 4933402075
			
		
	
	
	4933402075
	
	
	
		
			
			... by 6 months Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			1432 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1432 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CARMA DATA-FPGA Access Driver
 | |
|  *
 | |
|  * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2 of the License, or (at your
 | |
|  * option) any later version.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * FPGA Memory Dump Format
 | |
|  *
 | |
|  * FPGA #0 control registers (32 x 32-bit words)
 | |
|  * FPGA #1 control registers (32 x 32-bit words)
 | |
|  * FPGA #2 control registers (32 x 32-bit words)
 | |
|  * FPGA #3 control registers (32 x 32-bit words)
 | |
|  * SYSFPGA control registers (32 x 32-bit words)
 | |
|  * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
 | |
|  * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
 | |
|  * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
 | |
|  * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
 | |
|  *
 | |
|  * Each correlation array consists of:
 | |
|  *
 | |
|  * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
 | |
|  * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
 | |
|  * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
 | |
|  *
 | |
|  * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
 | |
|  * the FPGA configuration registers. They do not change once the FPGA's
 | |
|  * have been programmed, they only change on re-programming.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Basic Description:
 | |
|  *
 | |
|  * This driver is used to capture correlation spectra off of the four data
 | |
|  * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
 | |
|  * this driver supports dynamic enable/disable of capture while the device
 | |
|  * remains open.
 | |
|  *
 | |
|  * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
 | |
|  * capture rate, all buffers are pre-allocated to avoid any potentially long
 | |
|  * running memory allocations while capturing.
 | |
|  *
 | |
|  * There are two lists and one pointer which are used to keep track of the
 | |
|  * different states of data buffers.
 | |
|  *
 | |
|  * 1) free list
 | |
|  * This list holds all empty data buffers which are ready to receive data.
 | |
|  *
 | |
|  * 2) inflight pointer
 | |
|  * This pointer holds the currently inflight data buffer. This buffer is having
 | |
|  * data copied into it by the DMA engine.
 | |
|  *
 | |
|  * 3) used list
 | |
|  * This list holds data buffers which have been filled, and are waiting to be
 | |
|  * read by userspace.
 | |
|  *
 | |
|  * All buffers start life on the free list, then move successively to the
 | |
|  * inflight pointer, and then to the used list. After they have been read by
 | |
|  * userspace, they are moved back to the free list. The cycle repeats as long
 | |
|  * as necessary.
 | |
|  *
 | |
|  * It should be noted that all buffers are mapped and ready for DMA when they
 | |
|  * are on any of the three lists. They are only unmapped when they are in the
 | |
|  * process of being read by userspace.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Notes on the IRQ masking scheme:
 | |
|  *
 | |
|  * The IRQ masking scheme here is different than most other hardware. The only
 | |
|  * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
 | |
|  * the data is if the status registers are not cleared before the next
 | |
|  * correlation data dump is ready.
 | |
|  *
 | |
|  * The interrupt line is connected to the status registers, such that when they
 | |
|  * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
 | |
|  * to schedule a long-running DMA operation and return from the interrupt
 | |
|  * handler quickly, but we cannot clear the status registers.
 | |
|  *
 | |
|  * To handle this, the system controller FPGA has the capability to connect the
 | |
|  * interrupt line to a user-controlled GPIO pin. This pin is driven high
 | |
|  * (unasserted) and left that way. To mask the interrupt, we change the
 | |
|  * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
 | |
|  */
 | |
| 
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kref.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <media/videobuf-dma-sg.h>
 | |
| 
 | |
| /* system controller registers */
 | |
| #define SYS_IRQ_SOURCE_CTL	0x24
 | |
| #define SYS_IRQ_OUTPUT_EN	0x28
 | |
| #define SYS_IRQ_OUTPUT_DATA	0x2C
 | |
| #define SYS_IRQ_INPUT_DATA	0x30
 | |
| #define SYS_FPGA_CONFIG_STATUS	0x44
 | |
| 
 | |
| /* GPIO IRQ line assignment */
 | |
| #define IRQ_CORL_DONE		0x10
 | |
| 
 | |
| /* FPGA registers */
 | |
| #define MMAP_REG_VERSION	0x00
 | |
| #define MMAP_REG_CORL_CONF1	0x08
 | |
| #define MMAP_REG_CORL_CONF2	0x0C
 | |
| #define MMAP_REG_STATUS		0x48
 | |
| 
 | |
| #define SYS_FPGA_BLOCK		0xF0000000
 | |
| 
 | |
| #define DATA_FPGA_START		0x400000
 | |
| #define DATA_FPGA_SIZE		0x80000
 | |
| 
 | |
| static const char drv_name[] = "carma-fpga";
 | |
| 
 | |
| #define NUM_FPGA	4
 | |
| 
 | |
| #define MIN_DATA_BUFS	8
 | |
| #define MAX_DATA_BUFS	64
 | |
| 
 | |
| struct fpga_info {
 | |
