 32aaeffbd4
			
		
	
	
	32aaeffbd4
	
	
	
		
			
			* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
  Revert "tracing: Include module.h in define_trace.h"
  irq: don't put module.h into irq.h for tracking irqgen modules.
  bluetooth: macroize two small inlines to avoid module.h
  ip_vs.h: fix implicit use of module_get/module_put from module.h
  nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
  include: replace linux/module.h with "struct module" wherever possible
  include: convert various register fcns to macros to avoid include chaining
  crypto.h: remove unused crypto_tfm_alg_modname() inline
  uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
  pm_runtime.h: explicitly requires notifier.h
  linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
  miscdevice.h: fix up implicit use of lists and types
  stop_machine.h: fix implicit use of smp.h for smp_processor_id
  of: fix implicit use of errno.h in include/linux/of.h
  of_platform.h: delete needless include <linux/module.h>
  acpi: remove module.h include from platform/aclinux.h
  miscdevice.h: delete unnecessary inclusion of module.h
  device_cgroup.h: delete needless include <linux/module.h>
  net: sch_generic remove redundant use of <linux/module.h>
  net: inet_timewait_sock doesnt need <linux/module.h>
  ...
Fix up trivial conflicts (other header files, and  removal of the ab3550 mfd driver) in
 - drivers/media/dvb/frontends/dibx000_common.c
 - drivers/media/video/{mt9m111.c,ov6650.c}
 - drivers/mfd/ab3550-core.c
 - include/linux/dmaengine.h
		
	
			
		
			
				
	
	
		
			1237 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1237 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2010-2011 Neil Brown
 | |
|  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include "md.h"
 | |
| #include "raid1.h"
 | |
| #include "raid5.h"
 | |
| #include "bitmap.h"
 | |
| 
 | |
| #include <linux/device-mapper.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "raid"
 | |
| 
 | |
| /*
 | |
|  * The following flags are used by dm-raid.c to set up the array state.
 | |
|  * They must be cleared before md_run is called.
 | |
|  */
 | |
| #define FirstUse 10             /* rdev flag */
 | |
| 
 | |
| struct raid_dev {
 | |
| 	/*
 | |
| 	 * Two DM devices, one to hold metadata and one to hold the
 | |
| 	 * actual data/parity.  The reason for this is to not confuse
 | |
| 	 * ti->len and give more flexibility in altering size and
 | |
| 	 * characteristics.
 | |
| 	 *
 | |
| 	 * While it is possible for this device to be associated
 | |
| 	 * with a different physical device than the data_dev, it
 | |
| 	 * is intended for it to be the same.
 | |
| 	 *    |--------- Physical Device ---------|
 | |
| 	 *    |- meta_dev -|------ data_dev ------|
 | |
| 	 */
 | |
| 	struct dm_dev *meta_dev;
 | |
| 	struct dm_dev *data_dev;
 | |
| 	struct md_rdev rdev;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Flags for rs->print_flags field.
