 1944ce60fe
			
		
	
	
	1944ce60fe
	
	
	
		
			
			For the files which are not themselves modular, we can change them to include only the smaller export.h since all they are doing is looking for EXPORT_SYMBOL. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			805 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			805 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011 Red Hat, Inc.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-btree-internal.h"
 | |
| #include "dm-space-map.h"
 | |
| #include "dm-transaction-manager.h"
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/device-mapper.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "btree"
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Array manipulation
 | |
|  *--------------------------------------------------------------*/
 | |
| static void memcpy_disk(void *dest, const void *src, size_t len)
 | |
| 	__dm_written_to_disk(src)
 | |
| {
 | |
| 	memcpy(dest, src, len);
 | |
| 	__dm_unbless_for_disk(src);
 | |
| }
 | |
| 
 | |
| static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
 | |
| 			 unsigned index, void *elt)
 | |
| 	__dm_written_to_disk(elt)
 | |
| {
 | |
| 	if (index < nr_elts)
 | |
| 		memmove(base + (elt_size * (index + 1)),
 | |
| 			base + (elt_size * index),
 | |
| 			(nr_elts - index) * elt_size);
 | |
| 
 | |
| 	memcpy_disk(base + (elt_size * index), elt, elt_size);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /* makes the assumption that no two keys are the same. */
 | |
| static int bsearch(struct node *n, uint64_t key, int want_hi)
 | |
| {
 | |
| 	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	while (hi - lo > 1) {
 | |
| 		int mid = lo + ((hi - lo) / 2);
 | |
| 		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
 | |
| 
 | |
| 		if (mid_key == key)
 | |
| 			return mid;
 | |
| 
 | |
| 		if (mid_key < key)
 | |
| 			lo = mid;
 | |
| 		else
 | |
| 			hi = mid;
 | |
| 	}
 | |
| 
 | |
| 	return want_hi ? hi : lo;
 | |
| }
 | |
| 
 | |
| int lower_bound(struct node *n, uint64_t key)
 | |
| {
 | |
| 	return bsearch(n, key, 0);
 | |
| }
 | |
| 
 | |
| void inc_children(struct dm_transaction_manager *tm, struct node *n,
 | |
| 		  struct dm_btree_value_type *vt)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
 | |
| 		for (i = 0; i < nr_entries; i++)
 | |
| 			dm_tm_inc(tm, value64(n, i));
 | |
| 	else if (vt->inc)
 | |
| 		for (i = 0; i < nr_entries; i++)
 | |
| 			vt->inc(vt->context,
 | |
| 				value_ptr(n, i, vt->size));
 | |
| }
 | |
| 
 | |
| static int insert_at(size_t value_size, struct node *node, unsigned index,
 | |
| 		      uint64_t key, void *value)
 | |
| 		      __dm_written_to_disk(value)
 | |
| {
 | |
| 	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
 | |
| 	__le64 key_le = cpu_to_le64(key);
 | |
| 
 | |
| 	if (index > nr_entries ||
 | |
| 	    index >= le32_to_cpu(node->header.max_entries)) {
 | |
| 		DMERR("too many entries in btree node for insert");
 | |
| 		__dm_unbless_for_disk(value);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	__dm_bless_for_disk(&key_le);
 | |
| 
 | |
| 	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 | |
| 	array_insert(value_base(node), value_size, nr_entries, index, value);
 | |
| 	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * We want 3n entries (for some n).  This works more nicely for repeated
 | |
|  * insert remove loops than (2n + 1).
 | |
|  */
 | |
| static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 | |
| {
 | |
| 	uint32_t total, n;
 | |
| 	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 | |
| 
 | |
| 	block_size -= sizeof(struct node_header);
 | |
| 	total = block_size / elt_size;
 | |
| 	n = total / 3;		/* rounds down */
 | |
| 
 | |
| 	return 3 * n;
 | |
| }
 | |
| 
 | |
| int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *b;
 | |
| 	struct node *n;
 | |
| 	size_t block_size;
 | |
| 	uint32_t max_entries;
 | |
| 
 | |
| 	r = new_block(info, &b);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 | |
| 	max_entries = calc_max_entries(info->value_type.size, block_size);
 | |
| 
 | |
| 	n = dm_block_data(b);
 | |
| 	memset(n, 0, block_size);
 | |
| 	n->header.flags = cpu_to_le32(LEAF_NODE);
 | |
| 	n->header.nr_entries = cpu_to_le32(0);
 | |
| 	n->header.max_entries = cpu_to_le32(max_entries);
 | |
| 	n->header.value_size = cpu_to_le32(info->value_type.size);
 | |
| 
 | |
| 	*root = dm_block_location(b);
 | |
| 	return unlock_block(info, b);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_empty);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Deletion uses a recursive algorithm, since we have limited stack space
 | |
|  * we explicitly manage our own stack on the heap.
