 57f2685c16
			
		
	
	
	57f2685c16
	
	
	
		
			
			* 'next' of git://git.infradead.org/users/vkoul/slave-dma: (53 commits)
  ARM: mach-shmobile: specify CHCLR registers on SH7372
  dma: shdma: fix runtime PM: clear channel buffers on reset
  dma/imx-sdma: save irq flags when use spin_lock in sdma_tx_submit
  dmaengine/ste_dma40: clear LNK on channel startup
  dmaengine: intel_mid_dma: remove legacy pm interface
  ASoC: mxs: correct 'direction' of device_prep_dma_cyclic
  dmaengine: intel_mid_dma: error path fix
  dmaengine: intel_mid_dma: locking and freeing fixes
  mtd: gpmi-nand: move to dma_transfer_direction
  mtd: fix compile error for gpmi-nand
  mmc: mxs-mmc: fix the dma_transfer_direction migration
  dmaengine: add DMA_TRANS_NONE to dma_transfer_direction
  dma: mxs-dma: Don't use CLKGATE bits in CTRL0 to disable DMA channels
  dma: mxs-dma: make mxs_dma_prep_slave_sg() multi user safe
  dma: mxs-dma: Always leave mxs_dma_init() with the clock disabled.
  dma: mxs-dma: fix a typo in comment
  DMA: PL330: Remove pm_runtime_xxx calls from pl330 probe/remove
  video i.MX IPU: Fix display connections
  i.MX IPU DMA: Fix wrong burstsize settings
  dmaengine/ste_dma40: allow fixed physical channel
  ...
Fix up conflicts in drivers/dma/{Kconfig,mxs-dma.c,pl330.c}
The conflicts looked pretty trivial, but I'll ask people to verify them.
		
	
			
		
			
				
	
	
		
			2490 lines
		
	
	
	
		
			68 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2490 lines
		
	
	
	
		