 | |
|  */
 | |
| #define DMPF_SYNC              0x1
 | |
| #define DMPF_NOSYNC            0x2
 | |
| #define DMPF_REBUILD           0x4
 | |
| #define DMPF_DAEMON_SLEEP      0x8
 | |
| #define DMPF_MIN_RECOVERY_RATE 0x10
 | |
| #define DMPF_MAX_RECOVERY_RATE 0x20
 | |
| #define DMPF_MAX_WRITE_BEHIND  0x40
 | |
| #define DMPF_STRIPE_CACHE      0x80
 | |
| #define DMPF_REGION_SIZE       0X100
 | |
| struct raid_set {
 | |
| 	struct dm_target *ti;
 | |
| 
 | |
| 	uint64_t print_flags;
 | |
| 
 | |
| 	struct mddev md;
 | |
| 	struct raid_type *raid_type;
 | |
| 	struct dm_target_callbacks callbacks;
 | |
| 
 | |
| 	struct raid_dev dev[0];
 | |
| };
 | |
| 
 | |
| /* Supported raid types and properties. */
 | |
| static struct raid_type {
 | |
| 	const char *name;		/* RAID algorithm. */
 | |
| 	const char *descr;		/* Descriptor text for logging. */
 | |
| 	const unsigned parity_devs;	/* # of parity devices. */
 | |
| 	const unsigned minimal_devs;	/* minimal # of devices in set. */
 | |
| 	const unsigned level;		/* RAID level. */
 | |
| 	const unsigned algorithm;	/* RAID algorithm. */
 | |
| } raid_types[] = {
 | |
| 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
 | |
| 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
 | |
| 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
 | |
| 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
 | |
| 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
 | |
| 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
 | |
| 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
 | |
| 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
 | |
| 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
 | |
| };
 | |
| 
 | |
| static struct raid_type *get_raid_type(char *name)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
 | |
| 		if (!strcmp(raid_types[i].name, name))
 | |
| 			return &raid_types[i];
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct raid_set *rs;
 | |
| 	sector_t sectors_per_dev;
 | |
| 
 | |
| 	if (raid_devs <= raid_type->parity_devs) {
 | |
| 		ti->error = "Insufficient number of devices";
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	sectors_per_dev = ti->len;
 | |
| 	if ((raid_type->level > 1) &&
 | |
| 	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
 | |
| 		ti->error = "Target length not divisible by number of data devices";
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
 | |
| 	if (!rs) {
 | |
| 		ti->error = "Cannot allocate raid context";
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	mddev_init(&rs->md);
 | |
| 
 | |
| 	rs->ti = ti;
 | |
| 	rs->raid_type = raid_type;
 | |
| 	rs->md.raid_disks = raid_devs;
 | |
| 	rs->md.level = raid_type->level;
 | |
| 	rs->md.new_level = rs->md.level;
 | |
| 	rs->md.dev_sectors = sectors_per_dev;
 | |
| 	rs->md.layout = raid_type->algorithm;
 | |
| 	rs->md.new_layout = rs->md.layout;
 | |
| 	rs->md.delta_disks = 0;
 | |
| 	rs->md.recovery_cp = 0;
 | |
| 
 | |
| 	for (i = 0; i < raid_devs; i++)
 | |
| 		md_rdev_init(&rs->dev[i].rdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remaining items to be initialized by further RAID params:
 | |
| 	 *  rs->md.persistent
 | |
| 	 *  rs->md.external
 | |
| 	 *  rs->md.chunk_sectors
 | |
| 	 *  rs->md.new_chunk_sectors
 | |
| 	 */
 | |
| 
 | |
| 	return rs;
 | |
| }
 | |
| 
 | |
| static void context_free(struct raid_set *rs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rs->md.raid_disks; i++) {
 | |
| 		if (rs->dev[i].meta_dev)
 | |
| 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
 | |
| 		if (rs->dev[i].rdev.sb_page)
 | |
| 			put_page(rs->dev[i].rdev.sb_page);
 | |
| 		rs->dev[i].rdev.sb_page = NULL;
 | |
| 		rs->dev[i].rdev.sb_loaded = 0;
 | |
| 		if (rs->dev[i].data_dev)
 | |
| 			dm_put_device(rs->ti, rs->dev[i].data_dev);
 | |
| 	}
 | |
| 
 | |
| 	kfree(rs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For every device we have two words
 | |
|  *  <meta_dev>: meta device name or '-' if missing
 | |
|  *  <data_dev>: data device name or '-' if missing
 | |
|  *
 | |
|  * The following are permitted:
 | |
|  *    - -
 | |
|  *    - <data_dev>
 | |
|  *    <meta_dev> <data_dev>
 | |
|  *
 | |
|  * The following is not allowed:
 | |
|  *    <meta_dev> -
 | |
|  *
 | |
|  * This code parses those words.  If there is a failure,
 | |
|  * the caller must use context_free to unwind the operations.
