 1944ce60fe
			
		
	
	
	1944ce60fe
	
	
	
		
			
			For the files which are not themselves modular, we can change them to include only the smaller export.h since all they are doing is looking for EXPORT_SYMBOL. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			566 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			566 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011 Red Hat, Inc.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-btree.h"
 | |
| #include "dm-btree-internal.h"
 | |
| #include "dm-transaction-manager.h"
 | |
| 
 | |
| #include <linux/export.h>
 | |
| 
 | |
| /*
 | |
|  * Removing an entry from a btree
 | |
|  * ==============================
 | |
|  *
 | |
|  * A very important constraint for our btree is that no node, except the
 | |
|  * root, may have fewer than a certain number of entries.
 | |
|  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
 | |
|  *
 | |
|  * Ensuring this is complicated by the way we want to only ever hold the
 | |
|  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
 | |
|  * fashion.
 | |
|  *
 | |
|  * Each node may have a left or right sibling.  When decending the spine,
 | |
|  * if a node contains only MIN_ENTRIES then we try and increase this to at
 | |
|  * least MIN_ENTRIES + 1.  We do this in the following ways:
 | |
|  *
 | |
|  * [A] No siblings => this can only happen if the node is the root, in which
 | |
|  *     case we copy the childs contents over the root.
 | |
|  *
 | |
|  * [B] No left sibling
 | |
|  *     ==> rebalance(node, right sibling)
 | |
|  *
 | |
|  * [C] No right sibling
 | |
|  *     ==> rebalance(left sibling, node)
 | |
|  *
 | |
|  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
 | |
|  *     ==> delete node adding it's contents to left and right
 | |
|  *
 | |
|  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
 | |
|  *     ==> rebalance(left, node, right)
 | |
|  *
 | |
|  * After these operations it's possible that the our original node no
 | |
|  * longer contains the desired sub tree.  For this reason this rebalancing
 | |
|  * is performed on the children of the current node.  This also avoids
 | |
|  * having a special case for the root.
 | |
|  *
 | |
|  * Once this rebalancing has occurred we can then step into the child node
 | |
|  * for internal nodes.  Or delete the entry for leaf nodes.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Some little utilities for moving node data around.
 | |
|  */
 | |
| static void node_shift(struct node *n, int shift)
 | |
| {
 | |
| 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
 | |
| 	uint32_t value_size = le32_to_cpu(n->header.value_size);
 | |
| 
 | |
| 	if (shift < 0) {
 | |
| 		shift = -shift;
 | |
| 		BUG_ON(shift > nr_entries);
 | |
| 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift, value_size));
 | |
| 		memmove(key_ptr(n, 0),
 | |
| 			key_ptr(n, shift),
 | |
| 			(nr_entries - shift) * sizeof(__le64));
 | |
| 		memmove(value_ptr(n, 0, value_size),
 | |
| 			value_ptr(n, shift, value_size),
 | |
| 			(nr_entries - shift) * value_size);
 | |
| 	} else {
 | |
| 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
 | |
| 		memmove(key_ptr(n, shift),
 | |
| 			key_ptr(n, 0),
 | |
| 			nr_entries * sizeof(__le64));
 | |
| 		memmove(value_ptr(n, shift, value_size),
 | |
| 			value_ptr(n, 0, value_size),
 | |
| 			nr_entries * value_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void node_copy(struct node *left, struct node *right, int shift)
 | |
| {
 | |
| 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
 | |
| 	uint32_t value_size = le32_to_cpu(left->header.value_size);
 | |
| 	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
 | |
| 
 | |
| 	if (shift < 0) {
 | |
| 		shift = -shift;
 | |
| 		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
 | |
| 		memcpy(key_ptr(left, nr_left),
 | |
| 		       key_ptr(right, 0),
 | |
| 		       shift * sizeof(__le64));
 | |
| 		memcpy(value_ptr(left, nr_left, value_size),
 | |
| 		       value_ptr(right, 0, value_size),
 | |
| 		       shift * value_size);
 | |
| 	} else {
 | |
| 		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
 | |
| 		memcpy(key_ptr(right, 0),
 | |
| 		       key_ptr(left, nr_left - shift),
 | |
| 		       shift * sizeof(__le64));
 | |
| 		memcpy(value_ptr(right, 0, value_size),
 | |
| 		       value_ptr(left, nr_left - shift, value_size),
 | |
| 		       shift * value_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete a specific entry from a leaf node.
