 1cb201af62
			
		
	
	
	1cb201af62
	
	
	
		
			
			Commit 940ab889 "drivercore: Add helper macro for platform_driver boilerplate"
converted this driver to use module_platform_driver, but due to the use
of platform_driver_probe(), this resulted in the call to atmel_spi_probe being
lost. Place the call to this function into the driver structure.
fix section missmatch
atmel_spi_probe is marked __init where it's supposed to be __devinit
atmel_spi_remove is marked __exit where it's supposed to be __devexit
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Acked-by: Nicolas Ferre <nicolas.ferre@atmel.com>
		
	
			
		
			
				
	
	
		
			1083 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Driver for Atmel AT32 and AT91 SPI Controllers
 | |
|  *
 | |
|  * Copyright (C) 2006 Atmel Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <mach/board.h>
 | |
| #include <asm/gpio.h>
 | |
| #include <mach/cpu.h>
 | |
| 
 | |
| /* SPI register offsets */
 | |
| #define SPI_CR					0x0000
 | |
| #define SPI_MR					0x0004
 | |
| #define SPI_RDR					0x0008
 | |
| #define SPI_TDR					0x000c
 | |
| #define SPI_SR					0x0010
 | |
| #define SPI_IER					0x0014
 | |
| #define SPI_IDR					0x0018
 | |
| #define SPI_IMR					0x001c
 | |
| #define SPI_CSR0				0x0030
 | |
| #define SPI_CSR1				0x0034
 | |
| #define SPI_CSR2				0x0038
 | |
| #define SPI_CSR3				0x003c
 | |
| #define SPI_RPR					0x0100
 | |
| #define SPI_RCR					0x0104
 | |
| #define SPI_TPR					0x0108
 | |
| #define SPI_TCR					0x010c
 | |
| #define SPI_RNPR				0x0110
 | |
| #define SPI_RNCR				0x0114
 | |
| #define SPI_TNPR				0x0118
 | |
| #define SPI_TNCR				0x011c
 | |
| #define SPI_PTCR				0x0120
 | |
| #define SPI_PTSR				0x0124
 | |
| 
 | |
| /* Bitfields in CR */
 | |
| #define SPI_SPIEN_OFFSET			0
 | |
| #define SPI_SPIEN_SIZE				1
 | |
| #define SPI_SPIDIS_OFFSET			1
 | |
| #define SPI_SPIDIS_SIZE				1
 | |
| #define SPI_SWRST_OFFSET			7
 | |
| #define SPI_SWRST_SIZE				1
 | |
| #define SPI_LASTXFER_OFFSET			24
 | |
| #define SPI_LASTXFER_SIZE			1
 | |
| 
 | |
| /* Bitfields in MR */
 | |
| #define SPI_MSTR_OFFSET				0
 | |
| #define SPI_MSTR_SIZE				1
 | |
| #define SPI_PS_OFFSET				1
 | |
| #define SPI_PS_SIZE				1
 | |
| #define SPI_PCSDEC_OFFSET			2
 | |
| #define SPI_PCSDEC_SIZE				1
 | |
| #define SPI_FDIV_OFFSET				3
 | |
| #define SPI_FDIV_SIZE				1
 | |
| #define SPI_MODFDIS_OFFSET			4
 | |
| #define SPI_MODFDIS_SIZE			1
 | |
| #define SPI_LLB_OFFSET				7
 | |
| #define SPI_LLB_SIZE				1
 | |
| #define SPI_PCS_OFFSET				16
 | |
| #define SPI_PCS_SIZE				4
 | |
| #define SPI_DLYBCS_OFFSET			24
 | |
| #define SPI_DLYBCS_SIZE				8
 | |
| 
 | |
| /* Bitfields in RDR */
 | |
| #define SPI_RD_OFFSET				0
 | |
| #define SPI_RD_SIZE				16
 | |
| 
 | |
| /* Bitfields in TDR */
 | |
| #define SPI_TD_OFFSET				0
 | |
| #define SPI_TD_SIZE				16
 | |
| 
 | |
| /* Bitfields in SR */
 | |
| #define SPI_RDRF_OFFSET				0
 | |
| #define SPI_RDRF_SIZE				1
 | |
| #define SPI_TDRE_OFFSET				1
 | |
| #define SPI_TDRE_SIZE				1
 | |
| #define SPI_MODF_OFFSET				2
 | |
| #define SPI_MODF_SIZE				1
 | |
| #define SPI_OVRES_OFFSET			3
 | |
| #define SPI_OVRES_SIZE				1
 | |
| #define SPI_ENDRX_OFFSET			4
 | |
| #define SPI_ENDRX_SIZE				1
 | |
| #define SPI_ENDTX_OFFSET			5
 | |
| #define SPI_ENDTX_SIZE				1
 | |
| #define SPI_RXBUFF_OFFSET			6
 | |
| #define SPI_RXBUFF_SIZE				1
 | |
| #define SPI_TXBUFE_OFFSET			7
 | |
| #define SPI_TXBUFE_SIZE				1
 | |
| #define SPI_NSSR_OFFSET				8
 | |
| #define SPI_NSSR_SIZE				1
 | |
| #define SPI_TXEMPTY_OFFSET			9
 | |
| #define SPI_TXEMPTY_SIZE			1
 | |
| #define SPI_SPIENS_OFFSET			16
 | |
| #define SPI_SPIENS_SIZE				1
 | |
| 
 | |
| /* Bitfields in CSR0 */
 | |
| #define SPI_CPOL_OFFSET				0
 | |
| #define SPI_CPOL_SIZE				1