			68 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 | |
|  *
 | |
|  * Copyright (C) 2008-2009 ST-Ericsson AB
 | |
|  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 | |
|  *
 | |
|  * Author: Linus Walleij <linus.walleij@stericsson.com>
 | |
|  *
 | |
|  * Initial version inspired by:
 | |
|  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 | |
|  * Initial adoption to PL022 by:
 | |
|  *      Sachin Verma <sachin.verma@st.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/amba/bus.h>
 | |
| #include <linux/amba/pl022.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| 
 | |
| /*
 | |
|  * This macro is used to define some register default values.
 | |
|  * reg is masked with mask, the OR:ed with an (again masked)
 | |
|  * val shifted sb steps to the left.
 | |
|  */
 | |
| #define SSP_WRITE_BITS(reg, val, mask, sb) \
 | |
|  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
 | |
| 
 | |
| /*
 | |
|  * This macro is also used to define some default values.
 | |
|  * It will just shift val by sb steps to the left and mask
 | |
|  * the result with mask.
 | |
|  */
 | |
| #define GEN_MASK_BITS(val, mask, sb) \
 | |
|  (((val)<<(sb)) & (mask))
 | |
| 
 | |
| #define DRIVE_TX		0
 | |
| #define DO_NOT_DRIVE_TX		1
 | |
| 
 | |
| #define DO_NOT_QUEUE_DMA	0
 | |
| #define QUEUE_DMA		1
 | |
| 
 | |
| #define RX_TRANSFER		1
 | |
| #define TX_TRANSFER		2
 | |
| 
 | |
| /*
 | |
|  * Macros to access SSP Registers with their offsets
 | |
|  */
 | |
| #define SSP_CR0(r)	(r + 0x000)
 | |
| #define SSP_CR1(r)	(r + 0x004)
 | |
| #define SSP_DR(r)	(r + 0x008)
 | |
| #define SSP_SR(r)	(r + 0x00C)
 | |
| #define SSP_CPSR(r)	(r + 0x010)
 | |
| #define SSP_IMSC(r)	(r + 0x014)
 | |
| #define SSP_RIS(r)	(r + 0x018)
 | |
| #define SSP_MIS(r)	(r + 0x01C)
 | |
| #define SSP_ICR(r)	(r + 0x020)
 | |
| #define SSP_DMACR(r)	(r + 0x024)
 | |
| #define SSP_ITCR(r)	(r + 0x080)
 | |
| #define SSP_ITIP(r)	(r + 0x084)
 | |
| #define SSP_ITOP(r)	(r + 0x088)
 | |
| #define SSP_TDR(r)	(r + 0x08C)
 | |
| 
 | |
| #define SSP_PID0(r)	(r + 0xFE0)
 | |
| #define SSP_PID1(r)	(r + 0xFE4)
 | |
| #define SSP_PID2(r)	(r + 0xFE8)
 | |
| #define SSP_PID3(r)	(r + 0xFEC)
 | |
| 
 | |
| #define SSP_CID0(r)	(r + 0xFF0)
 | |
| #define SSP_CID1(r)	(r + 0xFF4)
 | |
| #define SSP_CID2(r)	(r + 0xFF8)
 | |
| #define SSP_CID3(r)	(r + 0xFFC)
 | |
| 
 | |
| /*
 | |
|  * SSP Control Register 0  - SSP_CR0
 | |
|  */
 | |
| #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
 | |
| #define SSP_CR0_MASK_FRF	(0x3UL << 4)
 | |
| #define SSP_CR0_MASK_SPO	(0x1UL << 6)
 | |
| #define SSP_CR0_MASK_SPH	(0x1UL << 7)
 | |
| #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
 | |
| 
 | |
| /*
 | |
|  * The ST version of this block moves som bits
 | |
|  * in SSP_CR0 and extends it to 32 bits
 | |
|  */
 | |
| #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 | |
| #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 | |
| #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 | |
| #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 | |
| 
 | |
| /*
 | |
|  * SSP Control Register 0  - SSP_CR1
 | |
|  */
 | |
| #define SSP_CR1_MASK_LBM	(0x1UL << 0)
 | |
| #define SSP_CR1_MASK_SSE	(0x1UL << 1)
 | |
| #define SSP_CR1_MASK_MS		(0x1UL << 2)
 | |
| #define SSP_CR1_MASK_SOD	(0x1UL << 3)
 | |
| 
 | |
| /*
 | |
|  * The ST version of this block adds some bits
 | |
|  * in SSP_CR1
 | |
|  */
 | |
| #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 | |
| #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 | |
| #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 | |
| #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 | |
| #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 | |
| /* This one is only in the PL023 variant */
 | |
| #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 | |
| 
 | |
| /*
 | |
|  * SSP Status Register - SSP_SR
 | |
|  */
 | |
| #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 | |
| #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 | |
| #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 | |
| #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 | |
| #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 | |
| 
 | |
| /*
 | |
|  * SSP Clock Prescale Register  - SSP_CPSR
 | |
|  */
 | |
| #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 | |
| 
 | |
| /*
 | |
|  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 | |
|  */
 | |
| #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 | |
| #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 | |
| #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 | |
| #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 | |
| 
 | |
| /*
 | |
|  * SSP Raw Interrupt Status Register - SSP_RIS
 | |
|  */
 | |
| /* Receive Overrun Raw Interrupt status */
 | |
| #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 | |
| /* Receive Timeout Raw Interrupt status */
 | |
| #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 | |
| /* Receive FIFO Raw Interrupt status */
 | |
| #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 | |
| /* Transmit FIFO Raw Interrupt status */
 | |
| #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 | |
| 
 | |
| /*
 | |
|  * SSP Masked Interrupt Status Register - SSP_MIS
 | |
|  */
 | |
| /* Receive Overrun Masked Interrupt status */
 | |
| #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 | |
| /* Receive Timeout Masked Interrupt status */
 | |
| #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 | |
| /* Receive FIFO Masked Interrupt status */
 | |
| #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 | |
| /* Transmit FIFO Masked Interrupt status */
 | |
| #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 | |
| 
 | |
| /*
 | |
|  * SSP Interrupt Clear Register - SSP_ICR
 | |
|  */
 | |
| /* Receive Overrun Raw Clear Interrupt bit */
 | |
| #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 | |
| /* Receive Timeout Clear Interrupt bit */
 | |
| #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 | |
| 
 | |
| /*
 | |
|  * SSP DMA Control Register - SSP_DMACR
 | |
|  */
 | |
| /* Receive DMA Enable bit */
 | |
| #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 | |
| /* Transmit DMA Enable bit */
 | |
| #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 | |
| 
 | |
| /*
 | |
|  * SSP Integration Test control Register - SSP_ITCR
 | |
|  */
 | |
| #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 | |
| #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 | |
| 
 | |
| /*
 | |
|  * SSP Integration Test Input Register - SSP_ITIP
 | |
|  */
 | |
| #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 | |
| #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 | |
| #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 | |
| #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 | |
| #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 | |
| #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 | |
| 
 | |
| /*
 | |
|  * SSP Integration Test output Register - SSP_ITOP
 | |
|  */
 | |
| #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 | |
| #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 | |
| #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 | |
| #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 | |
| #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 | |
| #define ITOP_MASK_RORINTR		 (0x1UL << 5)
 | |
| #define ITOP_MASK_RTINTR		 (0x1UL << 6)
 | |
| #define ITOP_MASK_RXINTR		 (0x1UL << 7)
 | |
| #define ITOP_MASK_TXINTR		 (0x1UL << 8)
 | |
| #define ITOP_MASK_INTR			 (0x1UL << 9)
 | |
| #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 | |
| #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 | |
| #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 | |
| #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 | |
| 
 | |
| /*
 | |
|  * SSP Test Data Register - SSP_TDR
 | |
|  */
 | |
| #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 | |
| 
 | |
| /*
 | |
|  * Message State
 | |
|  * we use the spi_message.state (void *) pointer to
 | |
|  * hold a single state value, that's why all this
 | |
|  * (void *) casting is done here.
 | |
|  */
 | |
| #define STATE_START			((void *) 0)
 | |
| #define STATE_RUNNING			((void *) 1)
 | |
| #define STATE_DONE			((void *) 2)
 | |
| #define STATE_ERROR			((void *) -1)
 | |
| 
 | |
| /*
 | |
|  * SSP State - Whether Enabled or Disabled
 | |
|  */
 | |
| #define SSP_DISABLED			(0)
 | |
| #define SSP_ENABLED			(1)
 | |
| 
 | |
| /*
 | |
|  * SSP DMA State - Whether DMA Enabled or Disabled
 | |
|  */
 | |
| #define SSP_DMA_DISABLED		(0)
 | |
| #define SSP_DMA_ENABLED			(1)
 | |
| 
 | |
| /*
 | |
|  * SSP Clock Defaults
 | |
|  */
 | |
| #define SSP_DEFAULT_CLKRATE 0x2
 | |
| #define SSP_DEFAULT_PRESCALE 0x40
 | |
| 
 | |
| /*
 | |
|  * SSP Clock Parameter ranges
 | |
|  */
 | |
| #define CPSDVR_MIN 0x02
 | |
| #define CPSDVR_MAX 0xFE
 | |
| #define SCR_MIN 0x00
 | |
| #define SCR_MAX 0xFF
 | |
| 
 | |
| /*
 | |
|  * SSP Interrupt related Macros
 | |
|  */
 | |
| #define DEFAULT_SSP_REG_IMSC  0x0UL
 | |
| #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 | |
| #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 | |
| 
 | |
| #define CLEAR_ALL_INTERRUPTS  0x3
 | |
| 
 | |
| #define SPI_POLLING_TIMEOUT 1000
 | |
| 
 | |
| /*
 | |
|  * The type of reading going on on this chip
 | |
|  */
 | |
| enum ssp_reading {
 | |
| 	READING_NULL,
 | |
| 	READING_U8,
 | |
| 	READING_U16,
 | |
| 	READING_U32
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * The type of writing going on on this chip
 | |
|  */
 | |
| enum ssp_writing {
 | |
| 	WRITING_NULL,
 | |
| 	WRITING_U8,
 | |
| 	WRITING_U16,
 | |
| 	WRITING_U32
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct vendor_data - vendor-specific config parameters
 | |
|  * for PL022 derivates
 | |
|  * @fifodepth: depth of FIFOs (both)
 | |
|  * @max_bpw: maximum number of bits per word
 | |
|  * @unidir: supports unidirection transfers
 | |
|  * @extended_cr: 32 bit wide control register 0 with extra
 | |
|  * features and extra features in CR1 as found in the ST variants
 | |
|  * @pl023: supports a subset of the ST extensions called "PL023"
 | |
|  */
 | |
| struct vendor_data {
 | |
| 	int fifodepth;
 | |
| 	int max_bpw;
 | |
| 	bool unidir;
 | |
| 	bool extended_cr;
 | |
| 	bool pl023;
 | |
| 	bool loopback;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pl022 - This is the private SSP driver data structure
 | |
|  * @adev: AMBA device model hookup
 | |
|  * @vendor: vendor data for the IP block
 | |
|  * @phybase: the physical memory where the SSP device resides
 | |
|  * @virtbase: the virtual memory where the SSP is mapped
 | |
|  * @clk: outgoing clock "SPICLK" for the SPI bus
 | |
|  * @master: SPI framework hookup
 | |
|  * @master_info: controller-specific data from machine setup
 | |
|  * @workqueue: a workqueue on which any spi_message request is queued
 | |
|  * @pump_messages: work struct for scheduling work to the workqueue
 | |
|  * @queue_lock: spinlock to syncronise access to message queue
 | |
|  * @queue: message queue
 | |
|  * @busy: workqueue is busy
 | |
|  * @running: workqueue is running
 | |
|  * @pump_transfers: Tasklet used in Interrupt Transfer mode
 | |
|  * @cur_msg: Pointer to current spi_message being processed
 | |
|  * @cur_transfer: Pointer to current spi_transfer
 | |
|  * @cur_chip: pointer to current clients chip(assigned from controller_state)
 | |
|  * @next_msg_cs_active: the next message in the queue has been examined
 | |
|  *  and it was found that it uses the same chip select as the previous
 | |
|  *  message, so we left it active after the previous transfer, and it's
 | |
|  *  active already.
 | |
|  * @tx: current position in TX buffer to be read
 | |
|  * @tx_end: end position in TX buffer to be read
 | |
|  * @rx: current position in RX buffer to be written
 | |
|  * @rx_end: end position in RX buffer to be written
 | |
|  * @read: the type of read currently going on