 | |
|  */
 | |
| static void delete_at(struct node *n, unsigned index)
 | |
| {
 | |
| 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
 | |
| 	unsigned nr_to_copy = nr_entries - (index + 1);
 | |
| 	uint32_t value_size = le32_to_cpu(n->header.value_size);
 | |
| 	BUG_ON(index >= nr_entries);
 | |
| 
 | |
| 	if (nr_to_copy) {
 | |
| 		memmove(key_ptr(n, index),
 | |
| 			key_ptr(n, index + 1),
 | |
| 			nr_to_copy * sizeof(__le64));
 | |
| 
 | |
| 		memmove(value_ptr(n, index, value_size),
 | |
| 			value_ptr(n, index + 1, value_size),
 | |
| 			nr_to_copy * value_size);
 | |
| 	}
 | |
| 
 | |
| 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
 | |
| }
 | |
| 
 | |
| static unsigned del_threshold(struct node *n)
 | |
| {
 | |
| 	return le32_to_cpu(n->header.max_entries) / 3;
 | |
| }
 | |
| 
 | |
| static unsigned merge_threshold(struct node *n)
 | |
| {
 | |
| 	/*
 | |
| 	 * The extra one is because we know we're potentially going to
 | |
| 	 * delete an entry.
 | |
| 	 */
 | |
| 	return 2 * (le32_to_cpu(n->header.max_entries) / 3) + 1;
 | |
| }
 | |
| 
 | |
| struct child {
 | |
| 	unsigned index;
 | |
| 	struct dm_block *block;
 | |
| 	struct node *n;
 | |
| };
 | |
| 
 | |
| static struct dm_btree_value_type le64_type = {
 | |
| 	.context = NULL,
 | |
| 	.size = sizeof(__le64),
 | |
| 	.inc = NULL,
 | |
| 	.dec = NULL,
 | |
| 	.equal = NULL
 | |
| };
 | |
| 
 | |
| static int init_child(struct dm_btree_info *info, struct node *parent,
 | |
| 		      unsigned index, struct child *result)
 | |
| {
 | |
| 	int r, inc;
 | |
| 	dm_block_t root;
 | |
| 
 | |
| 	result->index = index;
 | |
| 	root = value64(parent, index);
 | |
| 
 | |
| 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
 | |
| 			       &result->block, &inc);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	result->n = dm_block_data(result->block);
 | |
| 
 | |
| 	if (inc)
 | |
| 		inc_children(info->tm, result->n, &le64_type);
 | |
| 
 | |
| 	*((__le64 *) value_ptr(parent, index, sizeof(__le64))) =
 | |
| 		cpu_to_le64(dm_block_location(result->block));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int exit_child(struct dm_btree_info *info, struct child *c)
 | |
| {
 | |
| 	return dm_tm_unlock(info->tm, c->block);
 | |
| }
 | |
| 
 | |
| static void shift(struct node *left, struct node *right, int count)
 | |
| {
 | |
| 	if (!count)
 | |
| 		return;
 | |
| 
 | |
| 	if (count > 0) {
 | |
| 		node_shift(right, count);
 | |
| 		node_copy(left, right, count);
 | |
| 	} else {
 | |
| 		node_copy(left, right, count);
 | |
| 		node_shift(right, count);
 | |
| 	}
 | |
| 
 | |
| 	left->header.nr_entries =
 | |
| 		cpu_to_le32(le32_to_cpu(left->header.nr_entries) - count);
 | |
| 	BUG_ON(le32_to_cpu(left->header.nr_entries) > le32_to_cpu(left->header.max_entries));
 | |
| 
 | |
| 	right->header.nr_entries =
 | |
| 		cpu_to_le32(le32_to_cpu(right->header.nr_entries) + count);
 | |
| 	BUG_ON(le32_to_cpu(right->header.nr_entries) > le32_to_cpu(right->header.max_entries));
 | |
| }
 | |
| 
 | |
| static void __rebalance2(struct dm_btree_info *info, struct node *parent,
 | |
| 			 struct child *l, struct child *r)
 | |
| {
 | |
| 	struct node *left = l->n;
 | |
| 	struct node *right = r->n;
 | |
| 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
 | |
| 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
 | |
| 
 | |
| 	if (nr_left + nr_right <= merge_threshold(left)) {
 | |
| 		/*
 | |
| 		 * Merge
 | |
| 		 */
 | |
| 		node_copy(left, right, -nr_right);
 | |
| 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
 | |
| 		delete_at(parent, r->index);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to decrement the right block, but not it's
 | |
| 		 * children, since they're still referenced by left.
 | |
| 		 */
 | |
| 		dm_tm_dec(info->tm, dm_block_location(r->block));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Rebalance.