 | |
| #define SPI_NCPHA_OFFSET			1
 | |
| #define SPI_NCPHA_SIZE				1
 | |
| #define SPI_CSAAT_OFFSET			3
 | |
| #define SPI_CSAAT_SIZE				1
 | |
| #define SPI_BITS_OFFSET				4
 | |
| #define SPI_BITS_SIZE				4
 | |
| #define SPI_SCBR_OFFSET				8
 | |
| #define SPI_SCBR_SIZE				8
 | |
| #define SPI_DLYBS_OFFSET			16
 | |
| #define SPI_DLYBS_SIZE				8
 | |
| #define SPI_DLYBCT_OFFSET			24
 | |
| #define SPI_DLYBCT_SIZE				8
 | |
| 
 | |
| /* Bitfields in RCR */
 | |
| #define SPI_RXCTR_OFFSET			0
 | |
| #define SPI_RXCTR_SIZE				16
 | |
| 
 | |
| /* Bitfields in TCR */
 | |
| #define SPI_TXCTR_OFFSET			0
 | |
| #define SPI_TXCTR_SIZE				16
 | |
| 
 | |
| /* Bitfields in RNCR */
 | |
| #define SPI_RXNCR_OFFSET			0
 | |
| #define SPI_RXNCR_SIZE				16
 | |
| 
 | |
| /* Bitfields in TNCR */
 | |
| #define SPI_TXNCR_OFFSET			0
 | |
| #define SPI_TXNCR_SIZE				16
 | |
| 
 | |
| /* Bitfields in PTCR */
 | |
| #define SPI_RXTEN_OFFSET			0
 | |
| #define SPI_RXTEN_SIZE				1
 | |
| #define SPI_RXTDIS_OFFSET			1
 | |
| #define SPI_RXTDIS_SIZE				1
 | |
| #define SPI_TXTEN_OFFSET			8
 | |
| #define SPI_TXTEN_SIZE				1
 | |
| #define SPI_TXTDIS_OFFSET			9
 | |
| #define SPI_TXTDIS_SIZE				1
 | |
| 
 | |
| /* Constants for BITS */
 | |
| #define SPI_BITS_8_BPT				0
 | |
| #define SPI_BITS_9_BPT				1
 | |
| #define SPI_BITS_10_BPT				2
 | |
| #define SPI_BITS_11_BPT				3
 | |
| #define SPI_BITS_12_BPT				4
 | |
| #define SPI_BITS_13_BPT				5
 | |
| #define SPI_BITS_14_BPT				6
 | |
| #define SPI_BITS_15_BPT				7
 | |
| #define SPI_BITS_16_BPT				8
 | |
| 
 | |
| /* Bit manipulation macros */
 | |
| #define SPI_BIT(name) \
 | |
| 	(1 << SPI_##name##_OFFSET)
 | |
| #define SPI_BF(name,value) \
 | |
| 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 | |
| #define SPI_BFEXT(name,value) \
 | |
| 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 | |
| #define SPI_BFINS(name,value,old) \
 | |
| 	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 | |
| 	  | SPI_BF(name,value))
 | |
| 
 | |
| /* Register access macros */
 | |
| #define spi_readl(port,reg) \
 | |
| 	__raw_readl((port)->regs + SPI_##reg)
 | |
| #define spi_writel(port,reg,value) \
 | |
| 	__raw_writel((value), (port)->regs + SPI_##reg)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The core SPI transfer engine just talks to a register bank to set up
 | |
|  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 | |
|  * framework provides the base clock, subdivided for each spi_device.
 | |
|  */
 | |
| struct atmel_spi {
 | |
| 	spinlock_t		lock;
 | |
| 
 | |
| 	void __iomem		*regs;
 | |
| 	int			irq;
 | |
| 	struct clk		*clk;
 | |
| 	struct platform_device	*pdev;
 | |
| 	struct spi_device	*stay;
 | |
| 
 | |
| 	u8			stopping;
 | |
| 	struct list_head	queue;
 | |
| 	struct spi_transfer	*current_transfer;
 | |
| 	unsigned long		current_remaining_bytes;
 | |
| 	struct spi_transfer	*next_transfer;
 | |
| 	unsigned long		next_remaining_bytes;
 | |
| 
 | |
| 	void			*buffer;
 | |
| 	dma_addr_t		buffer_dma;
 | |
| };
 | |
| 
 | |
| /* Controller-specific per-slave state */
 | |
| struct atmel_spi_device {
 | |
| 	unsigned int		npcs_pin;
 | |
| 	u32			csr;
 | |
| };
 | |
| 
 | |
| #define BUFFER_SIZE		PAGE_SIZE
 | |
| #define INVALID_DMA_ADDRESS	0xffffffff
 | |
| 
 | |
| /*
 | |
|  * Version 2 of the SPI controller has
 | |
|  *  - CR.LASTXFER
 | |
|  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 | |
|  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 | |
|  *  - SPI_CSRx.CSAAT
 | |
|  *  - SPI_CSRx.SBCR allows faster clocking
 | |
|  *
 | |
|  * We can determine the controller version by reading the VERSION
 | |
|  * register, but I haven't checked that it exists on all chips, and
 | |
|  * this is cheaper anyway.