 | |
|  */
 | |
| static int dev_parms(struct raid_set *rs, char **argv)
 | |
| {
 | |
| 	int i;
 | |
| 	int rebuild = 0;
 | |
| 	int metadata_available = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
 | |
| 		rs->dev[i].rdev.raid_disk = i;
 | |
| 
 | |
| 		rs->dev[i].meta_dev = NULL;
 | |
| 		rs->dev[i].data_dev = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * There are no offsets, since there is a separate device
 | |
| 		 * for data and metadata.
 | |
| 		 */
 | |
| 		rs->dev[i].rdev.data_offset = 0;
 | |
| 		rs->dev[i].rdev.mddev = &rs->md;
 | |
| 
 | |
| 		if (strcmp(argv[0], "-")) {
 | |
| 			ret = dm_get_device(rs->ti, argv[0],
 | |
| 					    dm_table_get_mode(rs->ti->table),
 | |
| 					    &rs->dev[i].meta_dev);
 | |
| 			rs->ti->error = "RAID metadata device lookup failure";
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
 | |
| 			if (!rs->dev[i].rdev.sb_page)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		if (!strcmp(argv[1], "-")) {
 | |
| 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
 | |
| 			    (!rs->dev[i].rdev.recovery_offset)) {
 | |
| 				rs->ti->error = "Drive designated for rebuild not specified";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			rs->ti->error = "No data device supplied with metadata device";
 | |
| 			if (rs->dev[i].meta_dev)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = dm_get_device(rs->ti, argv[1],
 | |
| 				    dm_table_get_mode(rs->ti->table),
 | |
| 				    &rs->dev[i].data_dev);
 | |
| 		if (ret) {
 | |
| 			rs->ti->error = "RAID device lookup failure";
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (rs->dev[i].meta_dev) {
 | |
| 			metadata_available = 1;
 | |
| 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
 | |
| 		}
 | |
| 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
 | |
| 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
 | |
| 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 | |
| 			rebuild++;
 | |
| 	}
 | |
| 
 | |
| 	if (metadata_available) {
 | |
| 		rs->md.external = 0;
 | |
| 		rs->md.persistent = 1;
 | |
| 		rs->md.major_version = 2;
 | |
| 	} else if (rebuild && !rs->md.recovery_cp) {
 | |
| 		/*
 | |
| 		 * Without metadata, we will not be able to tell if the array
 | |
| 		 * is in-sync or not - we must assume it is not.  Therefore,
 | |
| 		 * it is impossible to rebuild a drive.
 | |
| 		 *
 | |
| 		 * Even if there is metadata, the on-disk information may
 | |
| 		 * indicate that the array is not in-sync and it will then
 | |
| 		 * fail at that time.
 | |
| 		 *
 | |
| 		 * User could specify 'nosync' option if desperate.
 | |
| 		 */
 | |
| 		DMERR("Unable to rebuild drive while array is not in-sync");
 | |
| 		rs->ti->error = "RAID device lookup failure";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validate_region_size
 | |
|  * @rs
 | |
|  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
 | |
|  *
 | |
|  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
 | |
|  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
 | |
|  *
 | |
|  * Returns: 0 on success, -EINVAL on failure.
 | |
|  */
 | |
| static int validate_region_size(struct raid_set *rs, unsigned long region_size)
 | |
| {
 | |
| 	unsigned long min_region_size = rs->ti->len / (1 << 21);
 | |
| 
 | |
| 	if (!region_size) {
 | |
| 		/*
 | |
| 		 * Choose a reasonable default.  All figures in sectors.