 | |
| 		 */
 | |
| 		unsigned target_left = (nr_left + nr_right) / 2;
 | |
| 		unsigned shift_ = nr_left - target_left;
 | |
| 		BUG_ON(le32_to_cpu(left->header.max_entries) <= nr_left - shift_);
 | |
| 		BUG_ON(le32_to_cpu(right->header.max_entries) <= nr_right + shift_);
 | |
| 		shift(left, right, nr_left - target_left);
 | |
| 		*key_ptr(parent, r->index) = right->keys[0];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
 | |
| 		      unsigned left_index)
 | |
| {
 | |
| 	int r;
 | |
| 	struct node *parent;
 | |
| 	struct child left, right;
 | |
| 
 | |
| 	parent = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 	r = init_child(info, parent, left_index, &left);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = init_child(info, parent, left_index + 1, &right);
 | |
| 	if (r) {
 | |
| 		exit_child(info, &left);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	__rebalance2(info, parent, &left, &right);
 | |
| 
 | |
| 	r = exit_child(info, &left);
 | |
| 	if (r) {
 | |
| 		exit_child(info, &right);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return exit_child(info, &right);
 | |
| }
 | |
| 
 | |
| static void __rebalance3(struct dm_btree_info *info, struct node *parent,
 | |
| 			 struct child *l, struct child *c, struct child *r)
 | |
| {
 | |
| 	struct node *left = l->n;
 | |
| 	struct node *center = c->n;
 | |
| 	struct node *right = r->n;
 | |
| 
 | |
| 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
 | |
| 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
 | |
| 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
 | |
| 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
 | |
| 
 | |
| 	unsigned target;
 | |
| 
 | |
| 	BUG_ON(left->header.max_entries != center->header.max_entries);
 | |
| 	BUG_ON(center->header.max_entries != right->header.max_entries);
 | |
| 
 | |
| 	if (((nr_left + nr_center + nr_right) / 2) < merge_threshold(center)) {
 | |
| 		/*
 | |
| 		 * Delete center node:
 | |
| 		 *
 | |
| 		 * We dump as many entries from center as possible into
 | |
| 		 * left, then the rest in right, then rebalance2.  This
 | |
| 		 * wastes some cpu, but I want something simple atm.
 | |
| 		 */
 | |
| 		unsigned shift = min(max_entries - nr_left, nr_center);
 | |
| 
 | |
| 		BUG_ON(nr_left + shift > max_entries);
 | |
| 		node_copy(left, center, -shift);
 | |
| 		left->header.nr_entries = cpu_to_le32(nr_left + shift);
 | |
| 
 | |
| 		if (shift != nr_center) {
 | |
| 			shift = nr_center - shift;
 | |
| 			BUG_ON((nr_right + shift) >= max_entries);
 | |
| 			node_shift(right, shift);
 | |
| 			node_copy(center, right, shift);
 | |
| 			right->header.nr_entries = cpu_to_le32(nr_right + shift);
 | |
| 		}
 | |
| 		*key_ptr(parent, r->index) = right->keys[0];
 | |
| 
 | |
| 		delete_at(parent, c->index);
 | |
| 		r->index--;
 | |
| 
 | |
| 		dm_tm_dec(info->tm, dm_block_location(c->block));
 | |
| 		__rebalance2(info, parent, l, r);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Rebalance
 | |
| 	 */
 | |
| 	target = (nr_left + nr_center + nr_right) / 3;
 | |
| 	BUG_ON(target > max_entries);
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the left node
 | |
| 	 */
 | |
| 	shift(left, center, nr_left - target);
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the right node
 | |
| 	 */
 | |
| 	shift(center, right, target - nr_right);
 | |
| 	*key_ptr(parent, c->index) = center->keys[0];
 | |
| 	*key_ptr(parent, r->index) = right->keys[0];
 | |
| }
 | |
| 
 | |
| static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
 | |
| 		      unsigned left_index)
 | |
| {
 | |
| 	int r;
 | |
| 	struct node *parent = dm_block_data(shadow_current(s));
 | |
| 	struct child left, center, right;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: fill out an array?