 | |
|  */
 | |
| static bool atmel_spi_is_v2(void)
 | |
| {
 | |
| 	return !cpu_is_at91rm9200();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 | |
|  * they assume that spi slave device state will not change on deselect, so
 | |
|  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 | |
|  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 | |
|  * controllers have CSAAT and friends.
 | |
|  *
 | |
|  * Since the CSAAT functionality is a bit weird on newer controllers as
 | |
|  * well, we use GPIO to control nCSx pins on all controllers, updating
 | |
|  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 | |
|  * support active-high chipselects despite the controller's belief that
 | |
|  * only active-low devices/systems exists.
 | |
|  *
 | |
|  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 | |
|  * right when driven with GPIO.  ("Mode Fault does not allow more than one
 | |
|  * Master on Chip Select 0.")  No workaround exists for that ... so for
 | |
|  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 | |
|  * and (c) will trigger that first erratum in some cases.
 | |
|  *
 | |
|  * TODO: Test if the atmel_spi_is_v2() branch below works on
 | |
|  * AT91RM9200 if we use some other register than CSR0. However, don't
 | |
|  * do this unconditionally since AP7000 has an errata where the BITS
 | |
|  * field in CSR0 overrides all other CSRs.
 | |
|  */
 | |
| 
 | |
| static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi_device *asd = spi->controller_state;
 | |
| 	unsigned active = spi->mode & SPI_CS_HIGH;
 | |
| 	u32 mr;
 | |
| 
 | |
| 	if (atmel_spi_is_v2()) {
 | |
| 		/*
 | |
| 		 * Always use CSR0. This ensures that the clock
 | |
| 		 * switches to the correct idle polarity before we
 | |
| 		 * toggle the CS.
 | |
| 		 */
 | |
| 		spi_writel(as, CSR0, asd->csr);
 | |
| 		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 | |
| 				| SPI_BIT(MSTR));
 | |
| 		mr = spi_readl(as, MR);
 | |
| 		gpio_set_value(asd->npcs_pin, active);
 | |
| 	} else {
 | |
| 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 | |
| 		int i;
 | |
| 		u32 csr;
 | |
| 
 | |
| 		/* Make sure clock polarity is correct */
 | |
| 		for (i = 0; i < spi->master->num_chipselect; i++) {
 | |
| 			csr = spi_readl(as, CSR0 + 4 * i);
 | |
| 			if ((csr ^ cpol) & SPI_BIT(CPOL))
 | |
| 				spi_writel(as, CSR0 + 4 * i,
 | |
| 						csr ^ SPI_BIT(CPOL));
 | |
| 		}
 | |
| 
 | |
| 		mr = spi_readl(as, MR);
 | |
| 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 | |
| 		if (spi->chip_select != 0)
 | |
| 			gpio_set_value(asd->npcs_pin, active);
 | |
| 		spi_writel(as, MR, mr);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 | |
| 			asd->npcs_pin, active ? " (high)" : "",
 | |
| 			mr);
 | |
| }
 | |
| 
 | |
| static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi_device *asd = spi->controller_state;
 | |
| 	unsigned active = spi->mode & SPI_CS_HIGH;
 | |
| 	u32 mr;
 | |
| 
 | |
| 	/* only deactivate *this* device; sometimes transfers to
 | |
| 	 * another device may be active when this routine is called.