 | |
| 		 */
 | |
| 		if (min_region_size > (1 << 13)) {
 | |
| 			DMINFO("Choosing default region size of %lu sectors",
 | |
| 			       region_size);
 | |
| 			region_size = min_region_size;
 | |
| 		} else {
 | |
| 			DMINFO("Choosing default region size of 4MiB");
 | |
| 			region_size = 1 << 13; /* sectors */
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Validate user-supplied value.
 | |
| 		 */
 | |
| 		if (region_size > rs->ti->len) {
 | |
| 			rs->ti->error = "Supplied region size is too large";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (region_size < min_region_size) {
 | |
| 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
 | |
| 			      region_size, min_region_size);
 | |
| 			rs->ti->error = "Supplied region size is too small";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!is_power_of_2(region_size)) {
 | |
| 			rs->ti->error = "Region size is not a power of 2";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (region_size < rs->md.chunk_sectors) {
 | |
| 			rs->ti->error = "Region size is smaller than the chunk size";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert sectors to bytes.
 | |
| 	 */
 | |
| 	rs->md.bitmap_info.chunksize = (region_size << 9);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Possible arguments are...
 | |
|  *	<chunk_size> [optional_args]
 | |
|  *
 | |
|  * Argument definitions
 | |
|  *    <chunk_size>			The number of sectors per disk that
 | |
|  *                                      will form the "stripe"
 | |
|  *    [[no]sync]			Force or prevent recovery of the
 | |
|  *                                      entire array
 | |
|  *    [rebuild <idx>]			Rebuild the drive indicated by the index
 | |
|  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
 | |
|  *                                      clear bits
 | |
|  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 | |
|  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 | |
|  *    [write_mostly <idx>]		Indicate a write mostly drive via index
 | |
|  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
 | |
|  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
 | |
|  *    [region_size <sectors>]           Defines granularity of bitmap
 | |
|  */
 | |
| static int parse_raid_params(struct raid_set *rs, char **argv,
 | |
| 			     unsigned num_raid_params)
 | |
| {
 | |
| 	unsigned i, rebuild_cnt = 0;
 | |
| 	unsigned long value, region_size = 0;
 | |
| 	char *key;
 | |
| 
 | |
| 	/*
 | |
| 	 * First, parse the in-order required arguments
 | |
| 	 * "chunk_size" is the only argument of this type.
 | |
| 	 */
 | |
| 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
 | |
| 		rs->ti->error = "Bad chunk size";
 | |
| 		return -EINVAL;
 | |
| 	} else if (rs->raid_type->level == 1) {
 | |
| 		if (value)
 | |
| 			DMERR("Ignoring chunk size parameter for RAID 1");
 | |
| 		value = 0;
 | |
| 	} else if (!is_power_of_2(value)) {
 | |
| 		rs->ti->error = "Chunk size must be a power of 2";
 | |
| 		return -EINVAL;
 | |
| 	} else if (value < 8) {
 | |
| 		rs->ti->error = "Chunk size value is too small";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
 | |
| 	argv++;
 | |
| 	num_raid_params--;
 | |
| 
 | |
| 	/*
 | |
| 	 * We set each individual device as In_sync with a completed
 | |
| 	 * 'recovery_offset'.  If there has been a device failure or
 | |
| 	 * replacement then one of the following cases applies:
 | |
| 	 *
 | |
| 	 *   1) User specifies 'rebuild'.
 | |
| 	 *      - Device is reset when param is read.
 | |
| 	 *   2) A new device is supplied.
 | |
| 	 *      - No matching superblock found, resets device.
 | |
| 	 *   3) Device failure was transient and returns on reload.
 | |
| 	 *      - Failure noticed, resets device for bitmap replay.
 | |
| 	 *   4) Device hadn't completed recovery after previous failure.
 | |
| 	 *      - Superblock is read and overrides recovery_offset.