| 	unsigned int num_lag_ram;
 | |
| 	unsigned int blk_size;
 | |
| };
 | |
| 
 | |
| struct data_buf {
 | |
| 	struct list_head entry;
 | |
| 	struct videobuf_dmabuf vb;
 | |
| 	size_t size;
 | |
| };
 | |
| 
 | |
| struct fpga_device {
 | |
| 	/* character device */
 | |
| 	struct miscdevice miscdev;
 | |
| 	struct device *dev;
 | |
| 	struct mutex mutex;
 | |
| 
 | |
| 	/* reference count */
 | |
| 	struct kref ref;
 | |
| 
 | |
| 	/* FPGA registers and information */
 | |
| 	struct fpga_info info[NUM_FPGA];
 | |
| 	void __iomem *regs;
 | |
| 	int irq;
 | |
| 
 | |
| 	/* FPGA Physical Address/Size Information */
 | |
| 	resource_size_t phys_addr;
 | |
| 	size_t phys_size;
 | |
| 
 | |
| 	/* DMA structures */
 | |
| 	struct sg_table corl_table;
 | |
| 	unsigned int corl_nents;
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	/* Protection for all members below */
 | |
| 	spinlock_t lock;
 | |
| 
 | |
| 	/* Device enable/disable flag */
 | |
| 	bool enabled;
 | |
| 
 | |
| 	/* Correlation data buffers */
 | |
| 	wait_queue_head_t wait;
 | |
| 	struct list_head free;
 | |
| 	struct list_head used;
 | |
| 	struct data_buf *inflight;
 | |
| 
 | |
| 	/* Information about data buffers */
 | |
| 	unsigned int num_dropped;
 | |
| 	unsigned int num_buffers;
 | |
| 	size_t bufsize;
 | |
| 	struct dentry *dbg_entry;
 | |
| };
 | |
| 
 | |
| struct fpga_reader {
 | |
| 	struct fpga_device *priv;
 | |
| 	struct data_buf *buf;
 | |
| 	off_t buf_start;
 | |
| };
 | |
| 
 | |
| static void fpga_device_release(struct kref *ref)
 | |
| {
 | |
| 	struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
 | |
| 
 | |
| 	/* the last reader has exited, cleanup the last bits */
 | |
| 	mutex_destroy(&priv->mutex);
 | |
| 	kfree(priv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Data Buffer Allocation Helpers
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * data_free_buffer() - free a single data buffer and all allocated memory
 | |
|  * @buf: the buffer to free
 | |
|  *
 | |
|  * This will free all of the pages allocated to the given data buffer, and
 | |
|  * then free the structure itself
 | |
|  */
 | |
| static void data_free_buffer(struct data_buf *buf)
 | |
| {
 | |
| 	/* It is ok to free a NULL buffer */
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 
 | |
| 	/* free all memory */
 | |
| 	videobuf_dma_free(&buf->vb);
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_alloc_buffer() - allocate and fill a data buffer with pages
 | |
|  * @bytes: the number of bytes required
 | |
|  *
 | |
|  * This allocates all space needed for a data buffer. It must be mapped before
 | |
|  * use in a DMA transaction using videobuf_dma_map().
 | |
|  *
 | |
|  * Returns NULL on failure
 | |
|  */
 | |
| static struct data_buf *data_alloc_buffer(const size_t bytes)
 | |
| {
 | |
| 	unsigned int nr_pages;
 | |
| 	struct data_buf *buf;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* calculate the number of pages necessary */
 | |
| 	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
 | |
| 
 | |
| 	/* allocate the buffer structure */
 | |
| 	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		goto out_return;
 | |
| 
 | |
| 	/* initialize internal fields */
 | |
| 	INIT_LIST_HEAD(&buf->entry);
 | |
| 	buf->size = bytes;
 | |
| 
 | |
| 	/* allocate the videobuf */
 | |
| 	videobuf_dma_init(&buf->vb);
 | |
| 	ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
 | |
| 	if (ret)
 | |
| 		goto out_free_buf;
 | |
| 
 | |
| 	return buf;
 | |
| 
 | |
| out_free_buf:
 | |
| 	kfree(buf);
 | |
| out_return:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_free_buffers() - free all allocated buffers
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Free all buffers allocated by the driver (except those currently in the
 | |
|  * process of being read by userspace).
 | |
|  *
 | |
|  * LOCKING: must hold dev->mutex
 | |
|  * CONTEXT: user
 | |
|  */
 | |
| static void data_free_buffers(struct fpga_device *priv)
 | |
| {
 | |
| 	struct data_buf *buf, *tmp;
 | |
| 
 | |
| 	/* the device should be stopped, no DMA in progress */
 | |
| 	BUG_ON(priv->inflight != NULL);
 | |
| 
 | |
| 	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
 | |
| 		list_del_init(&buf->entry);
 | |
| 		videobuf_dma_unmap(priv->dev, &buf->vb);
 | |
| 		data_free_buffer(buf);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
 | |
| 		list_del_init(&buf->entry);
 | |
| 		videobuf_dma_unmap(priv->dev, &buf->vb);
 | |
| 		data_free_buffer(buf);
 | |
| 	}
 | |
| 
 | |
| 	priv->num_buffers = 0;
 | |
| 	priv->bufsize = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_alloc_buffers() - allocate 1 seconds worth of data buffers
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Allocate enough buffers for a whole second worth of data
 | |
|  *
 | |
|  * This routine will attempt to degrade nicely by succeeding even if a full
 | |
|  * second worth of data buffers could not be allocated, as long as a minimum
 | |
|  * number were allocated. In this case, it will print a message to the kernel
 | |
|  * log.
 | |
|  *
 | |
|  * The device must not be modifying any lists when this is called.