 | |
| 	 */
 | |
| 	mr = spi_readl(as, MR);
 | |
| 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 | |
| 		mr = SPI_BFINS(PCS, 0xf, mr);
 | |
| 		spi_writel(as, MR, mr);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 | |
| 			asd->npcs_pin, active ? " (low)" : "",
 | |
| 			mr);
 | |
| 
 | |
| 	if (atmel_spi_is_v2() || spi->chip_select != 0)
 | |
| 		gpio_set_value(asd->npcs_pin, !active);
 | |
| }
 | |
| 
 | |
| static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 | |
| 					struct spi_transfer *xfer)
 | |
| {
 | |
| 	return msg->transfers.prev == &xfer->transfer_list;
 | |
| }
 | |
| 
 | |
| static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 | |
| {
 | |
| 	return xfer->delay_usecs == 0 && !xfer->cs_change;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_next_xfer_data(struct spi_master *master,
 | |
| 				struct spi_transfer *xfer,
 | |
| 				dma_addr_t *tx_dma,
 | |
| 				dma_addr_t *rx_dma,
 | |
| 				u32 *plen)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 	u32			len = *plen;
 | |
| 
 | |
| 	/* use scratch buffer only when rx or tx data is unspecified */
 | |
| 	if (xfer->rx_buf)
 | |
| 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 | |
| 	else {
 | |
| 		*rx_dma = as->buffer_dma;
 | |
| 		if (len > BUFFER_SIZE)
 | |
| 			len = BUFFER_SIZE;
 | |
| 	}
 | |
| 	if (xfer->tx_buf)
 | |
| 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 | |
| 	else {
 | |
| 		*tx_dma = as->buffer_dma;
 | |
| 		if (len > BUFFER_SIZE)
 | |
| 			len = BUFFER_SIZE;
 | |
| 		memset(as->buffer, 0, len);
 | |
| 		dma_sync_single_for_device(&as->pdev->dev,
 | |
| 				as->buffer_dma, len, DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	*plen = len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit next transfer for DMA.
 | |
|  * lock is held, spi irq is blocked
 | |
|  */
 | |
| static void atmel_spi_next_xfer(struct spi_master *master,
 | |
| 				struct spi_message *msg)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 	struct spi_transfer	*xfer;
 | |
| 	u32			len, remaining;
 | |
| 	u32			ieval;
 | |
| 	dma_addr_t		tx_dma, rx_dma;
 | |
| 
 | |
| 	if (!as->current_transfer)
 | |
| 		xfer = list_entry(msg->transfers.next,
 | |
| 				struct spi_transfer, transfer_list);
 | |
| 	else if (!as->next_transfer)
 | |
| 		xfer = list_entry(as->current_transfer->transfer_list.next,
 | |
| 				struct spi_transfer, transfer_list);
 | |
| 	else
 | |
| 		xfer = NULL;
 | |
| 
 | |
| 	if (xfer) {
 | |
| 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 
 | |
| 		len = xfer->len;
 | |
| 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 | |
| 		remaining = xfer->len - len;
 | |
| 
 | |
| 		spi_writel(as, RPR, rx_dma);
 | |
| 		spi_writel(as, TPR, tx_dma);
 | |
| 
 | |
| 		if (msg->spi->bits_per_word > 8)
 | |
| 			len >>= 1;
 | |
| 		spi_writel(as, RCR, len);
 | |
| 		spi_writel(as, TCR, len);
 | |
| 
 | |
| 		dev_dbg(&msg->spi->dev,
 | |
| 			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 | |
| 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 | |
| 			xfer->rx_buf, xfer->rx_dma);
 | |
| 	} else {
 | |
| 		xfer = as->next_transfer;
 | |
| 		remaining = as->next_remaining_bytes;
 | |
| 	}
 | |
| 
 | |
| 	as->current_transfer = xfer;
 | |
| 	as->current_remaining_bytes = remaining;
 | |
| 
 | |
| 	if (remaining > 0)
 | |
| 		len = remaining;
 | |
| 	else if (!atmel_spi_xfer_is_last(msg, xfer)
 | |
| 			&& atmel_spi_xfer_can_be_chained(xfer)) {
 | |
| 		xfer = list_entry(xfer->transfer_list.next,
 | |
| 				struct spi_transfer, transfer_list);
 | |
| 		len = xfer->len;
 | |
| 	} else
 | |
| 		xfer = NULL;
 | |
| 
 | |
| 	as->next_transfer = xfer;
 | |
| 
 | |
| 	if (xfer) {
 | |
| 		u32	total;
 | |
| 
 | |
| 		total = len;
 | |
| 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 | |
| 		as->next_remaining_bytes = total - len;
 | |
| 
 | |
| 		spi_writel(as, RNPR, rx_dma);
 | |
| 		spi_writel(as, TNPR, tx_dma);
 | |
| 
 | |
| 		if (msg->spi->bits_per_word > 8)
 | |
| 			len >>= 1;
 | |
| 		spi_writel(as, RNCR, len);
 | |
| 		spi_writel(as, TNCR, len);
 | |
| 
 | |
| 		dev_dbg(&msg->spi->dev,
 | |
| 			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 | |
| 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 | |
| 			xfer->rx_buf, xfer->rx_dma);
 | |
| 		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 | |
| 	} else {
 | |
| 		spi_writel(as, RNCR, 0);
 | |
| 		spi_writel(as, TNCR, 0);
 | |
| 		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 | |
| 	}
 | |
| 
 | |
| 	/* REVISIT: We're waiting for ENDRX before we start the next
 | |
| 	 * transfer because we need to handle some difficult timing
 | |
| 	 * issues otherwise. If we wait for ENDTX in one transfer and
 | |
| 	 * then starts waiting for ENDRX in the next, it's difficult
 | |
| 	 * to tell the difference between the ENDRX interrupt we're
 | |
| 	 * actually waiting for and the ENDRX interrupt of the
 | |
| 	 * previous transfer.
 | |
| 	 *
 | |
| 	 * It should be doable, though. Just not now...