 | |
| 	 */
 | |
| 	r = init_child(info, parent, left_index, &left);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = init_child(info, parent, left_index + 1, ¢er);
 | |
| 	if (r) {
 | |
| 		exit_child(info, &left);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = init_child(info, parent, left_index + 2, &right);
 | |
| 	if (r) {
 | |
| 		exit_child(info, &left);
 | |
| 		exit_child(info, ¢er);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	__rebalance3(info, parent, &left, ¢er, &right);
 | |
| 
 | |
| 	r = exit_child(info, &left);
 | |
| 	if (r) {
 | |
| 		exit_child(info, ¢er);
 | |
| 		exit_child(info, &right);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = exit_child(info, ¢er);
 | |
| 	if (r) {
 | |
| 		exit_child(info, &right);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = exit_child(info, &right);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_nr_entries(struct dm_transaction_manager *tm,
 | |
| 			  dm_block_t b, uint32_t *result)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_block *block;
 | |
| 	struct node *n;
 | |
| 
 | |
| 	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	n = dm_block_data(block);
 | |
| 	*result = le32_to_cpu(n->header.nr_entries);
 | |
| 
 | |
| 	return dm_tm_unlock(tm, block);
 | |
| }
 | |
| 
 | |
| static int rebalance_children(struct shadow_spine *s,
 | |
| 			      struct dm_btree_info *info, uint64_t key)
 | |
| {
 | |
| 	int i, r, has_left_sibling, has_right_sibling;
 | |
| 	uint32_t child_entries;
 | |
| 	struct node *n;
 | |
| 
 | |
| 	n = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 	if (le32_to_cpu(n->header.nr_entries) == 1) {
 | |
| 		struct dm_block *child;
 | |
| 		dm_block_t b = value64(n, 0);
 | |
| 
 | |
| 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		memcpy(n, dm_block_data(child),
 | |
| 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
 | |
| 		r = dm_tm_unlock(info->tm, child);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		dm_tm_dec(info->tm, dm_block_location(child));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	i = lower_bound(n, key);
 | |
| 	if (i < 0)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (child_entries > del_threshold(n))
 | |
| 		return 0;
 | |
| 
 | |
| 	has_left_sibling = i > 0;
 | |
| 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
 | |
| 
 | |
| 	if (!has_left_sibling)
 | |
| 		r = rebalance2(s, info, i);
 | |
| 
 | |
| 	else if (!has_right_sibling)
 | |
| 		r = rebalance2(s, info, i - 1);
 | |
| 
 | |
| 	else
 | |
| 		r = rebalance3(s, info, i - 1);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int do_leaf(struct node *n, uint64_t key, unsigned *index)
 | |
| {
 | |
| 	int i = lower_bound(n, key);
 | |
| 
 | |
| 	if ((i < 0) ||
 | |
| 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
 | |
| 	    (le64_to_cpu(n->keys[i]) != key))
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	*index = i;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepares for removal from one level of the hierarchy.  The caller must
 | |
|  * call delete_at() to remove the entry at index.
 | |
|  */
 | |
| static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
 | |
| 		      struct dm_btree_value_type *vt, dm_block_t root,
 | |
| 		      uint64_t key, unsigned *index)
 | |
| {
 | |
| 	int i = *index, r;
 | |
| 	struct node *n;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		r = shadow_step(s, root, vt);
 | |
| 		if (r < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to patch up the parent node, ugly, but I don't
 | |
| 		 * see a way to do this automatically as part of the spine
 | |
| 		 * op.
 | |
| 		 */
 | |
| 		if (shadow_has_parent(s)) {
 | |
| 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 | |
| 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(__le64)),
 | |
| 			       &location, sizeof(__le64));
 | |
| 		}
 | |
| 
 | |
| 		n = dm_block_data(shadow_current(s));
 | |
| 
 | |
| 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
 | |
| 			return do_leaf(n, key, index);
 | |
| 
 | |
| 		r = rebalance_children(s, info, key);
 | |
| 		if (r)
 | |
| 			break;
 | |
| 
 | |
| 		n = dm_block_data(shadow_current(s));
 | |
| 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
 | |
| 			return do_leaf(n, key, index);
 | |
| 
 | |
| 		i = lower_bound(n, key);
 | |
| 
 | |
| 		/*
 | |
| 		 * We know the key is present, or else
 | |
| 		 * rebalance_children would have returned
 | |
| 		 * -ENODATA
 | |
| 		 */
 | |
| 		root = value64(n, i);
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
 | |
| 		    uint64_t *keys, dm_block_t *new_root)
 | |
| {
 | |
| 	unsigned level, last_level = info->levels - 1;
 | |
| 	int index = 0, r = 0;
 | |
| 	struct shadow_spine spine;
 | |
| 	struct node *n;
 | |
| 
 | |
| 	init_shadow_spine(&spine, info);
 | |
| 	for (level = 0; level < info->levels; level++) {
 | |
| 		r = remove_raw(&spine, info,
 | |
| 			       (level == last_level ?
 | |
| 				&info->value_type : &le64_type),
 | |
| 			       root, keys[level], (unsigned *)&index);
 | |
| 		if (r < 0)
 | |
| 			break;
 | |
| 
 | |
| 		n = dm_block_data(shadow_current(&spine));
 | |
| 		if (level != last_level) {
 | |
| 			root = value64(n, index);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
 | |
| 
 | |
| 		if (info->value_type.dec)
 | |
| 			info->value_type.dec(info->value_type.context,
 | |
| 					     value_ptr(n, index, info->value_type.size));
 | |
| 
 | |
| 		delete_at(n, index);
 | |
| 	}
 | |
| 
 | |
| 	*new_root = shadow_root(&spine);
 | |
| 	exit_shadow_spine(&spine);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_btree_remove);
 |