 | |
|  *
 | |
|  * CONTEXT: user
 | |
|  * LOCKING: must hold dev->mutex
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_alloc_buffers(struct fpga_device *priv)
 | |
| {
 | |
| 	struct data_buf *buf;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < MAX_DATA_BUFS; i++) {
 | |
| 
 | |
| 		/* allocate a buffer */
 | |
| 		buf = data_alloc_buffer(priv->bufsize);
 | |
| 		if (!buf)
 | |
| 			break;
 | |
| 
 | |
| 		/* map it for DMA */
 | |
| 		ret = videobuf_dma_map(priv->dev, &buf->vb);
 | |
| 		if (ret) {
 | |
| 			data_free_buffer(buf);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* add it to the list of free buffers */
 | |
| 		list_add_tail(&buf->entry, &priv->free);
 | |
| 		priv->num_buffers++;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we allocated the minimum required number of buffers */
 | |
| 	if (priv->num_buffers < MIN_DATA_BUFS) {
 | |
| 		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
 | |
| 		data_free_buffers(priv);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Warn if we are running in a degraded state, but do not fail */
 | |
| 	if (priv->num_buffers < MAX_DATA_BUFS) {
 | |
| 		dev_warn(priv->dev,
 | |
| 			 "Unable to allocate %d buffers, using %d buffers instead\n",
 | |
| 			 MAX_DATA_BUFS, i);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DMA Operations Helpers
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * fpga_start_addr() - get the physical address a DATA-FPGA
 | |
|  * @priv: the driver's private data structure
 | |
|  * @fpga: the DATA-FPGA number (zero based)
 | |
|  */
 | |
| static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
 | |
| {
 | |
| 	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fpga_block_addr() - get the physical address of a correlation data block
 | |
|  * @priv: the driver's private data structure
 | |
|  * @fpga: the DATA-FPGA number (zero based)
 | |
|  * @blknum: the correlation block number (zero based)
 | |
|  */
 | |
| static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
 | |
| 				  unsigned int blknum)
 | |
| {
 | |
| 	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
 | |
| }
 | |
| 
 | |
| #define REG_BLOCK_SIZE	(32 * 4)
 | |
| 
 | |
| /**
 | |
|  * data_setup_corl_table() - create the scatterlist for correlation dumps
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Create the scatterlist for transferring a correlation dump from the
 | |
|  * DATA FPGAs. This structure will be reused for each buffer than needs
 | |
|  * to be filled with correlation data.
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_setup_corl_table(struct fpga_device *priv)
 | |
| {
 | |
| 	struct sg_table *table = &priv->corl_table;
 | |
| 	struct scatterlist *sg;
 | |
| 	struct fpga_info *info;
 | |
| 	int i, j, ret;
 | |
| 
 | |
| 	/* Calculate the number of entries needed */
 | |
| 	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 | |
| 	for (i = 0; i < NUM_FPGA; i++)
 | |
| 		priv->corl_nents += priv->info[i].num_lag_ram;
 | |
| 
 | |
| 	/* Allocate the scatterlist table */
 | |
| 	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to allocate DMA table\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Add the DATA FPGA registers to the scatterlist */
 | |
| 	sg = table->sgl;
 | |
| 	for (i = 0; i < NUM_FPGA; i++) {
 | |
| 		sg_dma_address(sg) = fpga_start_addr(priv, i);
 | |
| 		sg_dma_len(sg) = REG_BLOCK_SIZE;
 | |
| 		sg = sg_next(sg);
 | |
| 	}
 | |
| 
 | |
| 	/* Add the SYS-FPGA registers to the scatterlist */
 | |
| 	sg_dma_address(sg) = SYS_FPGA_BLOCK;
 | |
| 	sg_dma_len(sg) = REG_BLOCK_SIZE;
 | |
| 	sg = sg_next(sg);
 | |
| 
 | |
| 	/* Add the FPGA correlation data blocks to the scatterlist */
 | |
| 	for (i = 0; i < NUM_FPGA; i++) {
 | |
| 		info = &priv->info[i];
 | |
| 		for (j = 0; j < info->num_lag_ram; j++) {
 | |
| 			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
 | |
| 			sg_dma_len(sg) = info->blk_size;
 | |
| 			sg = sg_next(sg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All physical addresses and lengths are present in the structure
 | |
| 	 * now. It can be reused for every FPGA DATA interrupt
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FPGA Register Access Helpers
 | |
|  */
 | |
| 
 | |
| static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
 | |
| 			   unsigned int reg, u32 val)
 | |
| {
 | |
| 	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 | |
| 	iowrite32be(val, priv->regs + fpga_start + reg);
 | |
| }
 | |
| 
 | |
| static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
 | |
| 			 unsigned int reg)
 | |
| {
 | |
| 	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 | |
| 	return ioread32be(priv->regs + fpga_start + reg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_calculate_bufsize() - calculate the data buffer size required
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Calculate the total buffer size needed to hold a single block
 | |
|  * of correlation data
 | |
|  *
 | |
|  * CONTEXT: user
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_calculate_bufsize(struct fpga_device *priv)
 | |
| {
 | |
| 	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
 | |
| 	u32 conf1, conf2, version;
 | |
| 	u32 num_lag_ram, blk_size;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Each buffer starts with the 5 FPGA register areas */
 | |
| 	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 | |
| 
 | |
| 	/* Read and store the configuration data for each FPGA */
 | |
| 	for (i = 0; i < NUM_FPGA; i++) {
 | |
| 		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
 | |
| 		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
 | |
| 		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
 | |
| 
 | |
| 		/* minor version 2 and later */
 | |
| 		if ((version & 0x000000FF) >= 2) {
 | |
| 			num_corl = (conf1 & 0x000000F0) >> 4;
 | |
| 			num_pack = (conf1 & 0x00000F00) >> 8;
 | |
| 			num_lags = (conf1 & 0x00FFF000) >> 12;
 | |
| 			num_meta = (conf1 & 0x7F000000) >> 24;
 | |
| 			num_qcnt = (conf2 & 0x00000FFF) >> 0;
 | |
| 		} else {
 | |
| 			num_corl = (conf1 & 0x000000F0) >> 4;
 | |
| 			num_pack = 1; /* implied */
 | |
| 			num_lags = (conf1 & 0x000FFF00) >> 8;
 | |
| 			num_meta = (conf1 & 0x7FF00000) >> 20;
 | |
| 			num_qcnt = (conf2 & 0x00000FFF) >> 0;
 | |
| 		}
 | |
| 
 | |
| 		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
 | |
| 		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
 | |
| 
 | |
| 		priv->info[i].num_lag_ram = num_lag_ram;
 | |
| 		priv->info[i].blk_size = blk_size;
 | |
| 		priv->bufsize += num_lag_ram * blk_size;
 | |
| 
 | |
| 		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
 | |
| 		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
 | |
| 		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
 | |
| 		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
 | |
| 		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
 | |
| 		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt Handling
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * data_disable_interrupts() - stop the device from generating interrupts
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Hide interrupts by switching to GPIO interrupt source
 | |
|  *
 | |
|  * LOCKING: must hold dev->lock
 | |
|  */
 | |
| static void data_disable_interrupts(struct fpga_device *priv)
 | |
| {
 | |
| 	/* hide the interrupt by switching the IRQ driver to GPIO */
 | |
| 	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_enable_interrupts() - allow the device to generate interrupts
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Unhide interrupts by switching to the FPGA interrupt source. At the
 | |
|  * same time, clear the DATA-FPGA status registers.