 | |
| 	 *
 | |
| 	 * What is found in the superblocks of the devices is always
 | |
| 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
 | |
| 	 */
 | |
| 	for (i = 0; i < rs->md.raid_disks; i++) {
 | |
| 		set_bit(In_sync, &rs->dev[i].rdev.flags);
 | |
| 		rs->dev[i].rdev.recovery_offset = MaxSector;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Second, parse the unordered optional arguments
 | |
| 	 */
 | |
| 	for (i = 0; i < num_raid_params; i++) {
 | |
| 		if (!strcasecmp(argv[i], "nosync")) {
 | |
| 			rs->md.recovery_cp = MaxSector;
 | |
| 			rs->print_flags |= DMPF_NOSYNC;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!strcasecmp(argv[i], "sync")) {
 | |
| 			rs->md.recovery_cp = 0;
 | |
| 			rs->print_flags |= DMPF_SYNC;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* The rest of the optional arguments come in key/value pairs */
 | |
| 		if ((i + 1) >= num_raid_params) {
 | |
| 			rs->ti->error = "Wrong number of raid parameters given";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		key = argv[i++];
 | |
| 		if (strict_strtoul(argv[i], 10, &value) < 0) {
 | |
| 			rs->ti->error = "Bad numerical argument given in raid params";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!strcasecmp(key, "rebuild")) {
 | |
| 			rebuild_cnt++;
 | |
| 			if (((rs->raid_type->level != 1) &&
 | |
| 			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
 | |
| 			    ((rs->raid_type->level == 1) &&
 | |
| 			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
 | |
| 				rs->ti->error = "Too many rebuild devices specified for given RAID type";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (value > rs->md.raid_disks) {
 | |
| 				rs->ti->error = "Invalid rebuild index given";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
 | |
| 			rs->dev[value].rdev.recovery_offset = 0;
 | |
| 			rs->print_flags |= DMPF_REBUILD;
 | |
| 		} else if (!strcasecmp(key, "write_mostly")) {
 | |
| 			if (rs->raid_type->level != 1) {
 | |
| 				rs->ti->error = "write_mostly option is only valid for RAID1";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (value >= rs->md.raid_disks) {
 | |
| 				rs->ti->error = "Invalid write_mostly drive index given";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
 | |
| 		} else if (!strcasecmp(key, "max_write_behind")) {
 | |
| 			if (rs->raid_type->level != 1) {
 | |
| 				rs->ti->error = "max_write_behind option is only valid for RAID1";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
 | |
| 
 | |
| 			/*
 | |
| 			 * In device-mapper, we specify things in sectors, but
 | |
| 			 * MD records this value in kB
 | |
| 			 */
 | |
| 			value /= 2;
 | |
| 			if (value > COUNTER_MAX) {
 | |
| 				rs->ti->error = "Max write-behind limit out of range";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			rs->md.bitmap_info.max_write_behind = value;
 | |
| 		} else if (!strcasecmp(key, "daemon_sleep")) {
 | |
| 			rs->print_flags |= DMPF_DAEMON_SLEEP;
 | |
| 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
 | |
| 				rs->ti->error = "daemon sleep period out of range";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			rs->md.bitmap_info.daemon_sleep = value;
 | |
| 		} else if (!strcasecmp(key, "stripe_cache")) {
 | |
| 			rs->print_flags |= DMPF_STRIPE_CACHE;
 | |
| 
 | |
| 			/*
 | |
| 			 * In device-mapper, we specify things in sectors, but
 | |
| 			 * MD records this value in kB
 | |
| 			 */
 | |
| 			value /= 2;
 | |
| 
 | |
| 			if (rs->raid_type->level < 5) {
 | |
| 				rs->ti->error = "Inappropriate argument: stripe_cache";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (raid5_set_cache_size(&rs->md, (int)value)) {
 | |
| 				rs->ti->error = "Bad stripe_cache size";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else if (!strcasecmp(key, "min_recovery_rate")) {
 | |
| 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
 | |
| 			if (value > INT_MAX) {
 | |
| 				rs->ti->error = "min_recovery_rate out of range";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			rs->md.sync_speed_min = (int)value;
 | |
| 		} else if (!strcasecmp(key, "max_recovery_rate")) {
 | |
| 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
 | |
| 			if (value > INT_MAX) {
 | |
| 				rs->ti->error = "max_recovery_rate out of range";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			rs->md.sync_speed_max = (int)value;