 | |
|  */
 | |
| #define MAX_SPINE_DEPTH 64
 | |
| struct frame {
 | |
| 	struct dm_block *b;
 | |
| 	struct node *n;
 | |
| 	unsigned level;
 | |
| 	unsigned nr_children;
 | |
| 	unsigned current_child;
 | |
| };
 | |
| 
 | |
| struct del_stack {
 | |
| 	struct dm_transaction_manager *tm;
 | |
| 	int top;
 | |
| 	struct frame spine[MAX_SPINE_DEPTH];
 | |
| };
 | |
| 
 | |
| static int top_frame(struct del_stack *s, struct frame **f)
 | |
| {
 | |
| 	if (s->top < 0) {
 | |
| 		DMERR("btree deletion stack empty");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*f = s->spine + s->top;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unprocessed_frames(struct del_stack *s)
 | |
| {
 | |
| 	return s->top >= 0;
 | |
| }
 | |
| 
 | |
| static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 | |
| {
 | |
| 	int r;
 | |
| 	uint32_t ref_count;
 | |
| 
 | |
| 	if (s->top >= MAX_SPINE_DEPTH - 1) {
 | |
| 		DMERR("btree deletion stack out of memory");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_tm_ref(s->tm, b, &ref_count);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (ref_count > 1)
 | |
| 		/*
 | |
| 		 * This is a shared node, so we can just decrement it's
 | |
| 		 * reference counter and leave the children.
 | |
| 		 */
 | |
| 		dm_tm_dec(s->tm, b);
 | |
| 
 | |
| 	else {
 | |
| 		struct frame *f = s->spine + ++s->top;
 | |
| 
 | |
| 		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 | |
| 		if (r) {
 | |
| 			s->top--;
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		f->n = dm_block_data(f->b);
 | |
| 		f->level = level;
 | |
| 		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 | |
| 		f->current_child = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pop_frame(struct del_stack *s)
 | |
| {
 | |
| 	struct frame *f = s->spine + s->top--;
 | |
| 
 | |
| 	dm_tm_dec(s->tm, dm_block_location(f->b));
 | |
| 	dm_tm_unlock(s->tm, f->b);
 | |
| }
 | |
| 
 | |
| int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 | |
| {
 | |
| 	int r;
 | |
| 	struct del_stack *s;
 | |
| 
 | |
| 	s = kmalloc(sizeof(*s), GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		return -ENOMEM;
 | |
| 	s->tm = info->tm;
 | |
| 	s->top = -1;
 | |
| 
 | |
| 	r = push_frame(s, root, 1);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (unprocessed_frames(s)) {
 | |
| 		uint32_t flags;
 | |
| 		struct frame *f;
 | |
| 		dm_block_t b;
 | |
| 
 | |
| 		r = top_frame(s, &f);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (f->current_child >= f->nr_children) {
 | |
| 			pop_frame(s);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		flags = le32_to_cpu(f->n->header.flags);
 | |
| 		if (flags & INTERNAL_NODE) {
 | |
| 			b = value64(f->n, f->current_child);
 | |
| 			f->current_child++;
 | |
| 			r = push_frame(s, b, f->level);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 		} else if (f->level != (info->levels - 1)) {
 | |
| 			b = value64(f->n, f->current_child);
 | |
| 			f->current_child++;
 | |
| 			r = push_frame(s, b, f->level + 1);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 		} else {
 | |
| 			if (info->value_type.dec) {