 | |
|  * @write: the type of write currently going on
 | |
|  * @exp_fifo_level: expected FIFO level
 | |
|  * @dma_rx_channel: optional channel for RX DMA
 | |
|  * @dma_tx_channel: optional channel for TX DMA
 | |
|  * @sgt_rx: scattertable for the RX transfer
 | |
|  * @sgt_tx: scattertable for the TX transfer
 | |
|  * @dummypage: a dummy page used for driving data on the bus with DMA
 | |
|  */
 | |
| struct pl022 {
 | |
| 	struct amba_device		*adev;
 | |
| 	struct vendor_data		*vendor;
 | |
| 	resource_size_t			phybase;
 | |
| 	void __iomem			*virtbase;
 | |
| 	struct clk			*clk;
 | |
| 	struct spi_master		*master;
 | |
| 	struct pl022_ssp_controller	*master_info;
 | |
| 	/* Driver message queue */
 | |
| 	struct workqueue_struct		*workqueue;
 | |
| 	struct work_struct		pump_messages;
 | |
| 	spinlock_t			queue_lock;
 | |
| 	struct list_head		queue;
 | |
| 	bool				busy;
 | |
| 	bool				running;
 | |
| 	/* Message transfer pump */
 | |
| 	struct tasklet_struct		pump_transfers;
 | |
| 	struct spi_message		*cur_msg;
 | |
| 	struct spi_transfer		*cur_transfer;
 | |
| 	struct chip_data		*cur_chip;
 | |
| 	bool				next_msg_cs_active;
 | |
| 	void				*tx;
 | |
| 	void				*tx_end;
 | |
| 	void				*rx;
 | |
| 	void				*rx_end;
 | |
| 	enum ssp_reading		read;
 | |
| 	enum ssp_writing		write;
 | |
| 	u32				exp_fifo_level;
 | |
| 	enum ssp_rx_level_trig		rx_lev_trig;
 | |
| 	enum ssp_tx_level_trig		tx_lev_trig;
 | |
| 	/* DMA settings */
 | |
| #ifdef CONFIG_DMA_ENGINE
 | |
| 	struct dma_chan			*dma_rx_channel;
 | |
| 	struct dma_chan			*dma_tx_channel;
 | |
| 	struct sg_table			sgt_rx;
 | |
| 	struct sg_table			sgt_tx;
 | |
| 	char				*dummypage;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct chip_data - To maintain runtime state of SSP for each client chip
 | |
|  * @cr0: Value of control register CR0 of SSP - on later ST variants this
 | |
|  *       register is 32 bits wide rather than just 16
 | |
|  * @cr1: Value of control register CR1 of SSP
 | |
|  * @dmacr: Value of DMA control Register of SSP
 | |
|  * @cpsr: Value of Clock prescale register
 | |
|  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 | |
|  * @enable_dma: Whether to enable DMA or not
 | |
|  * @read: function ptr to be used to read when doing xfer for this chip
 | |
|  * @write: function ptr to be used to write when doing xfer for this chip
 | |
|  * @cs_control: chip select callback provided by chip
 | |
|  * @xfer_type: polling/interrupt/DMA
 | |
|  *
 | |
|  * Runtime state of the SSP controller, maintained per chip,
 | |
|  * This would be set according to the current message that would be served
 | |
|  */
 | |
| struct chip_data {
 | |
| 	u32 cr0;
 | |
| 	u16 cr1;
 | |
| 	u16 dmacr;
 | |
| 	u16 cpsr;
 | |
| 	u8 n_bytes;
 | |
| 	bool enable_dma;
 | |
| 	enum ssp_reading read;
 | |
| 	enum ssp_writing write;
 | |
| 	void (*cs_control) (u32 command);
 | |
| 	int xfer_type;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * null_cs_control - Dummy chip select function
 | |
|  * @command: select/delect the chip
 | |
|  *
 | |
|  * If no chip select function is provided by client this is used as dummy
 | |
|  * chip select
 | |
|  */
 | |
| static void null_cs_control(u32 command)
 | |
| {
 | |
| 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * giveback - current spi_message is over, schedule next message and call
 | |
|  * callback of this message. Assumes that caller already
 | |
|  * set message->status; dma and pio irqs are blocked
 | |
|  * @pl022: SSP driver private data structure
 | |
|  */
 | |
| static void giveback(struct pl022 *pl022)
 | |
| {
 | |
| 	struct spi_transfer *last_transfer;
 | |
| 	unsigned long flags;
 | |
| 	struct spi_message *msg;
 | |
| 	pl022->next_msg_cs_active = false;
 | |
| 
 | |
| 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
 | |
| 					struct spi_transfer,
 | |
| 					transfer_list);
 | |
| 
 | |
| 	/* Delay if requested before any change in chip select */
 | |
| 	if (last_transfer->delay_usecs)
 | |
| 		/*
 | |
| 		 * FIXME: This runs in interrupt context.
 | |
| 		 * Is this really smart?
 | |
| 		 */
 | |
| 		udelay(last_transfer->delay_usecs);
 | |
| 
 | |
| 	if (!last_transfer->cs_change) {
 | |
| 		struct spi_message *next_msg;
 | |
| 
 | |
| 		/*
 | |
| 		 * cs_change was not set. We can keep the chip select
 | |
| 		 * enabled if there is message in the queue and it is
 | |
| 		 * for the same spi device.
 | |
| 		 *
 | |
| 		 * We cannot postpone this until pump_messages, because
 | |
| 		 * after calling msg->complete (below) the driver that
 | |
| 		 * sent the current message could be unloaded, which
 | |
| 		 * could invalidate the cs_control() callback...
 | |
| 		 */
 | |
| 
 | |
| 		/* get a pointer to the next message, if any */
 | |
| 		spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 		if (list_empty(&pl022->queue))
 | |
| 			next_msg = NULL;
 | |
| 		else
 | |
| 			next_msg = list_entry(pl022->queue.next,
 | |
| 					struct spi_message, queue);
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * see if the next and current messages point
 | |
| 		 * to the same spi device.
 | |
| 		 */
 | |
| 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 | |
| 			next_msg = NULL;
 | |
| 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 | |
| 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
 | |
| 		else
 | |
| 			pl022->next_msg_cs_active = true;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 	msg = pl022->cur_msg;
 | |
| 	pl022->cur_msg = NULL;
 | |
| 	pl022->cur_transfer = NULL;
 | |
| 	pl022->cur_chip = NULL;
 | |
| 	queue_work(pl022->workqueue, &pl022->pump_messages);
 | |
| 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	msg->state = NULL;
 | |
| 	if (msg->complete)
 | |
| 		msg->complete(msg->context);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * flush - flush the FIFO to reach a clean state
 | |
|  * @pl022: SSP driver private data structure
 | |
|  */
 | |
| static int flush(struct pl022 *pl022)
 | |
| {
 | |
| 	unsigned long limit = loops_per_jiffy << 1;
 | |
| 
 | |
| 	dev_dbg(&pl022->adev->dev, "flush\n");
 | |
| 	do {
 | |
| 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 | |
| 			readw(SSP_DR(pl022->virtbase));
 | |
| 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 | |
| 
 | |
| 	pl022->exp_fifo_level = 0;
 | |
| 
 | |
| 	return limit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * restore_state - Load configuration of current chip
 | |
|  * @pl022: SSP driver private data structure
 | |
|  */
 | |
| static void restore_state(struct pl022 *pl022)
 | |
| {
 | |
| 	struct chip_data *chip = pl022->cur_chip;
 | |
| 
 | |
| 	if (pl022->vendor->extended_cr)
 | |
| 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 | |
| 	else
 | |
| 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 | |
| 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 | |
| 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 | |
| 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 | |
| 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 | |
| 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default SSP Register Values
 | |
|  */
 | |
| #define DEFAULT_SSP_REG_CR0 ( \
 | |
| 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 | |
| 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 | |
| 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 | |
| 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 | |
| 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 | |
| )
 | |
| 
 | |
| /* ST versions have slightly different bit layout */
 | |
| #define DEFAULT_SSP_REG_CR0_ST ( \
 | |
| 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 | |
| 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 | |
| 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 | |
| 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 | |
| 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 | |
| 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 | |
| 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 | |
| )
 | |
| 
 | |
| /* The PL023 version is slightly different again */
 | |
| #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 | |
| 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 | |
| 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 | |
| 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 | |
| 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 | |
| )
 | |
| 
 | |
| #define DEFAULT_SSP_REG_CR1 ( \
 | |
| 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 | |
| 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 | |
| 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 | |
| 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 | |
| )
 | |
| 
 | |
| /* ST versions extend this register to use all 16 bits */
 | |
| #define DEFAULT_SSP_REG_CR1_ST ( \
 | |
| 	DEFAULT_SSP_REG_CR1 | \
 | |
| 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 | |
| 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 | |
| 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 | |
| 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 | |
| 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 | |
| )
 | |
| 
 | |
| /*
 | |
|  * The PL023 variant has further differences: no loopback mode, no microwire
 | |
|  * support, and a new clock feedback delay setting.
 | |
|  */
 | |
| #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 | |
| 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 | |
| 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 | |
| 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 | |
| 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 | |
| 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 | |
| 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 | |
| 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 | |
| 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 | |
| )
 | |
| 
 | |
| #define DEFAULT_SSP_REG_CPSR ( \
 | |
| 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 | |
| )
 | |
| 
 | |
| #define DEFAULT_SSP_REG_DMACR (\
 | |
| 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 | |
| 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 | |
| )
 | |
| 
 | |
| /**
 | |
|  * load_ssp_default_config - Load default configuration for SSP
 | |
|  * @pl022: SSP driver private data structure
 | |
|  */
 | |
| static void load_ssp_default_config(struct pl022 *pl022)
 | |
| {
 | |
| 	if (pl022->vendor->pl023) {
 | |
| 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 | |
| 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 | |
| 	} else if (pl022->vendor->extended_cr) {
 | |
| 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 | |
| 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 | |
| 	} else {
 | |
| 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 | |
| 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 | |
| 	}
 | |
| 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 | |
| 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 | |
| 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 | |
| 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This will write to TX and read from RX according to the parameters
 | |
|  * set in pl022.
 | |
|  */
 | |
| static void readwriter(struct pl022 *pl022)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * The FIFO depth is different between primecell variants.
 | |
| 	 * I believe filling in too much in the FIFO might cause
 | |
| 	 * errons in 8bit wide transfers on ARM variants (just 8 words
 | |
| 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 | |
| 	 *
 | |
| 	 * To prevent this issue, the TX FIFO is only filled to the
 | |
| 	 * unused RX FIFO fill length, regardless of what the TX
 | |
| 	 * FIFO status flag indicates.
 | |
| 	 */
 | |
| 	dev_dbg(&pl022->adev->dev,
 | |
| 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 | |
| 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 | |
| 
 | |
| 	/* Read as much as you can */
 | |