 | |
| 		} else if (!strcasecmp(key, "region_size")) {
 | |
| 			rs->print_flags |= DMPF_REGION_SIZE;
 | |
| 			region_size = value;
 | |
| 		} else {
 | |
| 			DMERR("Unable to parse RAID parameter: %s", key);
 | |
| 			rs->ti->error = "Unable to parse RAID parameters";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (validate_region_size(rs, region_size))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (rs->md.chunk_sectors)
 | |
| 		rs->ti->split_io = rs->md.chunk_sectors;
 | |
| 	else
 | |
| 		rs->ti->split_io = region_size;
 | |
| 
 | |
| 	if (rs->md.chunk_sectors)
 | |
| 		rs->ti->split_io = rs->md.chunk_sectors;
 | |
| 	else
 | |
| 		rs->ti->split_io = region_size;
 | |
| 
 | |
| 	/* Assume there are no metadata devices until the drives are parsed */
 | |
| 	rs->md.persistent = 0;
 | |
| 	rs->md.external = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void do_table_event(struct work_struct *ws)
 | |
| {
 | |
| 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
 | |
| 
 | |
| 	dm_table_event(rs->ti->table);
 | |
| }
 | |
| 
 | |
| static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
 | |
| {
 | |
| 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
 | |
| 
 | |
| 	if (rs->raid_type->level == 1)
 | |
| 		return md_raid1_congested(&rs->md, bits);
 | |
| 
 | |
| 	return md_raid5_congested(&rs->md, bits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This structure is never routinely used by userspace, unlike md superblocks.
 | |
|  * Devices with this superblock should only ever be accessed via device-mapper.
 | |
|  */
 | |
| #define DM_RAID_MAGIC 0x64526D44
 | |
| struct dm_raid_superblock {
 | |
| 	__le32 magic;		/* "DmRd" */
 | |
| 	__le32 features;	/* Used to indicate possible future changes */
 | |
| 
 | |
| 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
 | |
| 	__le32 array_position;	/* The position of this drive in the array */
 | |
| 
 | |
| 	__le64 events;		/* Incremented by md when superblock updated */
 | |
| 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
 | |
| 
 | |
| 	/*
 | |
| 	 * This offset tracks the progress of the repair or replacement of
 | |
| 	 * an individual drive.
 | |
| 	 */
 | |
| 	__le64 disk_recovery_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * This offset tracks the progress of the initial array
 | |
| 	 * synchronisation/parity calculation.
 | |
| 	 */
 | |
| 	__le64 array_resync_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * RAID characteristics
 | |
| 	 */
 | |
| 	__le32 level;
 | |
| 	__le32 layout;
 | |
| 	__le32 stripe_sectors;
 | |
| 
 | |
| 	__u8 pad[452];		/* Round struct to 512 bytes. */
 | |
| 				/* Always set to 0 when writing. */
 | |
| } __packed;
 | |
| 
 | |
| static int read_disk_sb(struct md_rdev *rdev, int size)
 | |
| {
 | |
| 	BUG_ON(!rdev->sb_page);
 | |
| 
 | |
| 	if (rdev->sb_loaded)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
 | |
| 		DMERR("Failed to read device superblock");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rdev->sb_loaded = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct md_rdev *r, *t;
 | |
| 	uint64_t failed_devices;
 | |
| 	struct dm_raid_superblock *sb;
 | |
| 
 | |
| 	sb = page_address(rdev->sb_page);
 | |
| 	failed_devices = le64_to_cpu(sb->failed_devices);
 | |
| 
 | |
| 	rdev_for_each(r, t, mddev)
 | |
| 		if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
 | |
| 			failed_devices |= (1ULL << r->raid_disk);
 | |
| 
 | |
| 	memset(sb, 0, sizeof(*sb));
 | |
| 
 | |
| 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
 | |
| 	sb->features = cpu_to_le32(0);	/* No features yet */
 | |
| 
 | |
| 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
 | |
| 	sb->array_position = cpu_to_le32(rdev->raid_disk);
 | |
| 
 | |
| 	sb->events = cpu_to_le64(mddev->events);
 | |
| 	sb->failed_devices = cpu_to_le64(failed_devices);
 | |
| 
 | |
| 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
 | |
| 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
 | |
| 
 | |
| 	sb->level = cpu_to_le32(mddev->level);
 | |
| 	sb->layout = cpu_to_le32(mddev->layout);
 | |
| 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * super_load
 | |
|  *
 | |
|  * This function creates a superblock if one is not found on the device
 | |
|  * and will decide which superblock to use if there's a choice.
