_iflag & IGNBRK) {
 | |
| 		uport->ignore_status_mask |= Rx_BRK;
 | |
| 		if (termios->c_iflag & IGNPAR)
 | |
| 			uport->ignore_status_mask |= Rx_OVR;
 | |
| 	}
 | |
| 
 | |
| 	if (termios->c_cflag & CREAD)
 | |
| 		zport->regs[3] |= RxENABLE;
 | |
| 	else
 | |
| 		zport->regs[3] &= ~RxENABLE;
 | |
| 
 | |
| 	if (zport != zport_a) {
 | |
| 		if (!(termios->c_cflag & CLOCAL)) {
 | |
| 			zport->regs[15] |= DCDIE;
 | |
| 		} else
 | |
| 			zport->regs[15] &= ~DCDIE;
 | |
| 		if (termios->c_cflag & CRTSCTS) {
 | |
| 			zport->regs[15] |= CTSIE;
 | |
| 		} else
 | |
| 			zport->regs[15] &= ~CTSIE;
 | |
| 		zs_raw_xor_mctrl(zport);
 | |
| 	}
 | |
| 
 | |
| 	/* Load up the new values.  */
 | |
| 	load_zsregs(zport, zport->regs, irq);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hack alert!
 | |
|  * Required solely so that the initial PROM-based console
 | |
|  * works undisturbed in parallel with this one.
 | |
|  */
 | |
| static void zs_pm(struct uart_port *uport, unsigned int state,
 | |
| 		  unsigned int oldstate)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 
 | |
| 	if (state < 3)
 | |
| 		zport->regs[5] |= TxENAB;
 | |
| 	else
 | |
| 		zport->regs[5] &= ~TxENAB;
 | |
| 	write_zsreg(zport, R5, zport->regs[5]);
 | |
| }
 | |
| 
 | |
| 
 | |
| static const char *zs_type(struct uart_port *uport)
 | |
| {
 | |
| 	return "Z85C30 SCC";
 | |
| }
 | |
| 
 | |
| static void zs_release_port(struct uart_port *uport)
 | |
| {
 | |
| 	iounmap(uport->membase);
 | |
| 	uport->membase = 0;
 | |
| 	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 | |
| }
 | |
| 
 | |
| static int zs_map_port(struct uart_port *uport)
 | |
| {
 | |
| 	if (!uport->membase)
 | |
| 		uport->membase = ioremap_nocache(uport->mapbase,
 | |
| 						 ZS_CHAN_IO_SIZE);
 | |
| 	if (!uport->membase) {
 | |
| 		printk(KERN_ERR "zs: Cannot map MMIO\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int zs_request_port(struct uart_port *uport)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
 | |
| 		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	ret = zs_map_port(uport);
 | |
| 	if (ret) {
 | |
| 		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void zs_config_port(struct uart_port *uport, int flags)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 
 | |
| 	if (flags & UART_CONFIG_TYPE) {
 | |
| 		if (zs_request_port(uport))
 | |
| 			return;
 | |
| 
 | |
| 		uport->type = PORT_ZS;
 | |
| 
 | |
| 		zs_reset(zport);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
 | |
| 		ret = -EINVAL;
 | |
| 	if (ser->irq != uport->irq)
 | |
| 		ret = -EINVAL;
 | |
| 	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
 | |
| 		ret = -EINVAL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct uart_ops zs_ops = {
 | |
| 	.tx_empty	= zs_tx_empty,
 | |
| 	.set_mctrl	= zs_set_mctrl,
 | |
| 	.get_mctrl	= zs_get_mctrl,
 | |
| 	.stop_tx	= zs_stop_tx,
 | |
| 	.start_tx	= zs_start_tx,
 | |
| 	.stop_rx	= zs_stop_rx,
 | |
| 	.enable_ms	= zs_enable_ms,
 | |
| 	.break_ctl	= zs_break_ctl,
 | |
| 	.startup	= zs_startup,
 | |
| 	.shutdown	= zs_shutdown,
 | |
| 	.set_termios	= zs_set_termios,
 | |
| 	.pm		= zs_pm,
 | |
| 	.type		= zs_type,
 | |
| 	.release_port	= zs_release_port,
 | |
| 	.request_port	= zs_request_port,
 | |
| 	.config_port	= zs_config_port,
 | |
| 	.verify_port	= zs_verify_port,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialize Z85C30 port structures.