 | |
|  *
 | |
|  * LOCKING: must hold dev->lock
 | |
|  */
 | |
| static void data_enable_interrupts(struct fpga_device *priv)
 | |
| {
 | |
| 	/* clear the actual FPGA corl_done interrupt */
 | |
| 	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
 | |
| 	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
 | |
| 	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
 | |
| 	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
 | |
| 
 | |
| 	/* flush the writes */
 | |
| 	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
 | |
| 
 | |
| 	/* switch back to the external interrupt source */
 | |
| 	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_dma_cb() - DMAEngine callback for DMA completion
 | |
|  * @data: the driver's private data structure
 | |
|  *
 | |
|  * Complete a DMA transfer from the DATA-FPGA's
 | |
|  *
 | |
|  * This is called via the DMA callback mechanism, and will handle moving the
 | |
|  * completed DMA transaction to the used list, and then wake any processes
 | |
|  * waiting for new data
 | |
|  *
 | |
|  * CONTEXT: any, softirq expected
 | |
|  */
 | |
| static void data_dma_cb(void *data)
 | |
| {
 | |
| 	struct fpga_device *priv = data;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&priv->lock, flags);
 | |
| 
 | |
| 	/* If there is no inflight buffer, we've got a bug */
 | |
| 	BUG_ON(priv->inflight == NULL);
 | |
| 
 | |
| 	/* Move the inflight buffer onto the used list */
 | |
| 	list_move_tail(&priv->inflight->entry, &priv->used);
 | |
| 	priv->inflight = NULL;
 | |
| 
 | |
| 	/* clear the FPGA status and re-enable interrupts */
 | |
| 	data_enable_interrupts(priv);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&priv->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've changed both the inflight and used lists, so we need
 | |
| 	 * to wake up any processes that are blocking for those events
 | |
| 	 */
 | |
| 	wake_up(&priv->wait);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_submit_dma() - prepare and submit the required DMA to fill a buffer
 | |
|  * @priv: the driver's private data structure
 | |
|  * @buf: the data buffer
 | |
|  *
 | |
|  * Prepare and submit the necessary DMA transactions to fill a correlation
 | |
|  * data buffer.
 | |
|  *
 | |
|  * LOCKING: must hold dev->lock
 | |
|  * CONTEXT: hardirq only
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
 | |
| {
 | |
| 	struct scatterlist *dst_sg, *src_sg;
 | |
| 	unsigned int dst_nents, src_nents;
 | |
| 	struct dma_chan *chan = priv->chan;
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	dma_cookie_t cookie;
 | |
| 	dma_addr_t dst, src;
 | |
| 
 | |
| 	dst_sg = buf->vb.sglist;
 | |
| 	dst_nents = buf->vb.sglen;
 | |
| 
 | |
| 	src_sg = priv->corl_table.sgl;
 | |
| 	src_nents = priv->corl_nents;
 | |
| 
 | |
| 	/*
 | |
| 	 * All buffers passed to this function should be ready and mapped
 | |
| 	 * for DMA already. Therefore, we don't need to do anything except
 | |
| 	 * submit it to the Freescale DMA Engine for processing
 | |
| 	 */
 | |
| 
 | |
| 	/* setup the scatterlist to scatterlist transfer */
 | |
| 	tx = chan->device->device_prep_dma_sg(chan,
 | |
| 					      dst_sg, dst_nents,
 | |
| 					      src_sg, src_nents,
 | |
| 					      0);
 | |
| 	if (!tx) {
 | |
| 		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* submit the transaction to the DMA controller */
 | |
| 	cookie = tx->tx_submit(tx);
 | |
| 	if (dma_submit_error(cookie)) {
 | |
| 		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the re-read of the SYS-FPGA block */
 | |
| 	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
 | |
| 	src = SYS_FPGA_BLOCK;
 | |
| 	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
 | |
| 						  REG_BLOCK_SIZE,
 | |
| 						  DMA_PREP_INTERRUPT);
 | |
| 	if (!tx) {
 | |
| 		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the callback */
 | |
| 	tx->callback = data_dma_cb;
 | |
| 	tx->callback_param = priv;
 | |
| 
 | |
| 	/* submit the transaction to the DMA controller */
 | |
| 	cookie = tx->tx_submit(tx);
 | |
| 	if (dma_submit_error(cookie)) {
 | |
| 		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define CORL_DONE	0x1
 | |
| #define CORL_ERR	0x2
 | |
| 
 | |
| static irqreturn_t data_irq(int irq, void *dev_id)
 | |
| {
 | |
| 	struct fpga_device *priv = dev_id;
 | |
| 	bool submitted = false;
 | |
| 	struct data_buf *buf;
 | |
| 	u32 status;
 | |
| 	int i;
 | |
| 
 | |
| 	/* detect spurious interrupts via FPGA status */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
 | |
| 		if (!(status & (CORL_DONE | CORL_ERR))) {
 | |
| 			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
 | |
| 			return IRQ_NONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* detect spurious interrupts via raw IRQ pin readback */
 | |
| 	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
 | |
| 	if (status & IRQ_CORL_DONE) {