 | |
|  *
 | |
|  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
 | |
|  */
 | |
| static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct dm_raid_superblock *sb;
 | |
| 	struct dm_raid_superblock *refsb;
 | |
| 	uint64_t events_sb, events_refsb;
 | |
| 
 | |
| 	rdev->sb_start = 0;
 | |
| 	rdev->sb_size = sizeof(*sb);
 | |
| 
 | |
| 	ret = read_disk_sb(rdev, rdev->sb_size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sb = page_address(rdev->sb_page);
 | |
| 	if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) {
 | |
| 		super_sync(rdev->mddev, rdev);
 | |
| 
 | |
| 		set_bit(FirstUse, &rdev->flags);
 | |
| 
 | |
| 		/* Force writing of superblocks to disk */
 | |
| 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
 | |
| 
 | |
| 		/* Any superblock is better than none, choose that if given */
 | |
| 		return refdev ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!refdev)
 | |
| 		return 1;
 | |
| 
 | |
| 	events_sb = le64_to_cpu(sb->events);
 | |
| 
 | |
| 	refsb = page_address(refdev->sb_page);
 | |
| 	events_refsb = le64_to_cpu(refsb->events);
 | |
| 
 | |
| 	return (events_sb > events_refsb) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	int role;
 | |
| 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 | |
| 	uint64_t events_sb;
 | |
| 	uint64_t failed_devices;
 | |
| 	struct dm_raid_superblock *sb;
 | |
| 	uint32_t new_devs = 0;
 | |
| 	uint32_t rebuilds = 0;
 | |
| 	struct md_rdev *r, *t;
 | |
| 	struct dm_raid_superblock *sb2;
 | |
| 
 | |
| 	sb = page_address(rdev->sb_page);
 | |
| 	events_sb = le64_to_cpu(sb->events);
 | |
| 	failed_devices = le64_to_cpu(sb->failed_devices);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise to 1 if this is a new superblock.
 | |
| 	 */
 | |
| 	mddev->events = events_sb ? : 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reshaping is not currently allowed
 | |
| 	 */
 | |
| 	if ((le32_to_cpu(sb->level) != mddev->level) ||
 | |
| 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
 | |
| 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
 | |
| 		DMERR("Reshaping arrays not yet supported.");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* We can only change the number of devices in RAID1 right now */
 | |
| 	if ((rs->raid_type->level != 1) &&
 | |
| 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
 | |
| 		DMERR("Reshaping arrays not yet supported.");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
 | |
| 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * During load, we set FirstUse if a new superblock was written.
 | |
| 	 * There are two reasons we might not have a superblock:
 | |
| 	 * 1) The array is brand new - in which case, all of the
 | |
| 	 *    devices must have their In_sync bit set.  Also,
 | |
| 	 *    recovery_cp must be 0, unless forced.