 | |
|  */
 | |
| static int __init zs_probe_sccs(void)
 | |
| {
 | |
| 	static int probed;
 | |
| 	struct zs_parms zs_parms;
 | |
| 	int chip, side, irq;
 | |
| 	int n_chips = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (probed)
 | |
| 		return 0;
 | |
| 
 | |
| 	irq = dec_interrupt[DEC_IRQ_SCC0];
 | |
| 	if (irq >= 0) {
 | |
| 		zs_parms.scc[n_chips] = IOASIC_SCC0;
 | |
| 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
 | |
| 		n_chips++;
 | |
| 	}
 | |
| 	irq = dec_interrupt[DEC_IRQ_SCC1];
 | |
| 	if (irq >= 0) {
 | |
| 		zs_parms.scc[n_chips] = IOASIC_SCC1;
 | |
| 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
 | |
| 		n_chips++;
 | |
| 	}
 | |
| 	if (!n_chips)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	probed = 1;
 | |
| 
 | |
| 	for (chip = 0; chip < n_chips; chip++) {
 | |
| 		spin_lock_init(&zs_sccs[chip].zlock);
 | |
| 		for (side = 0; side < ZS_NUM_CHAN; side++) {
 | |
| 			struct zs_port *zport = &zs_sccs[chip].zport[side];
 | |
| 			struct uart_port *uport = &zport->port;
 | |
| 
 | |
| 			zport->scc	= &zs_sccs[chip];
 | |
| 			zport->clk_mode	= 16;
 | |
| 
 | |
| 			uport->irq	= zs_parms.irq[chip];
 | |
| 			uport->uartclk	= ZS_CLOCK;
 | |
| 			uport->fifosize	= 1;
 | |
| 			uport->iotype	= UPIO_MEM;
 | |
| 			uport->flags	= UPF_BOOT_AUTOCONF;
 | |
| 			uport->ops	= &zs_ops;
 | |
| 			uport->line	= chip * ZS_NUM_CHAN + side;
 | |
| 			uport->mapbase	= dec_kn_slot_base +
 | |
| 					  zs_parms.scc[chip] +
 | |
| 					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
 | |
| 
 | |
| 			for (i = 0; i < ZS_NUM_REGS; i++)
 | |
| 				zport->regs[i] = zs_init_regs[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SERIAL_ZS_CONSOLE
 | |
| static void zs_console_putchar(struct uart_port *uport, int ch)
 | |
| {
 | |
| 	struct zs_port *zport = to_zport(uport);
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	int irq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	irq = !irqs_disabled_flags(flags);
 | |
| 	if (zs_transmit_drain(zport, irq))
 | |
| 		write_zsdata(zport, ch);
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print a string to the serial port trying not to disturb
 | |
|  * any possible real use of the port...
 | |
|  */
 | |
| static void zs_console_write(struct console *co, const char *s,
 | |
| 			     unsigned int count)
 | |
| {
 | |
| 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
 | |
| 	struct zs_port *zport = &zs_sccs[chip].zport[side];
 | |
| 	struct zs_scc *scc = zport->scc;
 | |
| 	unsigned long flags;
 | |
| 	u8 txint, txenb;
 | |
| 	int irq;
 | |
| 
 | |
| 	/* Disable transmit interrupts and enable the transmitter. */
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	txint = zport->regs[1];
 | |
| 	txenb = zport->regs[5];
 | |
| 	if (txint & TxINT_ENAB) {
 | |
| 		zport->regs[1] = txint & ~TxINT_ENAB;
 | |
| 		write_zsreg(zport, R1, zport->regs[1]);
 | |
| 	}
 | |
| 	if (!(txenb & TxENAB)) {
 | |
| 		zport->regs[5] = txenb | TxENAB;
 | |
| 		write_zsreg(zport, R5, zport->regs[5]);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| 
 | |
| 	uart_console_write(&zport->port, s, count, zs_console_putchar);
 | |
| 
 | |
| 	/* Restore transmit interrupts and the transmitter enable. */
 | |
| 	spin_lock_irqsave(&scc->zlock, flags);
 | |
| 	irq = !irqs_disabled_flags(flags);
 | |
| 	zs_line_drain(zport, irq);
 | |
| 	if (!(txenb & TxENAB)) {
 | |
| 		zport->regs[5] &= ~TxENAB;
 | |
| 		write_zsreg(zport, R5, zport->regs[5]);
 | |
| 	}
 | |
| 	if (txint & TxINT_ENAB) {
 | |
| 		zport->regs[1] |= TxINT_ENAB;
 | |
| 		write_zsreg(zport, R1, zport->regs[1]);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&scc->zlock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup serial console baud/bits/parity.  We do two things here:
 | |
|  * - construct a cflag setting for the first uart_open()
 | |
|  * - initialise the serial port
 | |
|  * Return non-zero if we didn't find a serial port.