 | |
| 		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&priv->lock);
 | |
| 
 | |
| 	/* hide the interrupt by switching the IRQ driver to GPIO */
 | |
| 	data_disable_interrupts(priv);
 | |
| 
 | |
| 	/* If there are no free buffers, drop this data */
 | |
| 	if (list_empty(&priv->free)) {
 | |
| 		priv->num_dropped++;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	buf = list_first_entry(&priv->free, struct data_buf, entry);
 | |
| 	list_del_init(&buf->entry);
 | |
| 	BUG_ON(buf->size != priv->bufsize);
 | |
| 
 | |
| 	/* Submit a DMA transfer to get the correlation data */
 | |
| 	if (data_submit_dma(priv, buf)) {
 | |
| 		dev_err(priv->dev, "Unable to setup DMA transfer\n");
 | |
| 		list_move_tail(&buf->entry, &priv->free);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Save the buffer for the DMA callback */
 | |
| 	priv->inflight = buf;
 | |
| 	submitted = true;
 | |
| 
 | |
| 	/* Start the DMA Engine */
 | |
| 	dma_async_memcpy_issue_pending(priv->chan);
 | |
| 
 | |
| out:
 | |
| 	/* If no DMA was submitted, re-enable interrupts */
 | |
| 	if (!submitted)
 | |
| 		data_enable_interrupts(priv);
 | |
| 
 | |
| 	spin_unlock(&priv->lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Realtime Device Enable Helpers
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * data_device_enable() - enable the device for buffered dumping
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Enable the device for buffered dumping. Allocates buffers and hooks up
 | |
|  * the interrupt handler. When this finishes, data will come pouring in.
 | |
|  *
 | |
|  * LOCKING: must hold dev->mutex
 | |
|  * CONTEXT: user context only
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_device_enable(struct fpga_device *priv)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* multiple enables are safe: they do nothing */
 | |
| 	if (priv->enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* check that the FPGAs are programmed */
 | |
| 	val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
 | |
| 	if (!(val & (1 << 18))) {
 | |
| 		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
 | |
| 		return -ENODATA;
 | |
| 	}
 | |
| 
 | |
| 	/* read the FPGAs to calculate the buffer size */
 | |
| 	ret = data_calculate_bufsize(priv);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to calculate buffer size\n");
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate the correlation data buffers */
 | |
| 	ret = data_alloc_buffers(priv);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to allocate buffers\n");
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* setup the source scatterlist for dumping correlation data */
 | |
| 	ret = data_setup_corl_table(priv);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to setup correlation DMA table\n");
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* hookup the irq handler */
 | |
| 	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to request IRQ handler\n");
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* switch to the external FPGA IRQ line */
 | |
| 	data_enable_interrupts(priv);
 | |
| 
 | |
| 	/* success, we're enabled */
 | |
| 	priv->enabled = true;
 | |
| 	return 0;
 | |
| 
 | |
| out_error:
 | |
| 	sg_free_table(&priv->corl_table);
 | |
| 	priv->corl_nents = 0;
 | |
| 
 | |
| 	data_free_buffers(priv);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * data_device_disable() - disable the device for buffered dumping
 | |
|  * @priv: the driver's private data structure
 | |
|  *
 | |
|  * Disable the device for buffered dumping. Stops new DMA transactions from
 | |
|  * being generated, waits for all outstanding DMA to complete, and then frees
 | |
|  * all buffers.
 | |
|  *
 | |
|  * LOCKING: must hold dev->mutex
 | |
|  * CONTEXT: user only
 | |
|  *
 | |
|  * Returns 0 on success, -ERRNO otherwise
 | |
|  */
 | |
| static int data_device_disable(struct fpga_device *priv)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* allow multiple disable */
 | |
| 	if (!priv->enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* switch to the internal GPIO IRQ line */
 | |
| 	data_disable_interrupts(priv);
 | |
| 
 | |
| 	/* unhook the irq handler */
 | |
| 	free_irq(priv->irq, priv);
 | |
| 
 | |
| 	/*
 | |
| 	 * wait for all outstanding DMA to complete
 | |
| 	 *
 | |
| 	 * Device interrupts are disabled, therefore another buffer cannot
 | |
| 	 * be marked inflight.
 | |
| 	 */
 | |
| 	ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* free the correlation table */
 | |
| 	sg_free_table(&priv->corl_table);
 | |
| 	priv->corl_nents = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are taking the spinlock not to protect priv->enabled, but instead
 | |
| 	 * to make sure that there are no readers in the process of altering
 | |
| 	 * the free or used lists while we are setting this flag.