 | |
| 				unsigned i;
 | |
| 
 | |
| 				for (i = 0; i < f->nr_children; i++)
 | |
| 					info->value_type.dec(info->value_type.context,
 | |
| 							     value_ptr(f->n, i, info->value_type.size));
 | |
| 			}
 | |
| 			f->current_child = f->nr_children;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(s);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_del);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 | |
| 			    int (*search_fn)(struct node *, uint64_t),
 | |
| 			    uint64_t *result_key, void *v, size_t value_size)
 | |
| {
 | |
| 	int i, r;
 | |
| 	uint32_t flags, nr_entries;
 | |
| 
 | |
| 	do {
 | |
| 		r = ro_step(s, block);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		i = search_fn(ro_node(s), key);
 | |
| 
 | |
| 		flags = le32_to_cpu(ro_node(s)->header.flags);
 | |
| 		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 | |
| 		if (i < 0 || i >= nr_entries)
 | |
| 			return -ENODATA;
 | |
| 
 | |
| 		if (flags & INTERNAL_NODE)
 | |
| 			block = value64(ro_node(s), i);
 | |
| 
 | |
| 	} while (!(flags & LEAF_NODE));
 | |
| 
 | |
| 	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 | |
| 	memcpy(v, value_ptr(ro_node(s), i, value_size), value_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 | |
| 		    uint64_t *keys, void *value_le)
 | |
| {
 | |
| 	unsigned level, last_level = info->levels - 1;
 | |
| 	int r = -ENODATA;
 | |
| 	uint64_t rkey;
 | |
| 	__le64 internal_value_le;
 | |
| 	struct ro_spine spine;
 | |
| 
 | |
| 	init_ro_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels; level++) {
 | |
| 		size_t size;
 | |
| 		void *value_p;
 | |
| 
 | |
| 		if (level == last_level) {
 | |
| 			value_p = value_le;
 | |
| 			size = info->value_type.size;
 | |
| 
 | |
| 		} else {
 | |
| 			value_p = &internal_value_le;
 | |
| 			size = sizeof(uint64_t);
 | |
| 		}
 | |
| 
 | |
| 		r = btree_lookup_raw(&spine, root, keys[level],
 | |
| 				     lower_bound, &rkey,
 | |
| 				     value_p, size);
 | |
| 
 | |
| 		if (!r) {
 | |
| 			if (rkey != keys[level]) {
 | |
| 				exit_ro_spine(&spine);
 | |
| 				return -ENODATA;
 | |
| 			}
 | |
| 		} else {
 | |
| 			exit_ro_spine(&spine);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		root = le64_to_cpu(internal_value_le);
 | |
| 	}
 | |
| 	exit_ro_spine(&spine);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_lookup);
 | |
| 
 | |
| /*
 | |
|  * Splits a node by creating a sibling node and shifting half the nodes
 | |
|  * contents across.  Assumes there is a parent node, and it has room for
 | |
|  * another child.
 | |
|  *
 | |
|  * Before:
 | |
|  *	  +--------+
 | |
|  *	  | Parent |
 | |
|  *	  +--------+
 | |
|  *	     |
 | |
|  *	     v
 | |
|  *	+----------+
 | |
|  *	| A ++++++ |
 | |
|  *	+----------+
 | |
|  *
 | |
|  *
 | |
|  * After:
 | |
|  *		+--------+
 | |
|  *		| Parent |
 | |
|  *		+--------+
 | |
|  *		  |	|
 | |
|  *		  v	+------+
 | |
|  *	    +---------+	       |
 | |
|  *	    | A* +++  |	       v
 | |
|  *	    +---------+	  +-------+
 | |
|  *			  | B +++ |
 | |
|  *			  +-------+
 | |
|  *
 | |
|  * Where A* is a shadow of A.