| 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 | |
| 	       && (pl022->rx < pl022->rx_end)) {
 | |
| 		switch (pl022->read) {
 | |
| 		case READING_NULL:
 | |
| 			readw(SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		case READING_U8:
 | |
| 			*(u8 *) (pl022->rx) =
 | |
| 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 | |
| 			break;
 | |
| 		case READING_U16:
 | |
| 			*(u16 *) (pl022->rx) =
 | |
| 				(u16) readw(SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		case READING_U32:
 | |
| 			*(u32 *) (pl022->rx) =
 | |
| 				readl(SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		}
 | |
| 		pl022->rx += (pl022->cur_chip->n_bytes);
 | |
| 		pl022->exp_fifo_level--;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Write as much as possible up to the RX FIFO size
 | |
| 	 */
 | |
| 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 | |
| 	       && (pl022->tx < pl022->tx_end)) {
 | |
| 		switch (pl022->write) {
 | |
| 		case WRITING_NULL:
 | |
| 			writew(0x0, SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		case WRITING_U8:
 | |
| 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		case WRITING_U16:
 | |
| 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		case WRITING_U32:
 | |
| 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 | |
| 			break;
 | |
| 		}
 | |
| 		pl022->tx += (pl022->cur_chip->n_bytes);
 | |
| 		pl022->exp_fifo_level++;
 | |
| 		/*
 | |
| 		 * This inner reader takes care of things appearing in the RX
 | |
| 		 * FIFO as we're transmitting. This will happen a lot since the
 | |
| 		 * clock starts running when you put things into the TX FIFO,
 | |
| 		 * and then things are continuously clocked into the RX FIFO.
 | |
| 		 */
 | |
| 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 | |
| 		       && (pl022->rx < pl022->rx_end)) {
 | |
| 			switch (pl022->read) {
 | |
| 			case READING_NULL:
 | |
| 				readw(SSP_DR(pl022->virtbase));
 | |
| 				break;
 | |
| 			case READING_U8:
 | |
| 				*(u8 *) (pl022->rx) =
 | |
| 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 | |
| 				break;
 | |
| 			case READING_U16:
 | |
| 				*(u16 *) (pl022->rx) =
 | |
| 					(u16) readw(SSP_DR(pl022->virtbase));
 | |
| 				break;
 | |
| 			case READING_U32:
 | |
| 				*(u32 *) (pl022->rx) =
 | |
| 					readl(SSP_DR(pl022->virtbase));
 | |
| 				break;
 | |
| 			}
 | |
| 			pl022->rx += (pl022->cur_chip->n_bytes);
 | |
| 			pl022->exp_fifo_level--;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * When we exit here the TX FIFO should be full and the RX FIFO
 | |
| 	 * should be empty
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * next_transfer - Move to the Next transfer in the current spi message
 | |
|  * @pl022: SSP driver private data structure
 | |
|  *
 | |
|  * This function moves though the linked list of spi transfers in the
 | |
|  * current spi message and returns with the state of current spi
 | |
|  * message i.e whether its last transfer is done(STATE_DONE) or
 | |
|  * Next transfer is ready(STATE_RUNNING)
 | |
|  */
 | |
| static void *next_transfer(struct pl022 *pl022)
 | |
| {
 | |
| 	struct spi_message *msg = pl022->cur_msg;
 | |
| 	struct spi_transfer *trans = pl022->cur_transfer;
 | |
| 
 | |
| 	/* Move to next transfer */
 | |
| 	if (trans->transfer_list.next != &msg->transfers) {
 | |
| 		pl022->cur_transfer =
 | |
| 		    list_entry(trans->transfer_list.next,
 | |
| 			       struct spi_transfer, transfer_list);
 | |
| 		return STATE_RUNNING;
 | |
| 	}
 | |
| 	return STATE_DONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This DMA functionality is only compiled in if we have
 | |
|  * access to the generic DMA devices/DMA engine.
 | |
|  */
 | |
| #ifdef CONFIG_DMA_ENGINE
 | |
| static void unmap_free_dma_scatter(struct pl022 *pl022)
 | |
| {
 | |
| 	/* Unmap and free the SG tables */
 | |
| 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 | |
| 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 | |
| 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 | |
| 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 | |
| 	sg_free_table(&pl022->sgt_rx);
 | |
| 	sg_free_table(&pl022->sgt_tx);
 | |
| }
 | |
| 
 | |
| static void dma_callback(void *data)
 | |
| {
 | |
| 	struct pl022 *pl022 = data;
 | |
| 	struct spi_message *msg = pl022->cur_msg;
 | |
| 
 | |
| 	BUG_ON(!pl022->sgt_rx.sgl);
 | |
| 
 | |
| #ifdef VERBOSE_DEBUG
 | |
| 	/*
 | |
| 	 * Optionally dump out buffers to inspect contents, this is
 | |
| 	 * good if you want to convince yourself that the loopback
 | |
| 	 * read/write contents are the same, when adopting to a new
 | |
| 	 * DMA engine.
 | |
| 	 */
 | |
| 	{
 | |
| 		struct scatterlist *sg;
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		dma_sync_sg_for_cpu(&pl022->adev->dev,
 | |
| 				    pl022->sgt_rx.sgl,
 | |
| 				    pl022->sgt_rx.nents,
 | |
| 				    DMA_FROM_DEVICE);
 | |
| 
 | |
| 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 | |
| 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 | |
| 			print_hex_dump(KERN_ERR, "SPI RX: ",
 | |
| 				       DUMP_PREFIX_OFFSET,
 | |
| 				       16,
 | |
| 				       1,
 | |
| 				       sg_virt(sg),
 | |
| 				       sg_dma_len(sg),
 | |
| 				       1);
 | |
| 		}
 | |
| 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 | |
| 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 | |
| 			print_hex_dump(KERN_ERR, "SPI TX: ",
 | |
| 				       DUMP_PREFIX_OFFSET,
 | |
| 				       16,
 | |
| 				       1,
 | |
| 				       sg_virt(sg),
 | |
| 				       sg_dma_len(sg),
 | |
| 				       1);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	unmap_free_dma_scatter(pl022);
 | |
| 
 | |
| 	/* Update total bytes transferred */
 | |
| 	msg->actual_length += pl022->cur_transfer->len;
 | |
| 	if (pl022->cur_transfer->cs_change)
 | |
| 		pl022->cur_chip->
 | |
| 			cs_control(SSP_CHIP_DESELECT);
 | |
| 
 | |
| 	/* Move to next transfer */
 | |
| 	msg->state = next_transfer(pl022);
 | |
| 	tasklet_schedule(&pl022->pump_transfers);
 | |
| }
 | |
| 
 | |
| static void setup_dma_scatter(struct pl022 *pl022,
 | |
| 			      void *buffer,
 | |
| 			      unsigned int length,
 | |
| 			      struct sg_table *sgtab)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int bytesleft = length;
 | |
| 	void *bufp = buffer;
 | |
| 	int mapbytes;
 | |
| 	int i;
 | |
| 
 | |
| 	if (buffer) {
 | |
| 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 | |
| 			/*
 | |
| 			 * If there are less bytes left than what fits
 | |
| 			 * in the current page (plus page alignment offset)
 | |
| 			 * we just feed in this, else we stuff in as much
 | |
| 			 * as we can.
 | |
| 			 */
 | |
| 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 | |
| 				mapbytes = bytesleft;
 | |
| 			else
 | |
| 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 | |
| 			sg_set_page(sg, virt_to_page(bufp),
 | |
| 				    mapbytes, offset_in_page(bufp));
 | |
| 			bufp += mapbytes;
 | |
| 			bytesleft -= mapbytes;
 | |
| 			dev_dbg(&pl022->adev->dev,
 | |
| 				"set RX/TX target page @ %p, %d bytes, %d left\n",
 | |
| 				bufp, mapbytes, bytesleft);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Map the dummy buffer on every page */
 | |
| 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 | |
| 			if (bytesleft < PAGE_SIZE)
 | |
| 				mapbytes = bytesleft;
 | |
| 			else
 | |
| 				mapbytes = PAGE_SIZE;
 | |
| 			sg_set_page(sg, virt_to_page(pl022->dummypage),
 | |
| 				    mapbytes, 0);
 | |
| 			bytesleft -= mapbytes;
 | |
| 			dev_dbg(&pl022->adev->dev,
 | |
| 				"set RX/TX to dummy page %d bytes, %d left\n",
 | |
| 				mapbytes, bytesleft);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(bytesleft);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * configure_dma - configures the channels for the next transfer
 | |
|  * @pl022: SSP driver's private data structure
 | |
|  */
 | |
| static int configure_dma(struct pl022 *pl022)
 | |
| {
 | |
| 	struct dma_slave_config rx_conf = {
 | |
| 		.src_addr = SSP_DR(pl022->phybase),
 | |
| 		.direction = DMA_DEV_TO_MEM,
 | |
| 	};
 | |
| 	struct dma_slave_config tx_conf = {
 | |
| 		.dst_addr = SSP_DR(pl022->phybase),
 | |
| 		.direction = DMA_MEM_TO_DEV,
 | |
| 	};
 | |
| 	unsigned int pages;
 | |
| 	int ret;
 | |
| 	int rx_sglen, tx_sglen;
 | |
| 	struct dma_chan *rxchan = pl022->dma_rx_channel;
 | |
| 	struct dma_chan *txchan = pl022->dma_tx_channel;
 | |
| 	struct dma_async_tx_descriptor *rxdesc;
 | |
| 	struct dma_async_tx_descriptor *txdesc;
 | |
| 
 | |
| 	/* Check that the channels are available */
 | |
| 	if (!rxchan || !txchan)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 | |
| 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 | |
| 	 * not trigger on 2 elements this needs explicit mapping rather than
 | |
| 	 * calculation.
 | |
| 	 */
 | |
| 	switch (pl022->rx_lev_trig) {
 | |
| 	case SSP_RX_1_OR_MORE_ELEM:
 | |
| 		rx_conf.src_maxburst = 1;
 | |
| 		break;
 | |
| 	case SSP_RX_4_OR_MORE_ELEM:
 | |
| 		rx_conf.src_maxburst = 4;
 | |
| 		break;
 | |
| 	case SSP_RX_8_OR_MORE_ELEM:
 | |
| 		rx_conf.src_maxburst = 8;
 | |
| 		break;
 | |
| 	case SSP_RX_16_OR_MORE_ELEM:
 | |
| 		rx_conf.src_maxburst = 16;
 | |
| 		break;
 | |
| 	case SSP_RX_32_OR_MORE_ELEM:
 | |
| 		rx_conf.src_maxburst = 32;
 | |
| 		break;
 | |
| 	default:
 | |
| 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (pl022->tx_lev_trig) {
 | |
| 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 | |
| 		tx_conf.dst_maxburst = 1;
 | |
| 		break;
 | |
| 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 | |
| 		tx_conf.dst_maxburst = 4;
 | |
| 		break;
 | |
| 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 | |
| 		tx_conf.dst_maxburst = 8;
 | |
| 		break;
 | |
| 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 | |
| 		tx_conf.dst_maxburst = 16;
 | |
| 		break;
 | |
| 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 | |
| 		tx_conf.dst_maxburst = 32;
 | |
| 		break;
 | |
| 	default:
 | |
| 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (pl022->read) {
 | |
| 	case READING_NULL:
 | |
| 		/* Use the same as for writing */
 | |
| 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 | |
| 		break;
 | |
| 	case READING_U8:
 | |
| 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 		break;
 | |
| 	case READING_U16:
 | |
| 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 | |
| 		break;
 | |
| 	case READING_U32:
 | |
| 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (pl022->write) {
 | |
| 	case WRITING_NULL:
 | |
| 		/* Use the same as for reading */
 | |
| 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 | |
| 		break;
 | |
| 	case WRITING_U8:
 | |
| 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 		break;
 | |
| 	case WRITING_U16:
 | |
| 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 | |
| 		break;
 | |
| 	case WRITING_U32:
 | |
| 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* SPI pecularity: we need to read and write the same width */
 | |
| 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 | |
| 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
 | |
| 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 | |
| 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
 | |
| 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
 | |
| 
 | |
| 	dmaengine_slave_config(rxchan, &rx_conf);
 | |
| 	dmaengine_slave_config(txchan, &tx_conf);
 | |
| 
 | |
| 	/* Create sglists for the transfers */
 | |
| 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
 | |
| 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
 | |
| 
 | |
| 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
 | |
| 	if (ret)
 | |
| 		goto err_alloc_rx_sg;
 | |
| 
 | |
| 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
 | |
| 	if (ret)
 | |
| 		goto err_alloc_tx_sg;
 | |
| 
 | |
| 	/* Fill in the scatterlists for the RX+TX buffers */
 | |
| 	setup_dma_scatter(pl022, pl022->rx,
 | |
| 			  pl022->cur_transfer->len, &pl022->sgt_rx);
 | |