 | |
| 	 */
 | |
| 	spi_writel(as, IER, ieval);
 | |
| 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 | |
| }
 | |
| 
 | |
| static void atmel_spi_next_message(struct spi_master *master)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 	struct spi_message	*msg;
 | |
| 	struct spi_device	*spi;
 | |
| 
 | |
| 	BUG_ON(as->current_transfer);
 | |
| 
 | |
| 	msg = list_entry(as->queue.next, struct spi_message, queue);
 | |
| 	spi = msg->spi;
 | |
| 
 | |
| 	dev_dbg(master->dev.parent, "start message %p for %s\n",
 | |
| 			msg, dev_name(&spi->dev));
 | |
| 
 | |
| 	/* select chip if it's not still active */
 | |
| 	if (as->stay) {
 | |
| 		if (as->stay != spi) {
 | |
| 			cs_deactivate(as, as->stay);
 | |
| 			cs_activate(as, spi);
 | |
| 		}
 | |
| 		as->stay = NULL;
 | |
| 	} else
 | |
| 		cs_activate(as, spi);
 | |
| 
 | |
| 	atmel_spi_next_xfer(master, msg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 | |
|  *  - The buffer is either valid for CPU access, else NULL
 | |
|  *  - If the buffer is valid, so is its DMA address
 | |
|  *
 | |
|  * This driver manages the dma address unless message->is_dma_mapped.
 | |
|  */
 | |
| static int
 | |
| atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct device	*dev = &as->pdev->dev;
 | |
| 
 | |
| 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 | |
| 	if (xfer->tx_buf) {
 | |
| 		/* tx_buf is a const void* where we need a void * for the dma
 | |
| 		 * mapping */
 | |
| 		void *nonconst_tx = (void *)xfer->tx_buf;
 | |
| 
 | |
| 		xfer->tx_dma = dma_map_single(dev,
 | |
| 				nonconst_tx, xfer->len,
 | |
| 				DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(dev, xfer->tx_dma))
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	if (xfer->rx_buf) {
 | |
| 		xfer->rx_dma = dma_map_single(dev,
 | |
| 				xfer->rx_buf, xfer->len,
 | |
| 				DMA_FROM_DEVICE);
 | |
| 		if (dma_mapping_error(dev, xfer->rx_dma)) {
 | |
| 			if (xfer->tx_buf)
 | |
| 				dma_unmap_single(dev,
 | |
| 						xfer->tx_dma, xfer->len,
 | |
| 						DMA_TO_DEVICE);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 | |
| 				     struct spi_transfer *xfer)
 | |
| {
 | |
| 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 | |
| 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 | |
| 				 xfer->len, DMA_TO_DEVICE);
 | |
| 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 | |
| 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 | |
| 				 xfer->len, DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 | |
| 		struct spi_message *msg, int status, int stay)
 | |
| {
 | |
| 	if (!stay || status < 0)
 | |
| 		cs_deactivate(as, msg->spi);
 | |
| 	else
 | |
| 		as->stay = msg->spi;
 | |
| 
 | |
| 	list_del(&msg->queue);
 | |
| 	msg->status = status;
 | |
| 
 | |
| 	dev_dbg(master->dev.parent,
 | |
| 		"xfer complete: %u bytes transferred\n",
 | |
| 		msg->actual_length);
 | |
| 
 | |
| 	spin_unlock(&as->lock);
 | |
| 	msg->complete(msg->context);
 | |
| 	spin_lock(&as->lock);
 | |
| 
 | |
| 	as->current_transfer = NULL;
 | |
| 	as->next_transfer = NULL;
 | |
| 
 | |
| 	/* continue if needed */
 | |
| 	if (list_empty(&as->queue) || as->stopping)
 | |
| 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 	else
 | |
| 		atmel_spi_next_message(master);
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| atmel_spi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spi_master	*master = dev_id;
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 	struct spi_message	*msg;
 | |
| 	struct spi_transfer	*xfer;
 | |
| 	u32			status, pending, imr;
 | |
| 	int			ret = IRQ_NONE;
 | |
| 
 | |
| 	spin_lock(&as->lock);
 | |
| 
 | |
| 	xfer = as->current_transfer;
 | |
| 	msg = list_entry(as->queue.next, struct spi_message, queue);
 | |
| 
 | |
| 	imr = spi_readl(as, IMR);
 | |
| 	status = spi_readl(as, SR);
 | |
| 	pending = status & imr;
 | |
| 
 | |
| 	if (pending & SPI_BIT(OVRES)) {
 | |
| 		int timeout;
 | |
| 
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 | |
| 				     | SPI_BIT(OVRES)));
 | |
| 
 | |
| 		/*
 | |
| 		 * When we get an overrun, we disregard the current
 | |
| 		 * transfer. Data will not be copied back from any
 | |
| 		 * bounce buffer and msg->actual_len will not be
 | |
| 		 * updated with the last xfer.
 | |
| 		 *
 | |
| 		 * We will also not process any remaning transfers in
 | |
| 		 * the message.