 | |
|  */
 | |
| static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
 | |
| 			       unsigned parent_index, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	size_t size;
 | |
| 	unsigned nr_left, nr_right;
 | |
| 	struct dm_block *left, *right, *parent;
 | |
| 	struct node *ln, *rn, *pn;
 | |
| 	__le64 location;
 | |
| 
 | |
| 	left = shadow_current(s);
 | |
| 
 | |
| 	r = new_block(s->info, &right);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	ln = dm_block_data(left);
 | |
| 	rn = dm_block_data(right);
 | |
| 
 | |
| 	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 | |
| 	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 | |
| 
 | |
| 	ln->header.nr_entries = cpu_to_le32(nr_left);
 | |
| 
 | |
| 	rn->header.flags = ln->header.flags;
 | |
| 	rn->header.nr_entries = cpu_to_le32(nr_right);
 | |
| 	rn->header.max_entries = ln->header.max_entries;
 | |
| 	rn->header.value_size = ln->header.value_size;
 | |
| 	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 | |
| 
 | |
| 	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 | |
| 		sizeof(uint64_t) : s->info->value_type.size;
 | |
| 	memcpy(value_ptr(rn, 0, size), value_ptr(ln, nr_left, size),
 | |
| 	       size * nr_right);
 | |
| 
 | |
| 	/*
 | |
| 	 * Patch up the parent
 | |
| 	 */
 | |
| 	parent = shadow_parent(s);
 | |
| 
 | |
| 	pn = dm_block_data(parent);
 | |
| 	location = cpu_to_le64(dm_block_location(left));
 | |
| 	__dm_bless_for_disk(&location);
 | |
| 	memcpy_disk(value_ptr(pn, parent_index, sizeof(__le64)),
 | |
| 		    &location, sizeof(__le64));
 | |
| 
 | |
| 	location = cpu_to_le64(dm_block_location(right));
 | |
| 	__dm_bless_for_disk(&location);
 | |
| 
 | |
| 	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 | |
| 		      le64_to_cpu(rn->keys[0]), &location);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (key < le64_to_cpu(rn->keys[0])) {
 | |
| 		unlock_block(s->info, right);
 | |
| 		s->nodes[1] = left;
 | |
| 	} else {
 | |
| 		unlock_block(s->info, left);
 | |
| 		s->nodes[1] = right;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Splits a node by creating two new children beneath the given node.
 | |
|  *
 | |
|  * Before:
 | |
|  *	  +----------+
 | |
|  *	  | A ++++++ |
 | |
|  *	  +----------+
 | |
|  *
 | |
|  *
 | |
|  * After:
 | |
|  *	+------------+
 | |
|  *	| A (shadow) |
 | |
|  *	+------------+
 | |
|  *	    |	|
 | |
|  *   +------+	+----+
 | |
|  *   |		     |
 | |
|  *   v		     v
 | |
|  * +-------+	 +-------+
 | |
|  * | B +++ |	 | C +++ |
 | |
|  * +-------+	 +-------+
 | |
|  */
 | |
| static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 | |
| {
 | |
| 	int r;
 | |
| 	size_t size;
 | |
| 	unsigned nr_left, nr_right;
 | |
| 	struct dm_block *left, *right, *new_parent;
 | |
| 	struct node *pn, *ln, *rn;
 | |
| 	__le64 val;
 | |
| 
 | |
| 	new_parent = shadow_current(s);
 | |
| 
 | |
| 	r = new_block(s->info, &left);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	r = new_block(s->info, &right);
 | |
| 	if (r < 0) {
 | |
| 		/* FIXME: put left */
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	pn = dm_block_data(new_parent);
 | |
| 	ln = dm_block_data(left);
 | |
| 	rn = dm_block_data(right);
 | |
| 
 | |
| 	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 | |
| 	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 | |
| 
 | |
| 	ln->header.flags = pn->header.flags;
 | |
| 	ln->header.nr_entries = cpu_to_le32(nr_left);
 | |
| 	ln->header.max_entries = pn->header.max_entries;
 | |
| 	ln->header.value_size = pn->header.value_size;
 | |
| 
 | |
| 	rn->header.flags = pn->header.flags;
 | |
| 	rn->header.nr_entries = cpu_to_le32(nr_right);
 | |
| 	rn->header.max_entries = pn->header.max_entries;
 | |
| 	rn->header.value_size = pn->header.value_size;
 | |
| 
 | |
| 	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 | |
| 	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 | |
| 
 | |
| 	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 | |
| 		sizeof(__le64) : s->info->value_type.size;