| 	setup_dma_scatter(pl022, pl022->tx,
 | |
| 			  pl022->cur_transfer->len, &pl022->sgt_tx);
 | |
| 
 | |
| 	/* Map DMA buffers */
 | |
| 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
 | |
| 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 | |
| 	if (!rx_sglen)
 | |
| 		goto err_rx_sgmap;
 | |
| 
 | |
| 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
 | |
| 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
 | |
| 	if (!tx_sglen)
 | |
| 		goto err_tx_sgmap;
 | |
| 
 | |
| 	/* Send both scatterlists */
 | |
| 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
 | |
| 				      pl022->sgt_rx.sgl,
 | |
| 				      rx_sglen,
 | |
| 				      DMA_DEV_TO_MEM,
 | |
| 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!rxdesc)
 | |
| 		goto err_rxdesc;
 | |
| 
 | |
| 	txdesc = txchan->device->device_prep_slave_sg(txchan,
 | |
| 				      pl022->sgt_tx.sgl,
 | |
| 				      tx_sglen,
 | |
| 				      DMA_MEM_TO_DEV,
 | |
| 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!txdesc)
 | |
| 		goto err_txdesc;
 | |
| 
 | |
| 	/* Put the callback on the RX transfer only, that should finish last */
 | |
| 	rxdesc->callback = dma_callback;
 | |
| 	rxdesc->callback_param = pl022;
 | |
| 
 | |
| 	/* Submit and fire RX and TX with TX last so we're ready to read! */
 | |
| 	dmaengine_submit(rxdesc);
 | |
| 	dmaengine_submit(txdesc);
 | |
| 	dma_async_issue_pending(rxchan);
 | |
| 	dma_async_issue_pending(txchan);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_txdesc:
 | |
| 	dmaengine_terminate_all(txchan);
 | |
| err_rxdesc:
 | |
| 	dmaengine_terminate_all(rxchan);
 | |
| 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
 | |
| 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 | |
| err_tx_sgmap:
 | |
| 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
 | |
| 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
 | |
| err_rx_sgmap:
 | |
| 	sg_free_table(&pl022->sgt_tx);
 | |
| err_alloc_tx_sg:
 | |
| 	sg_free_table(&pl022->sgt_rx);
 | |
| err_alloc_rx_sg:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int __init pl022_dma_probe(struct pl022 *pl022)
 | |
| {
 | |
| 	dma_cap_mask_t mask;
 | |
| 
 | |
| 	/* Try to acquire a generic DMA engine slave channel */
 | |
| 	dma_cap_zero(mask);
 | |
| 	dma_cap_set(DMA_SLAVE, mask);
 | |
| 	/*
 | |
| 	 * We need both RX and TX channels to do DMA, else do none
 | |
| 	 * of them.
 | |
| 	 */
 | |
| 	pl022->dma_rx_channel = dma_request_channel(mask,
 | |
| 					    pl022->master_info->dma_filter,
 | |
| 					    pl022->master_info->dma_rx_param);
 | |
| 	if (!pl022->dma_rx_channel) {
 | |
| 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
 | |
| 		goto err_no_rxchan;
 | |
| 	}
 | |
| 
 | |
| 	pl022->dma_tx_channel = dma_request_channel(mask,
 | |
| 					    pl022->master_info->dma_filter,
 | |
| 					    pl022->master_info->dma_tx_param);
 | |
| 	if (!pl022->dma_tx_channel) {
 | |
| 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
 | |
| 		goto err_no_txchan;
 | |
| 	}
 | |
| 
 | |
| 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!pl022->dummypage) {
 | |
| 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
 | |
| 		goto err_no_dummypage;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
 | |
| 		 dma_chan_name(pl022->dma_rx_channel),
 | |
| 		 dma_chan_name(pl022->dma_tx_channel));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_no_dummypage:
 | |
| 	dma_release_channel(pl022->dma_tx_channel);
 | |
| err_no_txchan:
 | |
| 	dma_release_channel(pl022->dma_rx_channel);
 | |
| 	pl022->dma_rx_channel = NULL;
 | |
| err_no_rxchan:
 | |
| 	dev_err(&pl022->adev->dev,
 | |
| 			"Failed to work in dma mode, work without dma!\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static void terminate_dma(struct pl022 *pl022)
 | |
| {
 | |
| 	struct dma_chan *rxchan = pl022->dma_rx_channel;
 | |
| 	struct dma_chan *txchan = pl022->dma_tx_channel;
 | |
| 
 | |
| 	dmaengine_terminate_all(rxchan);
 | |
| 	dmaengine_terminate_all(txchan);
 | |
| 	unmap_free_dma_scatter(pl022);
 | |
| }
 | |
| 
 | |
| static void pl022_dma_remove(struct pl022 *pl022)
 | |
| {
 | |
| 	if (pl022->busy)
 | |
| 		terminate_dma(pl022);
 | |
| 	if (pl022->dma_tx_channel)
 | |
| 		dma_release_channel(pl022->dma_tx_channel);
 | |
| 	if (pl022->dma_rx_channel)
 | |
| 		dma_release_channel(pl022->dma_rx_channel);
 | |
| 	kfree(pl022->dummypage);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int configure_dma(struct pl022 *pl022)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static inline int pl022_dma_probe(struct pl022 *pl022)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void pl022_dma_remove(struct pl022 *pl022)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * pl022_interrupt_handler - Interrupt handler for SSP controller
 | |
|  *
 | |
|  * This function handles interrupts generated for an interrupt based transfer.
 | |
|  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 | |
|  * current message's state as STATE_ERROR and schedule the tasklet
 | |
|  * pump_transfers which will do the postprocessing of the current message by
 | |
|  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 | |
|  * more data, and writes data in TX FIFO till it is not full. If we complete
 | |
|  * the transfer we move to the next transfer and schedule the tasklet.
 | |
|  */
 | |
| static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	struct pl022 *pl022 = dev_id;
 | |
| 	struct spi_message *msg = pl022->cur_msg;
 | |
| 	u16 irq_status = 0;
 | |
| 	u16 flag = 0;
 | |
| 
 | |
| 	if (unlikely(!msg)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"bad message state in interrupt handler");
 | |
| 		/* Never fail */
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the Interrupt Status Register */
 | |
| 	irq_status = readw(SSP_MIS(pl022->virtbase));
 | |
| 
 | |
| 	if (unlikely(!irq_status))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * This handles the FIFO interrupts, the timeout
 | |
| 	 * interrupts are flatly ignored, they cannot be
 | |
| 	 * trusted.
 | |
| 	 */
 | |
| 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
 | |
| 		/*
 | |
| 		 * Overrun interrupt - bail out since our Data has been
 | |
| 		 * corrupted
 | |
| 		 */
 | |
| 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
 | |
| 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 				"RXFIFO is full\n");
 | |
| 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 				"TXFIFO is full\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * Disable and clear interrupts, disable SSP,
 | |
| 		 * mark message with bad status so it can be
 | |
| 		 * retried.
 | |
| 		 */
 | |
| 		writew(DISABLE_ALL_INTERRUPTS,
 | |
| 		       SSP_IMSC(pl022->virtbase));
 | |
| 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 | |
| 		writew((readw(SSP_CR1(pl022->virtbase)) &
 | |
| 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 | |
| 		msg->state = STATE_ERROR;
 | |
| 
 | |
| 		/* Schedule message queue handler */
 | |
| 		tasklet_schedule(&pl022->pump_transfers);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	readwriter(pl022);
 | |
| 
 | |
| 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
 | |
| 		flag = 1;
 | |
| 		/* Disable Transmit interrupt, enable receive interrupt */
 | |
| 		writew((readw(SSP_IMSC(pl022->virtbase)) &
 | |
| 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
 | |
| 		       SSP_IMSC(pl022->virtbase));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since all transactions must write as much as shall be read,
 | |
| 	 * we can conclude the entire transaction once RX is complete.
 | |
| 	 * At this point, all TX will always be finished.
 | |
| 	 */
 | |
| 	if (pl022->rx >= pl022->rx_end) {
 | |
| 		writew(DISABLE_ALL_INTERRUPTS,
 | |
| 		       SSP_IMSC(pl022->virtbase));
 | |
| 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 | |
| 		if (unlikely(pl022->rx > pl022->rx_end)) {
 | |
| 			dev_warn(&pl022->adev->dev, "read %u surplus "
 | |
| 				 "bytes (did you request an odd "
 | |
| 				 "number of bytes on a 16bit bus?)\n",
 | |
| 				 (u32) (pl022->rx - pl022->rx_end));
 | |
| 		}
 | |
| 		/* Update total bytes transferred */
 | |
| 		msg->actual_length += pl022->cur_transfer->len;
 | |
| 		if (pl022->cur_transfer->cs_change)
 | |
| 			pl022->cur_chip->
 | |
| 				cs_control(SSP_CHIP_DESELECT);
 | |
| 		/* Move to next transfer */
 | |
| 		msg->state = next_transfer(pl022);
 | |
| 		tasklet_schedule(&pl022->pump_transfers);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This sets up the pointers to memory for the next message to
 | |
|  * send out on the SPI bus.
 | |
|  */
 | |
| static int set_up_next_transfer(struct pl022 *pl022,
 | |
| 				struct spi_transfer *transfer)
 | |
| {
 | |
| 	int residue;
 | |
| 
 | |
| 	/* Sanity check the message for this bus width */
 | |
| 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
 | |
| 	if (unlikely(residue != 0)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"message of %u bytes to transmit but the current "
 | |
| 			"chip bus has a data width of %u bytes!\n",
 | |
| 			pl022->cur_transfer->len,
 | |
| 			pl022->cur_chip->n_bytes);
 | |
| 		dev_err(&pl022->adev->dev, "skipping this message\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	pl022->tx = (void *)transfer->tx_buf;
 | |
| 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
 | |
| 	pl022->rx = (void *)transfer->rx_buf;
 | |
| 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
 | |
| 	pl022->write =
 | |
| 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
 | |
| 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pump_transfers - Tasklet function which schedules next transfer
 | |
|  * when running in interrupt or DMA transfer mode.
 | |
|  * @data: SSP driver private data structure
 | |
|  *
 | |
|  */
 | |
| static void pump_transfers(unsigned long data)
 | |
| {
 | |
| 	struct pl022 *pl022 = (struct pl022 *) data;
 | |
| 	struct spi_message *message = NULL;
 | |
| 	struct spi_transfer *transfer = NULL;
 | |
| 	struct spi_transfer *previous = NULL;
 | |
| 
 | |
| 	/* Get current state information */
 | |
| 	message = pl022->cur_msg;
 | |
| 	transfer = pl022->cur_transfer;
 | |
| 
 | |
| 	/* Handle for abort */
 | |
| 	if (message->state == STATE_ERROR) {
 | |
| 		message->status = -EIO;
 | |
| 		giveback(pl022);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle end of message */
 | |
| 	if (message->state == STATE_DONE) {
 | |
| 		message->status = 0;
 | |
| 		giveback(pl022);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Delay if requested at end of transfer before CS change */
 | |
| 	if (message->state == STATE_RUNNING) {
 | |
| 		previous = list_entry(transfer->transfer_list.prev,
 | |
| 					struct spi_transfer,
 | |
| 					transfer_list);
 | |
| 		if (previous->delay_usecs)
 | |
| 			/*
 | |
| 			 * FIXME: This runs in interrupt context.
 | |
| 			 * Is this really smart?
 | |
| 			 */
 | |
| 			udelay(previous->delay_usecs);
 | |
| 
 | |
| 		/* Reselect chip select only if cs_change was requested */
 | |
| 		if (previous->cs_change)
 | |
| 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 | |
| 	} else {
 | |
| 		/* STATE_START */
 | |
| 		message->state = STATE_RUNNING;
 | |
| 	}
 | |
| 
 | |
| 	if (set_up_next_transfer(pl022, transfer)) {
 | |
| 		message->state = STATE_ERROR;
 | |
| 		message->status = -EIO;
 | |
| 		giveback(pl022);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Flush the FIFOs and let's go! */
 | |
| 	flush(pl022);
 | |
| 
 | |
| 	if (pl022->cur_chip->enable_dma) {
 | |
| 		if (configure_dma(pl022)) {
 | |
| 			dev_dbg(&pl022->adev->dev,
 | |
| 				"configuration of DMA failed, fall back to interrupt mode\n");
 | |
| 			goto err_config_dma;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| err_config_dma:
 | |
| 	/* enable all interrupts except RX */
 | |
| 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
 | |
| }
 | |
| 
 | |
| static void do_interrupt_dma_transfer(struct pl022 *pl022)
 | |
| {
 | |
| 	/*
 | |