 | |
| 		 *
 | |
| 		 * First, stop the transfer and unmap the DMA buffers.
 | |
| 		 */
 | |
| 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 		if (!msg->is_dma_mapped)
 | |
| 			atmel_spi_dma_unmap_xfer(master, xfer);
 | |
| 
 | |
| 		/* REVISIT: udelay in irq is unfriendly */
 | |
| 		if (xfer->delay_usecs)
 | |
| 			udelay(xfer->delay_usecs);
 | |
| 
 | |
| 		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 | |
| 			 spi_readl(as, TCR), spi_readl(as, RCR));
 | |
| 
 | |
| 		/*
 | |
| 		 * Clean up DMA registers and make sure the data
 | |
| 		 * registers are empty.
 | |
| 		 */
 | |
| 		spi_writel(as, RNCR, 0);
 | |
| 		spi_writel(as, TNCR, 0);
 | |
| 		spi_writel(as, RCR, 0);
 | |
| 		spi_writel(as, TCR, 0);
 | |
| 		for (timeout = 1000; timeout; timeout--)
 | |
| 			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 | |
| 				break;
 | |
| 		if (!timeout)
 | |
| 			dev_warn(master->dev.parent,
 | |
| 				 "timeout waiting for TXEMPTY");
 | |
| 		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 | |
| 			spi_readl(as, RDR);
 | |
| 
 | |
| 		/* Clear any overrun happening while cleaning up */
 | |
| 		spi_readl(as, SR);
 | |
| 
 | |
| 		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 | |
| 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 		spi_writel(as, IDR, pending);
 | |
| 
 | |
| 		if (as->current_remaining_bytes == 0) {
 | |
| 			msg->actual_length += xfer->len;
 | |
| 
 | |
| 			if (!msg->is_dma_mapped)
 | |
| 				atmel_spi_dma_unmap_xfer(master, xfer);
 | |
| 
 | |
| 			/* REVISIT: udelay in irq is unfriendly */
 | |
| 			if (xfer->delay_usecs)
 | |
| 				udelay(xfer->delay_usecs);
 | |
| 
 | |
| 			if (atmel_spi_xfer_is_last(msg, xfer)) {
 | |
| 				/* report completed message */
 | |
| 				atmel_spi_msg_done(master, as, msg, 0,
 | |
| 						xfer->cs_change);
 | |
| 			} else {
 | |
| 				if (xfer->cs_change) {
 | |
| 					cs_deactivate(as, msg->spi);
 | |
| 					udelay(1);
 | |
| 					cs_activate(as, msg->spi);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Not done yet. Submit the next transfer.
 | |
| 				 *
 | |
| 				 * FIXME handle protocol options for xfer
 | |
| 				 */
 | |
| 				atmel_spi_next_xfer(master, msg);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Keep going, we still have data to send in
 | |
| 			 * the current transfer.
 | |
| 			 */
 | |
| 			atmel_spi_next_xfer(master, msg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&as->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi	*as;
 | |
| 	struct atmel_spi_device	*asd;
 | |
| 	u32			scbr, csr;
 | |
| 	unsigned int		bits = spi->bits_per_word;
 | |
| 	unsigned long		bus_hz;
 | |
| 	unsigned int		npcs_pin;
 | |
| 	int			ret;
 | |
| 
 | |
| 	as = spi_master_get_devdata(spi->master);
 | |
| 
 | |
| 	if (as->stopping)
 | |
| 		return -ESHUTDOWN;
 | |
| 
 | |
| 	if (spi->chip_select > spi->master->num_chipselect) {
 | |
| 		dev_dbg(&spi->dev,
 | |
| 				"setup: invalid chipselect %u (%u defined)\n",
 | |
| 				spi->chip_select, spi->master->num_chipselect);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (bits < 8 || bits > 16) {
 | |
| 		dev_dbg(&spi->dev,
 | |
| 				"setup: invalid bits_per_word %u (8 to 16)\n",
 | |
| 				bits);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* see notes above re chipselect */
 | |
| 	if (!atmel_spi_is_v2()
 | |
| 			&& spi->chip_select == 0
 | |
| 			&& (spi->mode & SPI_CS_HIGH)) {
 | |
| 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* v1 chips start out at half the peripheral bus speed. */
 | |
| 	bus_hz = clk_get_rate(as->clk);
 | |
| 	if (!atmel_spi_is_v2())
 | |
| 		bus_hz /= 2;
 | |
| 
 | |
| 	if (spi->max_speed_hz) {
 | |
| 		/*
 | |
| 		 * Calculate the lowest divider that satisfies the
 | |
| 		 * constraint, assuming div32/fdiv/mbz == 0.
 | |
| 		 */
 | |
| 		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the resulting divider doesn't fit into the
 | |
| 		 * register bitfield, we can't satisfy the constraint.