 | |
| 	memcpy(value_ptr(ln, 0, size), value_ptr(pn, 0, size), nr_left * size);
 | |
| 	memcpy(value_ptr(rn, 0, size), value_ptr(pn, nr_left, size),
 | |
| 	       nr_right * size);
 | |
| 
 | |
| 	/* new_parent should just point to l and r now */
 | |
| 	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 | |
| 	pn->header.nr_entries = cpu_to_le32(2);
 | |
| 	pn->header.max_entries = cpu_to_le32(
 | |
| 		calc_max_entries(sizeof(__le64),
 | |
| 				 dm_bm_block_size(
 | |
| 					 dm_tm_get_bm(s->info->tm))));
 | |
| 	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 | |
| 
 | |
| 	val = cpu_to_le64(dm_block_location(left));
 | |
| 	__dm_bless_for_disk(&val);
 | |
| 	pn->keys[0] = ln->keys[0];
 | |
| 	memcpy_disk(value_ptr(pn, 0, sizeof(__le64)), &val, sizeof(__le64));
 | |
| 
 | |
| 	val = cpu_to_le64(dm_block_location(right));
 | |
| 	__dm_bless_for_disk(&val);
 | |
| 	pn->keys[1] = rn->keys[0];
 | |
| 	memcpy_disk(value_ptr(pn, 1, sizeof(__le64)), &val, sizeof(__le64));
 | |
| 
 | |
| 	/*
 | |
| 	 * rejig the spine.  This is ugly, since it knows too
 | |
| 	 * much about the spine
 | |
| 	 */
 | |
| 	if (s->nodes[0] != new_parent) {
 | |
| 		unlock_block(s->info, s->nodes[0]);
 | |
| 		s->nodes[0] = new_parent;
 | |
| 	}
 | |
| 	if (key < le64_to_cpu(rn->keys[0])) {
 | |
| 		unlock_block(s->info, right);
 | |
| 		s->nodes[1] = left;
 | |
| 	} else {
 | |
| 		unlock_block(s->info, left);
 | |
| 		s->nodes[1] = right;
 | |
| 	}
 | |
| 	s->count = 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 | |
| 			    struct dm_btree_value_type *vt,
 | |
| 			    uint64_t key, unsigned *index)
 | |
| {
 | |
| 	int r, i = *index, top = 1;
 | |
| 	struct node *node;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		r = shadow_step(s, root, vt);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to patch up the parent node, ugly, but I don't
 | |
| 		 * see a way to do this automatically as part of the spine
 | |
| 		 * op.
 | |
| 		 */
 | |
| 		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 | |
| 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 | |
| 
 | |
| 			__dm_bless_for_disk(&location);
 | |
| 			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(uint64_t)),
 | |
| 				    &location, sizeof(__le64));
 | |
| 		}
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		if (node->header.nr_entries == node->header.max_entries) {
 | |
| 			if (top)
 | |
| 				r = btree_split_beneath(s, key);
 | |
| 			else
 | |
| 				r = btree_split_sibling(s, root, i, key);
 | |
| 
 | |
| 			if (r < 0)
 | |
| 				return r;
 | |
| 		}
 | |
| 
 | |
| 		node = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		i = lower_bound(node, key);
 | |
| 
 | |
| 		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 | |
| 			break;
 | |
| 
 | |
| 		if (i < 0) {
 | |
| 			/* change the bounds on the lowest key */
 | |
| 			node->keys[0] = cpu_to_le64(key);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 
 | |
| 		root = value64(node, i);
 | |
| 		top = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 | |
| 		i++;
 | |
| 
 | |
| 	*index = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int insert(struct dm_btree_info *info, dm_block_t root,
 | |
| 		  uint64_t *keys, void *value, dm_block_t *new_root,
 | |
| 		  int *inserted)
 | |
| 		  __dm_written_to_disk(value)
 | |
| {
 | |
| 	int r, need_insert;
 | |
| 	unsigned level, index = -1, last_level = info->levels - 1;
 | |
| 	dm_block_t block = root;
 | |
| 	struct shadow_spine spine;
 | |
| 	struct node *n;
 | |
| 	struct dm_btree_value_type le64_type;
 | |
| 
 | |
| 	le64_type.context = NULL;
 | |
| 	le64_type.size = sizeof(__le64);
 | |
| 	le64_type.inc = NULL;
 | |
| 	le64_type.dec = NULL;
 | |
| 	le64_type.equal = NULL;
 | |
| 
 | |
| 	init_shadow_spine(&spine, info);
 | |
| 
 | |
| 	for (level = 0; level < (info->levels - 1); level++) {
 | |
| 		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 | |
| 		if (r < 0)
 | |
| 			goto bad;
 | |
| 
 | |
| 		n = dm_block_data(shadow_current(&spine));