 | |
| 	 */
 | |
| 	spin_lock_irq(&priv->lock);
 | |
| 	priv->enabled = false;
 | |
| 	spin_unlock_irq(&priv->lock);
 | |
| 
 | |
| 	/* free all buffers: the free and used lists are not being changed */
 | |
| 	data_free_buffers(priv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DEBUGFS Interface
 | |
|  */
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 
 | |
| /*
 | |
|  * Count the number of entries in the given list
 | |
|  */
 | |
| static unsigned int list_num_entries(struct list_head *list)
 | |
| {
 | |
| 	struct list_head *entry;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	list_for_each(entry, list)
 | |
| 		ret++;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int data_debug_show(struct seq_file *f, void *offset)
 | |
| {
 | |
| 	struct fpga_device *priv = f->private;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the mutex first, so that we get an accurate value for enable
 | |
| 	 * Lock the spinlock next, to get accurate list counts
 | |
| 	 */
 | |
| 	ret = mutex_lock_interruptible(&priv->mutex);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock_irq(&priv->lock);
 | |
| 
 | |
| 	seq_printf(f, "enabled: %d\n", priv->enabled);
 | |
| 	seq_printf(f, "bufsize: %d\n", priv->bufsize);
 | |
| 	seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
 | |
| 	seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
 | |
| 	seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
 | |
| 	seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
 | |
| 	seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
 | |
| 
 | |
| 	spin_unlock_irq(&priv->lock);
 | |
| 	mutex_unlock(&priv->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int data_debug_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, data_debug_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations data_debug_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= data_debug_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| static int data_debugfs_init(struct fpga_device *priv)
 | |
| {
 | |
| 	priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
 | |
| 					      &data_debug_fops);
 | |
| 	if (IS_ERR(priv->dbg_entry))
 | |
| 		return PTR_ERR(priv->dbg_entry);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void data_debugfs_exit(struct fpga_device *priv)
 | |
| {
 | |
| 	debugfs_remove(priv->dbg_entry);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int data_debugfs_init(struct fpga_device *priv)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void data_debugfs_exit(struct fpga_device *priv)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_DEBUG_FS */
 | |
| 
 | |
| /*
 | |
|  * SYSFS Attributes
 | |
|  */
 | |
| 
 | |
| static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
 | |
| 			    char *buf)
 | |
| {
 | |
| 	struct fpga_device *priv = dev_get_drvdata(dev);
 | |
| 	return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
 | |
| }
 | |
| 
 | |
| static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
 | |
| 			   const char *buf, size_t count)
 | |
| {
 | |
| 	struct fpga_device *priv = dev_get_drvdata(dev);
 | |
| 	unsigned long enable;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = strict_strtoul(buf, 0, &enable);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to parse enable input\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&priv->mutex);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (enable)
 | |
| 		ret = data_device_enable(priv);
 | |
| 	else
 | |
| 		ret = data_device_disable(priv);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "device %s failed\n",
 | |
| 			enable ? "enable" : "disable");
 | |
| 		count = ret;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&priv->mutex);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
 | |
| 
 | |
| static struct attribute *data_sysfs_attrs[] = {
 | |
| 	&dev_attr_enable.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group rt_sysfs_attr_group = {
 | |
| 	.attrs = data_sysfs_attrs,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * FPGA Realtime Data Character Device
 | |
|  */
 | |
| 
 | |
| static int data_open(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	/*
 | |
| 	 * The miscdevice layer puts our struct miscdevice into the
 | |
| 	 * filp->private_data field. We use this to find our private
 | |
| 	 * data and then overwrite it with our own private structure.
 | |
| 	 */
 | |
| 	struct fpga_device *priv = container_of(filp->private_data,
 | |
| 						struct fpga_device, miscdev);
 | |
| 	struct fpga_reader *reader;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* allocate private data */
 | |
| 	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
 | |
| 	if (!reader)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	reader->priv = priv;
 | |
| 	reader->buf = NULL;
 | |
| 
 | |
| 	filp->private_data = reader;
 | |
| 	ret = nonseekable_open(inode, filp);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "nonseekable-open failed\n");
 | |
| 		kfree(reader);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * success, increase the reference count of the private data structure
 | |
| 	 * so that it doesn't disappear if the device is unbound
 | |
| 	 */
 | |
| 	kref_get(&priv->ref);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int data_release(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	struct fpga_reader *reader = filp->private_data;
 | |
| 	struct fpga_device *priv = reader->priv;
 | |
| 
 | |
| 	/* free the per-reader structure */
 | |
| 	data_free_buffer(reader->buf);
 | |
| 	kfree(reader);
 | |
| 	filp->private_data = NULL;
 | |
| 
 | |
| 	/* decrement our reference count to the private data */
 | |
| 	kref_put(&priv->ref, fpga_device_release);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
 | |
| 			 loff_t *f_pos)
 | |
| {
 | |
| 	struct fpga_reader *reader = filp->private_data;
 | |
| 	struct fpga_device *priv = reader->priv;
 | |
| 	struct list_head *used = &priv->used;
 | |
| 	struct data_buf *dbuf;
 | |
| 	size_t avail;
 | |
| 	void *data;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* check if we already have a partial buffer */
 | |
| 	if (reader->buf) {
 | |
| 		dbuf = reader->buf;
 | |
| 		goto have_buffer;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&priv->lock);
 | |
| 
 | |
| 	/* Block until there is at least one buffer on the used list */
 | |
| 	while (list_empty(used)) {
 | |
| 		spin_unlock_irq(&priv->lock);
 | |
| 
 | |
| 		if (filp->f_flags & O_NONBLOCK)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		ret = wait_event_interruptible(priv->wait, !list_empty(used));
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		spin_lock_irq(&priv->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Grab the first buffer off of the used list */
 | |
| 	dbuf = list_first_entry(used, struct data_buf, entry);
 | |
| 	list_del_init(&dbuf->entry);
 | |
| 
 | |
| 	spin_unlock_irq(&priv->lock);
 | |
| 
 | |
| 	/* Buffers are always mapped: unmap it */
 | |
| 	videobuf_dma_unmap(priv->dev, &dbuf->vb);
 | |
| 
 | |
| 	/* save the buffer for later */
 | |
| 	reader->buf = dbuf;
 | |
| 	reader->buf_start = 0;
 | |
| 
 | |
| have_buffer:
 | |
| 	/* Get the number of bytes available */
 | |
| 	avail = dbuf->size - reader->buf_start;
 | |
| 	data = dbuf->vb.vaddr + reader->buf_start;
 | |
| 
 | |
| 	/* Get the number of bytes we can transfer */
 | |
| 	count = min(count, avail);
 | |
| 
 | |
| 	/* Copy the data to the userspace buffer */
 | |
| 	if (copy_to_user(ubuf, data, count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Update the amount of available space */
 | |
| 	avail -= count;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is still some data available, save the buffer for the
 | |
| 	 * next userspace call to read() and return
 | |
| 	 */
 | |
| 	if (avail > 0) {
 | |
| 		reader->buf_start += count;
 | |
| 		reader->buf = dbuf;
 | |
| 		return count;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the buffer ready to be reused for DMA
 | |
| 	 *
 | |
| 	 * If it fails, we pretend that the read never happed and return
 | |
| 	 * -EFAULT to userspace. The read will be retried.