 | |
| 		 */
 | |
| 		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 | |
| 			dev_dbg(&spi->dev,
 | |
| 				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 | |
| 				spi->max_speed_hz, scbr, bus_hz/255);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else
 | |
| 		/* speed zero means "as slow as possible" */
 | |
| 		scbr = 0xff;
 | |
| 
 | |
| 	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		csr |= SPI_BIT(CPOL);
 | |
| 	if (!(spi->mode & SPI_CPHA))
 | |
| 		csr |= SPI_BIT(NCPHA);
 | |
| 
 | |
| 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 | |
| 	 *
 | |
| 	 * DLYBCT would add delays between words, slowing down transfers.
 | |
| 	 * It could potentially be useful to cope with DMA bottlenecks, but
 | |
| 	 * in those cases it's probably best to just use a lower bitrate.
 | |
| 	 */
 | |
| 	csr |= SPI_BF(DLYBS, 0);
 | |
| 	csr |= SPI_BF(DLYBCT, 0);
 | |
| 
 | |
| 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 | |
| 	npcs_pin = (unsigned int)spi->controller_data;
 | |
| 	asd = spi->controller_state;
 | |
| 	if (!asd) {
 | |
| 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 | |
| 		if (!asd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 | |
| 		if (ret) {
 | |
| 			kfree(asd);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		asd->npcs_pin = npcs_pin;
 | |
| 		spi->controller_state = asd;
 | |
| 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 | |
| 	} else {
 | |
| 		unsigned long		flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&as->lock, flags);
 | |
| 		if (as->stay == spi)
 | |
| 			as->stay = NULL;
 | |
| 		cs_deactivate(as, spi);
 | |
| 		spin_unlock_irqrestore(&as->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	asd->csr = csr;
 | |
| 
 | |
| 	dev_dbg(&spi->dev,
 | |
| 		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 | |
| 		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 | |
| 
 | |
| 	if (!atmel_spi_is_v2())
 | |
| 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 | |
| {
 | |
| 	struct atmel_spi	*as;
 | |
| 	struct spi_transfer	*xfer;
 | |
| 	unsigned long		flags;
 | |
| 	struct device		*controller = spi->master->dev.parent;
 | |
| 	u8			bits;
 | |
| 	struct atmel_spi_device	*asd;
 | |
| 
 | |
| 	as = spi_master_get_devdata(spi->master);
 | |
| 
 | |
| 	dev_dbg(controller, "new message %p submitted for %s\n",
 | |
| 			msg, dev_name(&spi->dev));
 | |
| 
 | |
| 	if (unlikely(list_empty(&msg->transfers)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (as->stopping)
 | |
| 		return -ESHUTDOWN;
 | |
| 
 | |
| 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 | |
| 		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 | |
| 			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (xfer->bits_per_word) {
 | |
| 			asd = spi->controller_state;
 | |
| 			bits = (asd->csr >> 4) & 0xf;
 | |
| 			if (bits != xfer->bits_per_word - 8) {
 | |
| 				dev_dbg(&spi->dev, "you can't yet change "
 | |
| 					 "bits_per_word in transfers\n");
 | |
| 				return -ENOPROTOOPT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* FIXME implement these protocol options!! */
 | |
| 		if (xfer->speed_hz) {
 | |
| 			dev_dbg(&spi->dev, "no protocol options yet\n");
 | |
| 			return -ENOPROTOOPT;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * DMA map early, for performance (empties dcache ASAP) and
 | |
| 		 * better fault reporting.  This is a DMA-only driver.
 | |
| 		 *
 | |
| 		 * NOTE that if dma_unmap_single() ever starts to do work on
 | |
| 		 * platforms supported by this driver, we would need to clean
 | |
| 		 * up mappings for previously-mapped transfers.
 | |
| 		 */
 | |
| 		if (!msg->is_dma_mapped) {
 | |
| 			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef VERBOSE
 | |
| 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 | |
| 		dev_dbg(controller,
 | |
| 			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 | |
| 			xfer, xfer->len,
 | |
| 			xfer->tx_buf, xfer->tx_dma,
 | |
| 			xfer->rx_buf, xfer->rx_dma);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	msg->status = -EINPROGRESS;
 | |
| 	msg->actual_length = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&as->lock, flags);
 | |
| 	list_add_tail(&msg->queue, &as->queue);
 | |
| 	if (!as->current_transfer)
 | |
| 		atmel_spi_next_message(spi->master);
 | |
| 	spin_unlock_irqrestore(&as->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 | |
| 	struct atmel_spi_device	*asd = spi->controller_state;
 | |
| 	unsigned		gpio = (unsigned) spi->controller_data;
 | |
| 	unsigned long		flags;
 | |
| 
 | |
| 	if (!asd)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&as->lock, flags);
 | |
| 	if (as->stay == spi) {
 | |
| 		as->stay = NULL;
 | |
| 		cs_deactivate(as, spi);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&as->lock, flags);
 | |
| 
 | |
| 	spi->controller_state = NULL;
 | |
| 	gpio_free(gpio);
 | |
| 	kfree(asd);
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static int __devinit atmel_spi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct resource		*regs;
 | |
| 	int			irq;
 | |
| 	struct clk		*clk;
 | |
| 	int			ret;
 | |
| 	struct spi_master	*master;
 | |
| 	struct atmel_spi	*as;
 | |
| 
 | |
| 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!regs)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	clk = clk_get(&pdev->dev, "spi_clk");
 | |
| 	if (IS_ERR(clk))
 | |
| 		return PTR_ERR(clk);
 | |
| 
 | |
| 	/* setup spi core then atmel-specific driver state */
 | |
| 	ret = -ENOMEM;
 | |
| 	master = spi_alloc_master(&pdev->dev, sizeof *as);
 | |
| 	if (!master)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* the spi->mode bits understood by this driver: */
 | |
| 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 | |
| 
 | |
| 	master->bus_num = pdev->id;
 | |
| 	master->num_chipselect = 4;
 | |
| 	master->setup = atmel_spi_setup;
 | |
| 	master->transfer = atmel_spi_transfer;
 | |
| 	master->cleanup = atmel_spi_cleanup;
 | |
| 	platform_set_drvdata(pdev, master);
 | |
| 
 | |
| 	as = spi_master_get_devdata(master);
 | |
| 
 | |
| 	/*
 | |
| 	 * Scratch buffer is used for throwaway rx and tx data.