 | |
| 		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 | |
| 			       (le64_to_cpu(n->keys[index]) != keys[level]));
 | |
| 
 | |
| 		if (need_insert) {
 | |
| 			dm_block_t new_tree;
 | |
| 			__le64 new_le;
 | |
| 
 | |
| 			r = dm_btree_empty(info, &new_tree);
 | |
| 			if (r < 0)
 | |
| 				goto bad;
 | |
| 
 | |
| 			new_le = cpu_to_le64(new_tree);
 | |
| 			__dm_bless_for_disk(&new_le);
 | |
| 
 | |
| 			r = insert_at(sizeof(uint64_t), n, index,
 | |
| 				      keys[level], &new_le);
 | |
| 			if (r)
 | |
| 				goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (level < last_level)
 | |
| 			block = value64(n, index);
 | |
| 	}
 | |
| 
 | |
| 	r = btree_insert_raw(&spine, block, &info->value_type,
 | |
| 			     keys[level], &index);
 | |
| 	if (r < 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	n = dm_block_data(shadow_current(&spine));
 | |
| 	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 | |
| 		       (le64_to_cpu(n->keys[index]) != keys[level]));
 | |
| 
 | |
| 	if (need_insert) {
 | |
| 		if (inserted)
 | |
| 			*inserted = 1;
 | |
| 
 | |
| 		r = insert_at(info->value_type.size, n, index,
 | |
| 			      keys[level], value);
 | |
| 		if (r)
 | |
| 			goto bad_unblessed;
 | |
| 	} else {
 | |
| 		if (inserted)
 | |
| 			*inserted = 0;
 | |
| 
 | |
| 		if (info->value_type.dec &&
 | |
| 		    (!info->value_type.equal ||
 | |
| 		     !info->value_type.equal(
 | |
| 			     info->value_type.context,
 | |
| 			     value_ptr(n, index, info->value_type.size),
 | |
| 			     value))) {
 | |
| 			info->value_type.dec(info->value_type.context,
 | |
| 					     value_ptr(n, index, info->value_type.size));
 | |
| 		}
 | |
| 		memcpy_disk(value_ptr(n, index, info->value_type.size),
 | |
| 			    value, info->value_type.size);
 | |
| 	}
 | |
| 
 | |
| 	*new_root = shadow_root(&spine);
 | |
| 	exit_shadow_spine(&spine);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	__dm_unbless_for_disk(value);
 | |
| bad_unblessed:
 | |
| 	exit_shadow_spine(&spine);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 | |
| 		    uint64_t *keys, void *value, dm_block_t *new_root)
 | |
| 		    __dm_written_to_disk(value)
 | |
| {
 | |
| 	return insert(info, root, keys, value, new_root, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_insert);
 | |
| 
 | |
| int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 | |
| 			   uint64_t *keys, void *value, dm_block_t *new_root,
 | |
| 			   int *inserted)
 | |
| 			   __dm_written_to_disk(value)
 | |
| {
 | |
| 	return insert(info, root, keys, value, new_root, inserted);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int find_highest_key(struct ro_spine *s, dm_block_t block,
 | |
| 			    uint64_t *result_key, dm_block_t *next_block)
 | |
| {
 | |
| 	int i, r;
 | |
| 	uint32_t flags;
 | |
| 
 | |
| 	do {
 | |
| 		r = ro_step(s, block);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 
 | |
| 		flags = le32_to_cpu(ro_node(s)->header.flags);
 | |
| 		i = le32_to_cpu(ro_node(s)->header.nr_entries);
 | |
| 		if (!i)
 | |
| 			return -ENODATA;
 | |
| 		else
 | |
| 			i--;
 | |
| 
 | |
| 		*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 | |
| 		if (next_block || flags & INTERNAL_NODE)
 | |
| 			block = value64(ro_node(s), i);
 | |
| 
 | |
| 	} while (flags & INTERNAL_NODE);
 | |
| 
 | |
| 	if (next_block)
 | |
| 		*next_block = block;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 | |
| 			      uint64_t *result_keys)
 | |
| {
 | |
| 	int r = 0, count = 0, level;
 | |
| 	struct ro_spine spine;
 | |
| 
 | |
| 	init_ro_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels; level++) {
 | |
| 		r = find_highest_key(&spine, root, result_keys + level,
 | |
| 				     level == info->levels - 1 ? NULL : &root);
 | |
| 		if (r == -ENODATA) {
 | |
| 			r = 0;
 | |
| 			break;
 | |
| 
 | |
| 		} else if (r)
 | |
| 			break;
 | |
| 
 | |
| 		count++;
 | |
| 	}
 | |
| 	exit_ro_spine(&spine);
 | |
| 
 | |
| 	return r ? r : count;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 |