 | |
| 	 */
 | |
| 	ret = videobuf_dma_map(priv->dev, &dbuf->vb);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->dev, "unable to remap buffer for DMA\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Lock against concurrent enable/disable */
 | |
| 	spin_lock_irq(&priv->lock);
 | |
| 
 | |
| 	/* the reader is finished with this buffer */
 | |
| 	reader->buf = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * One of two things has happened, the device is disabled, or the
 | |
| 	 * device has been reconfigured underneath us. In either case, we
 | |
| 	 * should just throw away the buffer.
 | |
| 	 */
 | |
| 	if (!priv->enabled || dbuf->size != priv->bufsize) {
 | |
| 		videobuf_dma_unmap(priv->dev, &dbuf->vb);
 | |
| 		data_free_buffer(dbuf);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* The buffer is safe to reuse, so add it back to the free list */
 | |
| 	list_add_tail(&dbuf->entry, &priv->free);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irq(&priv->lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
 | |
| {
 | |
| 	struct fpga_reader *reader = filp->private_data;
 | |
| 	struct fpga_device *priv = reader->priv;
 | |
| 	unsigned int mask = 0;
 | |
| 
 | |
| 	poll_wait(filp, &priv->wait, tbl);
 | |
| 
 | |
| 	if (!list_empty(&priv->used))
 | |
| 		mask |= POLLIN | POLLRDNORM;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static int data_mmap(struct file *filp, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct fpga_reader *reader = filp->private_data;
 | |
| 	struct fpga_device *priv = reader->priv;
 | |
| 	unsigned long offset, vsize, psize, addr;
 | |
| 
 | |
| 	/* VMA properties */
 | |
| 	offset = vma->vm_pgoff << PAGE_SHIFT;
 | |
| 	vsize = vma->vm_end - vma->vm_start;
 | |
| 	psize = priv->phys_size - offset;
 | |
| 	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Check against the FPGA region's physical memory size */
 | |
| 	if (vsize > psize) {
 | |
| 		dev_err(priv->dev, "requested mmap mapping too large\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* IO memory (stop cacheing) */
 | |
| 	vma->vm_flags |= VM_IO | VM_RESERVED;
 | |
| 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 | |
| 
 | |
| 	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
 | |
| 				  vma->vm_page_prot);
 | |
| }
 | |
| 
 | |
| static const struct file_operations data_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= data_open,
 | |
| 	.release	= data_release,
 | |
| 	.read		= data_read,
 | |
| 	.poll		= data_poll,
 | |
| 	.mmap		= data_mmap,
 | |
| 	.llseek		= no_llseek,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * OpenFirmware Device Subsystem
 | |
|  */
 | |
| 
 | |
| static bool dma_filter(struct dma_chan *chan, void *data)
 | |
| {
 | |
| 	/*
 | |
| 	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
 | |
| 	 *
 | |
| 	 * This probably won't survive an unload/load cycle of the Freescale
 | |
| 	 * DMAEngine driver, but that won't be a problem
 | |
| 	 */
 | |
| 	if (chan->chan_id == 0 && chan->device->dev_id == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int data_of_probe(struct platform_device *op)
 | |
| {
 | |
| 	struct device_node *of_node = op->dev.of_node;
 | |
| 	struct device *this_device;
 | |
| 	struct fpga_device *priv;
 | |
| 	struct resource res;
 | |
| 	dma_cap_mask_t mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Allocate private data */
 | |
| 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 | |
| 	if (!priv) {
 | |
| 		dev_err(&op->dev, "Unable to allocate device private data\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_return;
 | |
| 	}
 | |
| 
 | |
| 	dev_set_drvdata(&op->dev, priv);
 | |
| 	priv->dev = &op->dev;
 | |
| 	kref_init(&priv->ref);
 | |
| 	mutex_init(&priv->mutex);
 | |
| 
 | |
| 	dev_set_drvdata(priv->dev, priv);
 | |
| 	spin_lock_init(&priv->lock);
 | |
| 	INIT_LIST_HEAD(&priv->free);
 | |
| 	INIT_LIST_HEAD(&priv->used);
 | |
| 	init_waitqueue_head(&priv->wait);
 | |
| 
 | |
| 	/* Setup the misc device */
 | |
| 	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
 | |
| 	priv->miscdev.name = drv_name;
 | |
| 	priv->miscdev.fops = &data_fops;
 | |
| 
 | |
| 	/* Get the physical address of the FPGA registers */
 | |
| 	ret = of_address_to_resource(of_node, 0, &res);
 | |
| 	if (ret) {
 | |
| 		dev_err(&op->dev, "Unable to find FPGA physical address\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free_priv;