| 	 * Default is to enable all interrupts except RX -
 | |
| 	 * this will be enabled once TX is complete
 | |
| 	 */
 | |
| 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
 | |
| 
 | |
| 	/* Enable target chip, if not already active */
 | |
| 	if (!pl022->next_msg_cs_active)
 | |
| 		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 | |
| 
 | |
| 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
 | |
| 		/* Error path */
 | |
| 		pl022->cur_msg->state = STATE_ERROR;
 | |
| 		pl022->cur_msg->status = -EIO;
 | |
| 		giveback(pl022);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* If we're using DMA, set up DMA here */
 | |
| 	if (pl022->cur_chip->enable_dma) {
 | |
| 		/* Configure DMA transfer */
 | |
| 		if (configure_dma(pl022)) {
 | |
| 			dev_dbg(&pl022->adev->dev,
 | |
| 				"configuration of DMA failed, fall back to interrupt mode\n");
 | |
| 			goto err_config_dma;
 | |
| 		}
 | |
| 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
 | |
| 		irqflags = DISABLE_ALL_INTERRUPTS;
 | |
| 	}
 | |
| err_config_dma:
 | |
| 	/* Enable SSP, turn on interrupts */
 | |
| 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
 | |
| 	       SSP_CR1(pl022->virtbase));
 | |
| 	writew(irqflags, SSP_IMSC(pl022->virtbase));
 | |
| }
 | |
| 
 | |
| static void do_polling_transfer(struct pl022 *pl022)
 | |
| {
 | |
| 	struct spi_message *message = NULL;
 | |
| 	struct spi_transfer *transfer = NULL;
 | |
| 	struct spi_transfer *previous = NULL;
 | |
| 	struct chip_data *chip;
 | |
| 	unsigned long time, timeout;
 | |
| 
 | |
| 	chip = pl022->cur_chip;
 | |
| 	message = pl022->cur_msg;
 | |
| 
 | |
| 	while (message->state != STATE_DONE) {
 | |
| 		/* Handle for abort */
 | |
| 		if (message->state == STATE_ERROR)
 | |
| 			break;
 | |
| 		transfer = pl022->cur_transfer;
 | |
| 
 | |
| 		/* Delay if requested at end of transfer */
 | |
| 		if (message->state == STATE_RUNNING) {
 | |
| 			previous =
 | |
| 			    list_entry(transfer->transfer_list.prev,
 | |
| 				       struct spi_transfer, transfer_list);
 | |
| 			if (previous->delay_usecs)
 | |
| 				udelay(previous->delay_usecs);
 | |
| 			if (previous->cs_change)
 | |
| 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 | |
| 		} else {
 | |
| 			/* STATE_START */
 | |
| 			message->state = STATE_RUNNING;
 | |
| 			if (!pl022->next_msg_cs_active)
 | |
| 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 | |
| 		}
 | |
| 
 | |
| 		/* Configuration Changing Per Transfer */
 | |
| 		if (set_up_next_transfer(pl022, transfer)) {
 | |
| 			/* Error path */
 | |
| 			message->state = STATE_ERROR;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Flush FIFOs and enable SSP */
 | |
| 		flush(pl022);
 | |
| 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
 | |
| 		       SSP_CR1(pl022->virtbase));
 | |
| 
 | |
| 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
 | |
| 
 | |
| 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
 | |
| 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
 | |
| 			time = jiffies;
 | |
| 			readwriter(pl022);
 | |
| 			if (time_after(time, timeout)) {
 | |
| 				dev_warn(&pl022->adev->dev,
 | |
| 				"%s: timeout!\n", __func__);
 | |
| 				message->state = STATE_ERROR;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 
 | |
| 		/* Update total byte transferred */
 | |
| 		message->actual_length += pl022->cur_transfer->len;
 | |
| 		if (pl022->cur_transfer->cs_change)
 | |
| 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
 | |
| 		/* Move to next transfer */
 | |
| 		message->state = next_transfer(pl022);
 | |
| 	}
 | |
| out:
 | |
| 	/* Handle end of message */
 | |
| 	if (message->state == STATE_DONE)
 | |
| 		message->status = 0;
 | |
| 	else
 | |
| 		message->status = -EIO;
 | |
| 
 | |
| 	giveback(pl022);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pump_messages - Workqueue function which processes spi message queue
 | |
|  * @data: pointer to private data of SSP driver
 | |
|  *
 | |
|  * This function checks if there is any spi message in the queue that
 | |
|  * needs processing and delegate control to appropriate function
 | |
|  * do_polling_transfer()/do_interrupt_dma_transfer()
 | |
|  * based on the kind of the transfer
 | |
|  *
 | |
|  */
 | |
| static void pump_messages(struct work_struct *work)
 | |
| {
 | |
| 	struct pl022 *pl022 =
 | |
| 		container_of(work, struct pl022, pump_messages);
 | |
| 	unsigned long flags;
 | |
| 	bool was_busy = false;
 | |
| 
 | |
| 	/* Lock queue and check for queue work */
 | |
| 	spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 	if (list_empty(&pl022->queue) || !pl022->running) {
 | |
| 		if (pl022->busy) {
 | |
| 			/* nothing more to do - disable spi/ssp and power off */
 | |
| 			writew((readw(SSP_CR1(pl022->virtbase)) &
 | |
| 				(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 | |
| 
 | |
| 			if (pl022->master_info->autosuspend_delay > 0) {
 | |
| 				pm_runtime_mark_last_busy(&pl022->adev->dev);
 | |
| 				pm_runtime_put_autosuspend(&pl022->adev->dev);
 | |
| 			} else {
 | |
| 				pm_runtime_put(&pl022->adev->dev);
 | |
| 			}
 | |
| 		}
 | |
| 		pl022->busy = false;
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we are not already running a message */
 | |
| 	if (pl022->cur_msg) {
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Extract head of queue */
 | |
| 	pl022->cur_msg =
 | |
| 	    list_entry(pl022->queue.next, struct spi_message, queue);
 | |
| 
 | |
| 	list_del_init(&pl022->cur_msg->queue);
 | |
| 	if (pl022->busy)
 | |
| 		was_busy = true;
 | |
| 	else
 | |
| 		pl022->busy = true;
 | |
| 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	/* Initial message state */
 | |
| 	pl022->cur_msg->state = STATE_START;
 | |
| 	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
 | |
| 					    struct spi_transfer, transfer_list);
 | |
| 
 | |
| 	/* Setup the SPI using the per chip configuration */
 | |
| 	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
 | |
| 	if (!was_busy)
 | |
| 		/*
 | |
| 		 * We enable the core voltage and clocks here, then the clocks
 | |
| 		 * and core will be disabled when this workqueue is run again
 | |
| 		 * and there is no more work to be done.
 | |
| 		 */
 | |
| 		pm_runtime_get_sync(&pl022->adev->dev);
 | |
| 
 | |
| 	restore_state(pl022);
 | |
| 	flush(pl022);
 | |
| 
 | |
| 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
 | |
| 		do_polling_transfer(pl022);
 | |
| 	else
 | |
| 		do_interrupt_dma_transfer(pl022);
 | |
| }
 | |
| 
 | |
| static int __init init_queue(struct pl022 *pl022)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&pl022->queue);
 | |
| 	spin_lock_init(&pl022->queue_lock);
 | |
| 
 | |
| 	pl022->running = false;
 | |
| 	pl022->busy = false;
 | |
| 
 | |
| 	tasklet_init(&pl022->pump_transfers, pump_transfers,
 | |
| 			(unsigned long)pl022);
 | |
| 
 | |
| 	INIT_WORK(&pl022->pump_messages, pump_messages);
 | |
| 	pl022->workqueue = create_singlethread_workqueue(
 | |
| 					dev_name(pl022->master->dev.parent));
 | |
| 	if (pl022->workqueue == NULL)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int start_queue(struct pl022 *pl022)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	if (pl022->running || pl022->busy) {
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	pl022->running = true;
 | |
| 	pl022->cur_msg = NULL;
 | |
| 	pl022->cur_transfer = NULL;
 | |
| 	pl022->cur_chip = NULL;
 | |
| 	pl022->next_msg_cs_active = false;
 | |
| 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	queue_work(pl022->workqueue, &pl022->pump_messages);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stop_queue(struct pl022 *pl022)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned limit = 500;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	/* This is a bit lame, but is optimized for the common execution path.
 | |
| 	 * A wait_queue on the pl022->busy could be used, but then the common
 | |
| 	 * execution path (pump_messages) would be required to call wake_up or
 | |
| 	 * friends on every SPI message. Do this instead */
 | |
| 	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 		msleep(10);
 | |
| 		spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&pl022->queue) || pl022->busy)
 | |
| 		status = -EBUSY;
 | |
| 	else
 | |
| 		pl022->running = false;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int destroy_queue(struct pl022 *pl022)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	status = stop_queue(pl022);
 | |
| 	/* we are unloading the module or failing to load (only two calls
 | |
| 	 * to this routine), and neither call can handle a return value.
 | |
| 	 * However, destroy_workqueue calls flush_workqueue, and that will
 | |
| 	 * block until all work is done.  If the reason that stop_queue
 | |
| 	 * timed out is that the work will never finish, then it does no
 | |
| 	 * good to call destroy_workqueue, so return anyway. */
 | |
| 	if (status != 0)
 | |
| 		return status;
 | |
| 
 | |
| 	destroy_workqueue(pl022->workqueue);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int verify_controller_parameters(struct pl022 *pl022,
 | |
| 				struct pl022_config_chip const *chip_info)
 | |
| {
 | |
| 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
 | |
| 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"interface is configured incorrectly\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
 | |
| 	    (!pl022->vendor->unidir)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"unidirectional mode not supported in this "
 | |
| 			"hardware version\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if ((chip_info->hierarchy != SSP_MASTER)
 | |
| 	    && (chip_info->hierarchy != SSP_SLAVE)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"hierarchy is configured incorrectly\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
 | |
| 	    && (chip_info->com_mode != DMA_TRANSFER)
 | |
| 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"Communication mode is configured incorrectly\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	switch (chip_info->rx_lev_trig) {
 | |
| 	case SSP_RX_1_OR_MORE_ELEM:
 | |
| 	case SSP_RX_4_OR_MORE_ELEM:
 | |
| 	case SSP_RX_8_OR_MORE_ELEM:
 | |
| 		/* These are always OK, all variants can handle this */
 | |
| 		break;
 | |
| 	case SSP_RX_16_OR_MORE_ELEM:
 | |
| 		if (pl022->vendor->fifodepth < 16) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 			"RX FIFO Trigger Level is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SSP_RX_32_OR_MORE_ELEM:
 | |
| 		if (pl022->vendor->fifodepth < 32) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 			"RX FIFO Trigger Level is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"RX FIFO Trigger Level is configured incorrectly\n");
 | |
| 		return -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	switch (chip_info->tx_lev_trig) {
 | |
| 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 | |
| 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 | |
| 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 | |
| 		/* These are always OK, all variants can handle this */
 | |
| 		break;
 | |
| 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 | |
| 		if (pl022->vendor->fifodepth < 16) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 			"TX FIFO Trigger Level is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 | |
| 		if (pl022->vendor->fifodepth < 32) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 			"TX FIFO Trigger Level is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"TX FIFO Trigger Level is configured incorrectly\n");
 | |
| 		return -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
 | |
| 		if ((chip_info->ctrl_len < SSP_BITS_4)
 | |
| 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 				"CTRL LEN is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
 | |
| 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
 | |
| 			dev_err(&pl022->adev->dev,
 | |
| 				"Wait State is configured incorrectly\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* Half duplex is only available in the ST Micro version */