 | |
|  */
 | |
| static int __init zs_console_setup(struct console *co, char *options)
 | |
| {
 | |
| 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
 | |
| 	struct zs_port *zport = &zs_sccs[chip].zport[side];
 | |
| 	struct uart_port *uport = &zport->port;
 | |
| 	int baud = 9600;
 | |
| 	int bits = 8;
 | |
| 	int parity = 'n';
 | |
| 	int flow = 'n';
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = zs_map_port(uport);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	zs_reset(zport);
 | |
| 	zs_pm(uport, 0, -1);
 | |
| 
 | |
| 	if (options)
 | |
| 		uart_parse_options(options, &baud, &parity, &bits, &flow);
 | |
| 	return uart_set_options(uport, co, baud, parity, bits, flow);
 | |
| }
 | |
| 
 | |
| static struct uart_driver zs_reg;
 | |
| static struct console zs_console = {
 | |
| 	.name	= "ttyS",
 | |
| 	.write	= zs_console_write,
 | |
| 	.device	= uart_console_device,
 | |
| 	.setup	= zs_console_setup,
 | |
| 	.flags	= CON_PRINTBUFFER,
 | |
| 	.index	= -1,
 | |
| 	.data	= &zs_reg,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	Register console.
 | |
|  */
 | |
| static int __init zs_serial_console_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = zs_probe_sccs();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	register_console(&zs_console);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| console_initcall(zs_serial_console_init);
 | |
| 
 | |
| #define SERIAL_ZS_CONSOLE	&zs_console
 | |
| #else
 | |
| #define SERIAL_ZS_CONSOLE	NULL
 | |
| #endif /* CONFIG_SERIAL_ZS_CONSOLE */
 | |
| 
 | |
| static struct uart_driver zs_reg = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.driver_name		= "serial",
 | |
| 	.dev_name		= "ttyS",
 | |
| 	.major			= TTY_MAJOR,
 | |
| 	.minor			= 64,
 | |
| 	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
 | |
| 	.cons			= SERIAL_ZS_CONSOLE,
 | |
| };
 | |
| 
 | |
| /* zs_init inits the driver. */
 | |
| static int __init zs_init(void)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	pr_info("%s%s\n", zs_name, zs_version);
 | |
| 
 | |
| 	/* Find out how many Z85C30 SCCs we have.  */
 | |
| 	ret = zs_probe_sccs();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = uart_register_driver(&zs_reg);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 | |
| 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
 | |
| 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
 | |
| 		struct uart_port *uport = &zport->port;
 | |
| 
 | |
| 		if (zport->scc)
 | |
| 			uart_add_one_port(&zs_reg, uport);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit zs_exit(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
 | |
| 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
 | |
| 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
 | |
| 		struct uart_port *uport = &zport->port;
 | |
| 
 | |
| 		if (zport->scc)
 | |
| 			uart_remove_one_port(&zs_reg, uport);
 | |
| 	}
 | |
| 
 | |
| 	uart_unregister_driver(&zs_reg);
 | |
| }
 | |
| 
 | |
| module_init(zs_init);
 | |
| module_exit(zs_exit);
 |