 | |
| 	}
 | |
| 
 | |
| 	priv->phys_addr = res.start;
 | |
| 	priv->phys_size = resource_size(&res);
 | |
| 
 | |
| 	/* ioremap the registers for use */
 | |
| 	priv->regs = of_iomap(of_node, 0);
 | |
| 	if (!priv->regs) {
 | |
| 		dev_err(&op->dev, "Unable to ioremap registers\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_free_priv;
 | |
| 	}
 | |
| 
 | |
| 	dma_cap_zero(mask);
 | |
| 	dma_cap_set(DMA_MEMCPY, mask);
 | |
| 	dma_cap_set(DMA_INTERRUPT, mask);
 | |
| 	dma_cap_set(DMA_SLAVE, mask);
 | |
| 	dma_cap_set(DMA_SG, mask);
 | |
| 
 | |
| 	/* Request a DMA channel */
 | |
| 	priv->chan = dma_request_channel(mask, dma_filter, NULL);
 | |
| 	if (!priv->chan) {
 | |
| 		dev_err(&op->dev, "Unable to request DMA channel\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_unmap_regs;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the correct IRQ number */
 | |
| 	priv->irq = irq_of_parse_and_map(of_node, 0);
 | |
| 	if (priv->irq == NO_IRQ) {
 | |
| 		dev_err(&op->dev, "Unable to find IRQ line\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_release_dma;
 | |
| 	}
 | |
| 
 | |
| 	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
 | |
| 	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
 | |
| 
 | |
| 	/* Register the miscdevice */
 | |
| 	ret = misc_register(&priv->miscdev);
 | |
| 	if (ret) {
 | |
| 		dev_err(&op->dev, "Unable to register miscdevice\n");
 | |
| 		goto out_irq_dispose_mapping;
 | |
| 	}
 | |
| 
 | |
| 	/* Create the debugfs files */
 | |
| 	ret = data_debugfs_init(priv);
 | |
| 	if (ret) {
 | |
| 		dev_err(&op->dev, "Unable to create debugfs files\n");
 | |
| 		goto out_misc_deregister;
 | |
| 	}
 | |
| 
 | |
| 	/* Create the sysfs files */
 | |
| 	this_device = priv->miscdev.this_device;
 | |
| 	dev_set_drvdata(this_device, priv);
 | |
| 	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
 | |
| 	if (ret) {
 | |
| 		dev_err(&op->dev, "Unable to create sysfs files\n");
 | |
| 		goto out_data_debugfs_exit;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
 | |
| 	return 0;
 | |
| 
 | |
| out_data_debugfs_exit:
 | |
| 	data_debugfs_exit(priv);
 | |
| out_misc_deregister:
 | |
| 	misc_deregister(&priv->miscdev);
 | |
| out_irq_dispose_mapping:
 | |
| 	irq_dispose_mapping(priv->irq);
 | |
| out_release_dma:
 | |
| 	dma_release_channel(priv->chan);
 | |
| out_unmap_regs:
 | |
| 	iounmap(priv->regs);
 | |
| out_free_priv:
 | |
| 	kref_put(&priv->ref, fpga_device_release);
 | |
| out_return:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int data_of_remove(struct platform_device *op)
 | |
| {
 | |
| 	struct fpga_device *priv = dev_get_drvdata(&op->dev);
 | |
| 	struct device *this_device = priv->miscdev.this_device;
 | |
| 
 | |
| 	/* remove all sysfs files, now the device cannot be re-enabled */
 | |
| 	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
 | |
| 
 | |
| 	/* remove all debugfs files */
 | |
| 	data_debugfs_exit(priv);
 | |
| 
 | |
| 	/* disable the device from generating data */
 | |
| 	data_device_disable(priv);
 | |
| 
 | |
| 	/* remove the character device to stop new readers from appearing */
 | |
| 	misc_deregister(&priv->miscdev);
 | |
| 
 | |
| 	/* cleanup everything not needed by readers */
 | |
| 	irq_dispose_mapping(priv->irq);
 | |
| 	dma_release_channel(priv->chan);
 | |
| 	iounmap(priv->regs);
 | |
| 
 | |
| 	/* release our reference */
 | |
| 	kref_put(&priv->ref, fpga_device_release);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct of_device_id data_of_match[] = {
 | |
| 	{ .compatible = "carma,carma-fpga", },
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| static struct platform_driver data_of_driver = {
 | |
| 	.probe		= data_of_probe,
 | |
| 	.remove		= data_of_remove,
 | |
| 	.driver		= {
 | |
| 		.name		= drv_name,
 | |
| 		.of_match_table	= data_of_match,
 | |
| 		.owner		= THIS_MODULE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Module Init / Exit
 | |
|  */
 | |
| 
 | |
| static int __init data_init(void)
 | |
| {
 | |
| 	return platform_driver_register(&data_of_driver);
 | |
| }
 | |
| 
 | |
| static void __exit data_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&data_of_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
 | |
| MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_init(data_init);
 | |
| module_exit(data_exit);
 |