 | |
| 		if (pl022->vendor->extended_cr) {
 | |
| 			if ((chip_info->duplex !=
 | |
| 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
 | |
| 			    && (chip_info->duplex !=
 | |
| 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
 | |
| 				dev_err(&pl022->adev->dev,
 | |
| 					"Microwire duplex mode is configured incorrectly\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
 | |
| 				dev_err(&pl022->adev->dev,
 | |
| 					"Microwire half duplex mode requested,"
 | |
| 					" but this is only available in the"
 | |
| 					" ST version of PL022\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pl022_transfer - transfer function registered to SPI master framework
 | |
|  * @spi: spi device which is requesting transfer
 | |
|  * @msg: spi message which is to handled is queued to driver queue
 | |
|  *
 | |
|  * This function is registered to the SPI framework for this SPI master
 | |
|  * controller. It will queue the spi_message in the queue of driver if
 | |
|  * the queue is not stopped and return.
 | |
|  */
 | |
| static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
 | |
| {
 | |
| 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pl022->queue_lock, flags);
 | |
| 
 | |
| 	if (!pl022->running) {
 | |
| 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 		return -ESHUTDOWN;
 | |
| 	}
 | |
| 	msg->actual_length = 0;
 | |
| 	msg->status = -EINPROGRESS;
 | |
| 	msg->state = STATE_START;
 | |
| 
 | |
| 	list_add_tail(&msg->queue, &pl022->queue);
 | |
| 	if (pl022->running && !pl022->busy)
 | |
| 		queue_work(pl022->workqueue, &pl022->pump_messages);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
 | |
| {
 | |
| 	return rate / (cpsdvsr * (1 + scr));
 | |
| }
 | |
| 
 | |
| static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
 | |
| 				    ssp_clock_params * clk_freq)
 | |
| {
 | |
| 	/* Lets calculate the frequency parameters */
 | |
| 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
 | |
| 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
 | |
| 		best_scr = 0, tmp, found = 0;
 | |
| 
 | |
| 	rate = clk_get_rate(pl022->clk);
 | |
| 	/* cpsdvscr = 2 & scr 0 */
 | |
| 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
 | |
| 	/* cpsdvsr = 254 & scr = 255 */
 | |
| 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
 | |
| 
 | |
| 	if (!((freq <= max_tclk) && (freq >= min_tclk))) {
 | |
| 		dev_err(&pl022->adev->dev,
 | |
| 			"controller data is incorrect: out of range frequency");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * best_freq will give closest possible available rate (<= requested
 | |
| 	 * freq) for all values of scr & cpsdvsr.
 | |
| 	 */
 | |
| 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
 | |
| 		while (scr <= SCR_MAX) {
 | |
| 			tmp = spi_rate(rate, cpsdvsr, scr);
 | |
| 
 | |
| 			if (tmp > freq)
 | |
| 				scr++;
 | |
| 			/*
 | |
| 			 * If found exact value, update and break.
 | |
| 			 * If found more closer value, update and continue.
 | |
| 			 */
 | |
| 			else if ((tmp == freq) || (tmp > best_freq)) {
 | |
| 				best_freq = tmp;
 | |
| 				best_cpsdvsr = cpsdvsr;
 | |
| 				best_scr = scr;
 | |
| 
 | |
| 				if (tmp == freq)
 | |
| 					break;
 | |
| 			}
 | |
| 			scr++;
 | |
| 		}
 | |
| 		cpsdvsr += 2;
 | |
| 		scr = SCR_MIN;
 | |
| 	}
 | |
| 
 | |
| 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
 | |
| 	clk_freq->scr = (u8) (best_scr & 0xFF);
 | |
| 	dev_dbg(&pl022->adev->dev,
 | |
| 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
 | |
| 		freq, best_freq);
 | |
| 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
 | |
| 		clk_freq->cpsdvsr, clk_freq->scr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A piece of default chip info unless the platform
 | |
|  * supplies it.
 | |
|  */
 | |
| static const struct pl022_config_chip pl022_default_chip_info = {
 | |
| 	.com_mode = POLLING_TRANSFER,
 | |
| 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
 | |
| 	.hierarchy = SSP_SLAVE,
 | |
| 	.slave_tx_disable = DO_NOT_DRIVE_TX,
 | |
| 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
 | |
| 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
 | |
| 	.ctrl_len = SSP_BITS_8,
 | |
| 	.wait_state = SSP_MWIRE_WAIT_ZERO,
 | |
| 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
 | |
| 	.cs_control = null_cs_control,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * pl022_setup - setup function registered to SPI master framework
 | |
|  * @spi: spi device which is requesting setup
 | |
|  *
 | |
|  * This function is registered to the SPI framework for this SPI master
 | |
|  * controller. If it is the first time when setup is called by this device,
 | |
|  * this function will initialize the runtime state for this chip and save
 | |
|  * the same in the device structure. Else it will update the runtime info
 | |
|  * with the updated chip info. Nothing is really being written to the
 | |
|  * controller hardware here, that is not done until the actual transfer
 | |
|  * commence.
 | |
|  */
 | |
| static int pl022_setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct pl022_config_chip const *chip_info;
 | |
| 	struct chip_data *chip;
 | |
| 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
 | |
| 	int status = 0;
 | |
| 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
 | |
| 	unsigned int bits = spi->bits_per_word;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	if (!spi->max_speed_hz)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Get controller_state if one is supplied */
 | |
| 	chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 	if (chip == NULL) {
 | |
| 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 | |
| 		if (!chip) {
 | |
| 			dev_err(&spi->dev,
 | |
| 				"cannot allocate controller state\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		dev_dbg(&spi->dev,
 | |
| 			"allocated memory for controller's runtime state\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Get controller data if one is supplied */
 | |
| 	chip_info = spi->controller_data;
 | |
| 
 | |
| 	if (chip_info == NULL) {
 | |
| 		chip_info = &pl022_default_chip_info;
 | |
| 		/* spi_board_info.controller_data not is supplied */
 | |
| 		dev_dbg(&spi->dev,
 | |
| 			"using default controller_data settings\n");
 | |
| 	} else
 | |
| 		dev_dbg(&spi->dev,
 | |
| 			"using user supplied controller_data settings\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * We can override with custom divisors, else we use the board
 | |
| 	 * frequency setting
 | |
| 	 */
 | |
| 	if ((0 == chip_info->clk_freq.cpsdvsr)
 | |
| 	    && (0 == chip_info->clk_freq.scr)) {
 | |
| 		status = calculate_effective_freq(pl022,
 | |
| 						  spi->max_speed_hz,
 | |
| 						  &clk_freq);
 | |
| 		if (status < 0)
 | |
| 			goto err_config_params;
 | |
| 	} else {
 | |
| 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
 | |
| 		if ((clk_freq.cpsdvsr % 2) != 0)
 | |
| 			clk_freq.cpsdvsr =
 | |
| 				clk_freq.cpsdvsr - 1;
 | |
| 	}
 | |
| 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
 | |
| 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
 | |
| 		status = -EINVAL;
 | |
| 		dev_err(&spi->dev,
 | |
| 			"cpsdvsr is configured incorrectly\n");
 | |
| 		goto err_config_params;
 | |
| 	}
 | |
| 
 | |
| 	status = verify_controller_parameters(pl022, chip_info);
 | |
| 	if (status) {
 | |
| 		dev_err(&spi->dev, "controller data is incorrect");
 | |
| 		goto err_config_params;
 | |
| 	}
 | |
| 
 | |
| 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
 | |
| 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
 | |
| 
 | |
| 	/* Now set controller state based on controller data */
 | |
| 	chip->xfer_type = chip_info->com_mode;
 | |
| 	if (!chip_info->cs_control) {
 | |
| 		chip->cs_control = null_cs_control;
 | |
| 		dev_warn(&spi->dev,
 | |
| 			 "chip select function is NULL for this chip\n");
 | |
| 	} else
 | |
| 		chip->cs_control = chip_info->cs_control;
 | |
| 
 | |
| 	if (bits <= 3) {
 | |
| 		/* PL022 doesn't support less than 4-bits */
 | |
| 		status = -ENOTSUPP;
 | |
| 		goto err_config_params;
 | |
| 	} else if (bits <= 8) {
 | |
| 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
 | |
| 		chip->n_bytes = 1;
 | |
| 		chip->read = READING_U8;
 | |
| 		chip->write = WRITING_U8;
 | |
| 	} else if (bits <= 16) {
 | |
| 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
 | |
| 		chip->n_bytes = 2;
 | |
| 		chip->read = READING_U16;
 | |
| 		chip->write = WRITING_U16;
 | |
| 	} else {
 | |
| 		if (pl022->vendor->max_bpw >= 32) {
 | |
| 			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
 | |
| 			chip->n_bytes = 4;
 | |
| 			chip->read = READING_U32;
 | |
| 			chip->write = WRITING_U32;
 | |
| 		} else {
 | |
| 			dev_err(&spi->dev,
 | |
| 				"illegal data size for this controller!\n");
 | |
| 			dev_err(&spi->dev,
 | |
| 				"a standard pl022 can only handle "
 | |
| 				"1 <= n <= 16 bit words\n");
 | |
| 			status = -ENOTSUPP;
 | |
| 			goto err_config_params;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now Initialize all register settings required for this chip */
 | |
| 	chip->cr0 = 0;
 | |
| 	chip->cr1 = 0;
 | |
| 	chip->dmacr = 0;
 | |
| 	chip->cpsr = 0;
 | |
| 	if ((chip_info->com_mode == DMA_TRANSFER)
 | |
| 	    && ((pl022->master_info)->enable_dma)) {
 | |
| 		chip->enable_dma = true;
 | |
| 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
 | |
| 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
 | |
| 			       SSP_DMACR_MASK_RXDMAE, 0);
 | |
| 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
 | |
| 			       SSP_DMACR_MASK_TXDMAE, 1);
 | |
| 	} else {
 | |
| 		chip->enable_dma = false;
 | |
| 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
 | |
| 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
 | |
| 			       SSP_DMACR_MASK_RXDMAE, 0);
 | |
| 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
 | |
| 			       SSP_DMACR_MASK_TXDMAE, 1);
 | |
| 	}
 | |
| 
 | |
| 	chip->cpsr = clk_freq.cpsdvsr;
 | |
| 
 | |
| 	/* Special setup for the ST micro extended control registers */
 | |
| 	if (pl022->vendor->extended_cr) {
 | |
| 		u32 etx;
 | |
| 
 | |
| 		if (pl022->vendor->pl023) {
 | |
| 			/* These bits are only in the PL023 */
 | |
| 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
 | |
| 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
 | |
| 		} else {
 | |
| 			/* These bits are in the PL022 but not PL023 */
 | |
| 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
 | |
| 				       SSP_CR0_MASK_HALFDUP_ST, 5);
 | |
| 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
 | |
| 				       SSP_CR0_MASK_CSS_ST, 16);
 | |
| 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
 | |
| 				       SSP_CR0_MASK_FRF_ST, 21);
 | |
| 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
 | |
| 				       SSP_CR1_MASK_MWAIT_ST, 6);
 | |
| 		}
 | |
| 		SSP_WRITE_BITS(chip->cr0, bits - 1,
 | |
| 			       SSP_CR0_MASK_DSS_ST, 0);
 | |
| 
 | |
| 		if (spi->mode & SPI_LSB_FIRST) {
 | |
| 			tmp = SSP_RX_LSB;
 | |
| 			etx = SSP_TX_LSB;
 | |
| 		} else {
 | |
| 			tmp = SSP_RX_MSB;
 | |
| 			etx = SSP_TX_MSB;
 | |
| 		}
 | |
| 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
 | |
| 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
 | |
| 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
 | |
| 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
 | |
| 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
 | |
| 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
 | |
| 	} else {
 | |
| 		SSP_WRITE_BITS(chip->cr0, bits - 1,
 | |
| 			       SSP_CR0_MASK_DSS, 0);
 | |
| 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
 | |
| 			       SSP_CR0_MASK_FRF, 4);
 | |
| 	}
 | |
| 
 | |
| 	/* Stuff that is common for all versions */
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		tmp = SSP_CLK_POL_IDLE_HIGH;
 | |
| 	else
 | |
| 		tmp = SSP_CLK_POL_IDLE_LOW;
 | |
| 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