 | |
| 	 * It's coherent to minimize dcache pollution.
 | |
| 	 */
 | |
| 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 | |
| 					&as->buffer_dma, GFP_KERNEL);
 | |
| 	if (!as->buffer)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	spin_lock_init(&as->lock);
 | |
| 	INIT_LIST_HEAD(&as->queue);
 | |
| 	as->pdev = pdev;
 | |
| 	as->regs = ioremap(regs->start, resource_size(regs));
 | |
| 	if (!as->regs)
 | |
| 		goto out_free_buffer;
 | |
| 	as->irq = irq;
 | |
| 	as->clk = clk;
 | |
| 
 | |
| 	ret = request_irq(irq, atmel_spi_interrupt, 0,
 | |
| 			dev_name(&pdev->dev), master);
 | |
| 	if (ret)
 | |
| 		goto out_unmap_regs;
 | |
| 
 | |
| 	/* Initialize the hardware */
 | |
| 	clk_enable(clk);
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 | |
| 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 	spi_writel(as, CR, SPI_BIT(SPIEN));
 | |
| 
 | |
| 	/* go! */
 | |
| 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 | |
| 			(unsigned long)regs->start, irq);
 | |
| 
 | |
| 	ret = spi_register_master(master);
 | |
| 	if (ret)
 | |
| 		goto out_reset_hw;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_reset_hw:
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 	clk_disable(clk);
 | |
| 	free_irq(irq, master);
 | |
| out_unmap_regs:
 | |
| 	iounmap(as->regs);
 | |
| out_free_buffer:
 | |
| 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 | |
| 			as->buffer_dma);
 | |
| out_free:
 | |
| 	clk_put(clk);
 | |
| 	spi_master_put(master);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __devexit atmel_spi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master	*master = platform_get_drvdata(pdev);
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 	struct spi_message	*msg;
 | |
| 
 | |
| 	/* reset the hardware and block queue progress */
 | |
| 	spin_lock_irq(&as->lock);
 | |
| 	as->stopping = 1;
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 	spi_readl(as, SR);
 | |
| 	spin_unlock_irq(&as->lock);
 | |
| 
 | |
| 	/* Terminate remaining queued transfers */
 | |
| 	list_for_each_entry(msg, &as->queue, queue) {
 | |
| 		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
 | |
| 		 * but we shouldn't depend on that...
 | |
| 		 */
 | |
| 		msg->status = -ESHUTDOWN;
 | |
| 		msg->complete(msg->context);
 | |
| 	}
 | |
| 
 | |
| 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 | |
| 			as->buffer_dma);
 | |
| 
 | |
| 	clk_disable(as->clk);
 | |
| 	clk_put(as->clk);
 | |
| 	free_irq(as->irq, master);
 | |
| 	iounmap(as->regs);
 | |
| 
 | |
| 	spi_unregister_master(master);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef	CONFIG_PM
 | |
| 
 | |
| static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 | |
| {
 | |
| 	struct spi_master	*master = platform_get_drvdata(pdev);
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 
 | |
| 	clk_disable(as->clk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_resume(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master	*master = platform_get_drvdata(pdev);
 | |
| 	struct atmel_spi	*as = spi_master_get_devdata(master);
 | |
| 
 | |
| 	clk_enable(as->clk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define	atmel_spi_suspend	NULL
 | |
| #define	atmel_spi_resume	NULL
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static struct platform_driver atmel_spi_driver = {
 | |
| 	.driver		= {
 | |
| 		.name	= "atmel_spi",
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| 	.suspend	= atmel_spi_suspend,
 | |
| 	.resume		= atmel_spi_resume,
 | |
| 	.probe		= atmel_spi_probe,
 | |
| 	.remove		= __exit_p(atmel_spi_remove),
 | |
| };
 | |
| module_platform_driver(atmel_spi_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
 | |
| MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:atmel_spi");
 |