 | |
| 
 | |
| 	if (spi->mode & SPI_CPHA)
 | |
| 		tmp = SSP_CLK_SECOND_EDGE;
 | |
| 	else
 | |
| 		tmp = SSP_CLK_FIRST_EDGE;
 | |
| 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
 | |
| 
 | |
| 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
 | |
| 	/* Loopback is available on all versions except PL023 */
 | |
| 	if (pl022->vendor->loopback) {
 | |
| 		if (spi->mode & SPI_LOOP)
 | |
| 			tmp = LOOPBACK_ENABLED;
 | |
| 		else
 | |
| 			tmp = LOOPBACK_DISABLED;
 | |
| 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
 | |
| 	}
 | |
| 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
 | |
| 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
 | |
| 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
 | |
| 		3);
 | |
| 
 | |
| 	/* Save controller_state */
 | |
| 	spi_set_ctldata(spi, chip);
 | |
| 	return status;
 | |
|  err_config_params:
 | |
| 	spi_set_ctldata(spi, NULL);
 | |
| 	kfree(chip);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pl022_cleanup - cleanup function registered to SPI master framework
 | |
|  * @spi: spi device which is requesting cleanup
 | |
|  *
 | |
|  * This function is registered to the SPI framework for this SPI master
 | |
|  * controller. It will free the runtime state of chip.
 | |
|  */
 | |
| static void pl022_cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct chip_data *chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 	spi_set_ctldata(spi, NULL);
 | |
| 	kfree(chip);
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| pl022_probe(struct amba_device *adev, const struct amba_id *id)
 | |
| {
 | |
| 	struct device *dev = &adev->dev;
 | |
| 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
 | |
| 	struct spi_master *master;
 | |
| 	struct pl022 *pl022 = NULL;	/*Data for this driver */
 | |
| 	int status = 0;
 | |
| 
 | |
| 	dev_info(&adev->dev,
 | |
| 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
 | |
| 	if (platform_info == NULL) {
 | |
| 		dev_err(&adev->dev, "probe - no platform data supplied\n");
 | |
| 		status = -ENODEV;
 | |
| 		goto err_no_pdata;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate master with space for data */
 | |
| 	master = spi_alloc_master(dev, sizeof(struct pl022));
 | |
| 	if (master == NULL) {
 | |
| 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
 | |
| 		status = -ENOMEM;
 | |
| 		goto err_no_master;
 | |
| 	}
 | |
| 
 | |
| 	pl022 = spi_master_get_devdata(master);
 | |
| 	pl022->master = master;
 | |
| 	pl022->master_info = platform_info;
 | |
| 	pl022->adev = adev;
 | |
| 	pl022->vendor = id->data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bus Number Which has been Assigned to this SSP controller
 | |
| 	 * on this board
 | |
| 	 */
 | |
| 	master->bus_num = platform_info->bus_id;
 | |
| 	master->num_chipselect = platform_info->num_chipselect;
 | |
| 	master->cleanup = pl022_cleanup;
 | |
| 	master->setup = pl022_setup;
 | |
| 	master->transfer = pl022_transfer;
 | |
| 
 | |
| 	/*
 | |
| 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
 | |
| 	 * always MS bit first on the original pl022.
 | |
| 	 */
 | |
| 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
 | |
| 	if (pl022->vendor->extended_cr)
 | |
| 		master->mode_bits |= SPI_LSB_FIRST;
 | |
| 
 | |
| 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
 | |
| 
 | |
| 	status = amba_request_regions(adev, NULL);
 | |
| 	if (status)
 | |
| 		goto err_no_ioregion;
 | |
| 
 | |
| 	pl022->phybase = adev->res.start;
 | |
| 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
 | |
| 	if (pl022->virtbase == NULL) {
 | |
| 		status = -ENOMEM;
 | |
| 		goto err_no_ioremap;
 | |
| 	}
 | |
| 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
 | |
| 	       adev->res.start, pl022->virtbase);
 | |
| 
 | |
| 	pl022->clk = clk_get(&adev->dev, NULL);
 | |
| 	if (IS_ERR(pl022->clk)) {
 | |
| 		status = PTR_ERR(pl022->clk);
 | |
| 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
 | |
| 		goto err_no_clk;
 | |
| 	}
 | |
| 
 | |
| 	status = clk_prepare(pl022->clk);
 | |
| 	if (status) {
 | |
| 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
 | |
| 		goto  err_clk_prep;
 | |
| 	}
 | |
| 
 | |
| 	status = clk_enable(pl022->clk);
 | |
| 	if (status) {
 | |
| 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
 | |
| 		goto err_no_clk_en;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable SSP */
 | |
| 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
 | |
| 	       SSP_CR1(pl022->virtbase));
 | |
| 	load_ssp_default_config(pl022);
 | |
| 
 | |
| 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
 | |
| 			     pl022);
 | |
| 	if (status < 0) {
 | |
| 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
 | |
| 		goto err_no_irq;
 | |
| 	}
 | |
| 
 | |
| 	/* Get DMA channels */
 | |
| 	if (platform_info->enable_dma) {
 | |
| 		status = pl022_dma_probe(pl022);
 | |
| 		if (status != 0)
 | |
| 			platform_info->enable_dma = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize and start queue */
 | |
| 	status = init_queue(pl022);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&adev->dev, "probe - problem initializing queue\n");
 | |
| 		goto err_init_queue;
 | |
| 	}
 | |
| 	status = start_queue(pl022);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&adev->dev, "probe - problem starting queue\n");
 | |
| 		goto err_start_queue;
 | |
| 	}
 | |
| 	/* Register with the SPI framework */
 | |
| 	amba_set_drvdata(adev, pl022);
 | |
| 	status = spi_register_master(master);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&adev->dev,
 | |
| 			"probe - problem registering spi master\n");
 | |
| 		goto err_spi_register;
 | |
| 	}
 | |
| 	dev_dbg(dev, "probe succeeded\n");
 | |
| 
 | |
| 	/* let runtime pm put suspend */
 | |
| 	if (platform_info->autosuspend_delay > 0) {
 | |
| 		dev_info(&adev->dev,
 | |
| 			"will use autosuspend for runtime pm, delay %dms\n",
 | |
| 			platform_info->autosuspend_delay);
 | |
| 		pm_runtime_set_autosuspend_delay(dev,
 | |
| 			platform_info->autosuspend_delay);
 | |
| 		pm_runtime_use_autosuspend(dev);
 | |
| 		pm_runtime_put_autosuspend(dev);
 | |
| 	} else {
 | |
| 		pm_runtime_put(dev);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  err_spi_register:
 | |
|  err_start_queue:
 | |
|  err_init_queue:
 | |
| 	destroy_queue(pl022);
 | |
| 	if (platform_info->enable_dma)
 | |
| 		pl022_dma_remove(pl022);
 | |
| 
 | |
| 	free_irq(adev->irq[0], pl022);
 | |
|  err_no_irq:
 | |
| 	clk_disable(pl022->clk);
 | |
|  err_no_clk_en:
 | |
| 	clk_unprepare(pl022->clk);
 | |
|  err_clk_prep:
 | |
| 	clk_put(pl022->clk);
 | |
|  err_no_clk:
 | |
| 	iounmap(pl022->virtbase);
 | |
|  err_no_ioremap:
 | |
| 	amba_release_regions(adev);
 | |
|  err_no_ioregion:
 | |
| 	spi_master_put(master);
 | |
|  err_no_master:
 | |
|  err_no_pdata:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int __devexit
 | |
| pl022_remove(struct amba_device *adev)
 | |
| {
 | |
| 	struct pl022 *pl022 = amba_get_drvdata(adev);
 | |
| 
 | |
| 	if (!pl022)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * undo pm_runtime_put() in probe.  I assume that we're not
 | |
| 	 * accessing the primecell here.
 | |
| 	 */
 | |
| 	pm_runtime_get_noresume(&adev->dev);
 | |
| 
 | |
| 	/* Remove the queue */
 | |
| 	if (destroy_queue(pl022) != 0)
 | |
| 		dev_err(&adev->dev, "queue remove failed\n");
 | |
| 	load_ssp_default_config(pl022);
 | |
| 	if (pl022->master_info->enable_dma)
 | |
| 		pl022_dma_remove(pl022);
 | |
| 
 | |
| 	free_irq(adev->irq[0], pl022);
 | |
| 	clk_disable(pl022->clk);
 | |
| 	clk_unprepare(pl022->clk);
 | |
| 	clk_put(pl022->clk);
 | |
| 	iounmap(pl022->virtbase);
 | |
| 	amba_release_regions(adev);
 | |
| 	tasklet_disable(&pl022->pump_transfers);
 | |
| 	spi_unregister_master(pl022->master);
 | |
| 	spi_master_put(pl022->master);
 | |
| 	amba_set_drvdata(adev, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SUSPEND
 | |
| static int pl022_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pl022 *pl022 = dev_get_drvdata(dev);
 | |
| 	int status = 0;
 | |
| 
 | |
| 	status = stop_queue(pl022);
 | |
| 	if (status) {
 | |
| 		dev_warn(dev, "suspend cannot stop queue\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "suspended\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pl022_resume(struct device *dev)
 | |
| {
 | |
| 	struct pl022 *pl022 = dev_get_drvdata(dev);
 | |
| 	int status = 0;
 | |
| 
 | |
| 	/* Start the queue running */
 | |
| 	status = start_queue(pl022);
 | |
| 	if (status)
 | |
| 		dev_err(dev, "problem starting queue (%d)\n", status);
 | |
| 	else
 | |
| 		dev_dbg(dev, "resumed\n");
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| #endif	/* CONFIG_PM */
 | |
| 
 | |
| #ifdef CONFIG_PM_RUNTIME
 | |
| static int pl022_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pl022 *pl022 = dev_get_drvdata(dev);
 | |
| 
 | |
| 	clk_disable(pl022->clk);
 | |
| 	amba_vcore_disable(pl022->adev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pl022_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct pl022 *pl022 = dev_get_drvdata(dev);
 | |
| 
 | |
| 	amba_vcore_enable(pl022->adev);
 | |
| 	clk_enable(pl022->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops pl022_dev_pm_ops = {
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
 | |
| 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_arm = {
 | |
| 	.fifodepth = 8,
 | |
| 	.max_bpw = 16,
 | |
| 	.unidir = false,
 | |
| 	.extended_cr = false,
 | |
| 	.pl023 = false,
 | |
| 	.loopback = true,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_st = {
 | |
| 	.fifodepth = 32,
 | |
| 	.max_bpw = 32,
 | |
| 	.unidir = false,
 | |
| 	.extended_cr = true,
 | |
| 	.pl023 = false,
 | |
| 	.loopback = true,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_st_pl023 = {
 | |
| 	.fifodepth = 32,
 | |
| 	.max_bpw = 32,
 | |
| 	.unidir = false,
 | |
| 	.extended_cr = true,
 | |
| 	.pl023 = true,
 | |
| 	.loopback = false,
 | |
| };
 | |
| 
 | |
| static struct vendor_data vendor_db5500_pl023 = {
 | |
| 	.fifodepth = 32,
 | |
| 	.max_bpw = 32,
 | |
| 	.unidir = false,
 | |
| 	.extended_cr = true,
 | |
| 	.pl023 = true,
 | |
| 	.loopback = true,
 | |
| };
 | |
| 
 | |
| static struct amba_id pl022_ids[] = {
 | |
| 	{
 | |
| 		/*
 | |
| 		 * ARM PL022 variant, this has a 16bit wide
 | |
| 		 * and 8 locations deep TX/RX FIFO
 | |
| 		 */
 | |
| 		.id	= 0x00041022,
 | |
| 		.mask	= 0x000fffff,
 | |
| 		.data	= &vendor_arm,
 | |
| 	},
 | |
| 	{
 | |
| 		/*
 | |
| 		 * ST Micro derivative, this has 32bit wide
 | |
| 		 * and 32 locations deep TX/RX FIFO
 | |
| 		 */
 | |
| 		.id	= 0x01080022,
 | |
| 		.mask	= 0xffffffff,
 | |
| 		.data	= &vendor_st,
 | |
| 	},
 | |
| 	{
 | |
| 		/*
 | |
| 		 * ST-Ericsson derivative "PL023" (this is not
 | |
| 		 * an official ARM number), this is a PL022 SSP block
 | |
| 		 * stripped to SPI mode only, it has 32bit wide
 | |
| 		 * and 32 locations deep TX/RX FIFO but no extended
 | |
| 		 * CR0/CR1 register
 | |
| 		 */
 | |
| 		.id	= 0x00080023,
 | |
| 		.mask	= 0xffffffff,
 | |
| 		.data	= &vendor_st_pl023,
 | |
| 	},
 | |
| 	{
 | |
| 		.id	= 0x10080023,
 | |
| 		.mask	= 0xffffffff,
 | |
| 		.data	= &vendor_db5500_pl023,
 | |
| 	},
 | |
| 	{ 0, 0 },
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(amba, pl022_ids);
 | |
| 
 | |
| static struct amba_driver pl022_driver = {
 | |
| 	.drv = {
 | |
| 		.name	= "ssp-pl022",
 | |
| 		.pm	= &pl022_dev_pm_ops,
 | |
| 	},
 | |
| 	.id_table	= pl022_ids,
 | |
| 	.probe		= pl022_probe,
 | |
| 	.remove		= __devexit_p(pl022_remove),
 | |
| };
 | |
| 
 | |
| static int __init pl022_init(void)
 | |
| {
 | |
| 	return amba_driver_register(&pl022_driver);
 | |
| }
 | |
| subsys_initcall(pl022_init);
 | |
| 
 | |
| static void __exit pl022_exit(void)
 | |
| {
 | |
| 	amba_driver_unregister(&pl022_driver);
 | |
| }
 | |
| module_exit(pl022_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
 | |
| MODULE_DESCRIPTION("PL022 SSP Controller Driver");
 | |
| MODULE_LICENSE("GPL");
 |