 | |
| 	 * 2) This is a new device being added to an old array
 | |
| 	 *    and the new device needs to be rebuilt - in which
 | |
| 	 *    case the In_sync bit will /not/ be set and
 | |
| 	 *    recovery_cp must be MaxSector.
 | |
| 	 */
 | |
| 	rdev_for_each(r, t, mddev) {
 | |
| 		if (!test_bit(In_sync, &r->flags)) {
 | |
| 			if (!test_bit(FirstUse, &r->flags))
 | |
| 				DMERR("Superblock area of "
 | |
| 				      "rebuild device %d should have been "
 | |
| 				      "cleared.", r->raid_disk);
 | |
| 			set_bit(FirstUse, &r->flags);
 | |
| 			rebuilds++;
 | |
| 		} else if (test_bit(FirstUse, &r->flags))
 | |
| 			new_devs++;
 | |
| 	}
 | |
| 
 | |
| 	if (!rebuilds) {
 | |
| 		if (new_devs == mddev->raid_disks) {
 | |
| 			DMINFO("Superblocks created for new array");
 | |
| 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
 | |
| 		} else if (new_devs) {
 | |
| 			DMERR("New device injected "
 | |
| 			      "into existing array without 'rebuild' "
 | |
| 			      "parameter specified");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else if (new_devs) {
 | |
| 		DMERR("'rebuild' devices cannot be "
 | |
| 		      "injected into an array with other first-time devices");
 | |
| 		return -EINVAL;
 | |
| 	} else if (mddev->recovery_cp != MaxSector) {
 | |
| 		DMERR("'rebuild' specified while array is not in-sync");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we set the Faulty bit for those devices that are
 | |
| 	 * recorded in the superblock as failed.
 | |
| 	 */
 | |
| 	rdev_for_each(r, t, mddev) {
 | |
| 		if (!r->sb_page)
 | |
| 			continue;
 | |
| 		sb2 = page_address(r->sb_page);
 | |
| 		sb2->failed_devices = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for any device re-ordering.
 | |
| 		 */
 | |
| 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
 | |
| 			role = le32_to_cpu(sb2->array_position);
 | |
| 			if (role != r->raid_disk) {
 | |
| 				if (rs->raid_type->level != 1) {
 | |
| 					rs->ti->error = "Cannot change device "
 | |
| 						"positions in RAID array";
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 				DMINFO("RAID1 device #%d now at position #%d",
 | |
| 				       role, r->raid_disk);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Partial recovery is performed on
 | |
| 			 * returning failed devices.
 | |
| 			 */
 | |
| 			if (failed_devices & (1 << role))
 | |
| 				set_bit(Faulty, &r->flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
 | |
| 
 | |
| 	/*
 | |
| 	 * If mddev->events is not set, we know we have not yet initialized
 | |
| 	 * the array.
 | |
| 	 */
 | |
| 	if (!mddev->events && super_init_validation(mddev, rdev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
 | |
| 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
 | |
| 	if (!test_bit(FirstUse, &rdev->flags)) {
 | |
| 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
 | |
| 		if (rdev->recovery_offset != MaxSector)
 | |
| 			clear_bit(In_sync, &rdev->flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a device comes back, set it as not In_sync and no longer faulty.
 | |
| 	 */
 | |
| 	if (test_bit(Faulty, &rdev->flags)) {
 | |
| 		clear_bit(Faulty, &rdev->flags);
 | |
| 		clear_bit(In_sync, &rdev->flags);
 | |
| 		rdev->saved_raid_disk = rdev->raid_disk;
 | |
| 		rdev->recovery_offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(FirstUse, &rdev->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Analyse superblocks and select the freshest.
 | |
|  */
 | |
| static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct md_rdev *rdev, *freshest, *tmp;
 | |
| 	struct mddev *mddev = &rs->md;
 | |
| 
 | |
| 	freshest = NULL;
 | |
| 	rdev_for_each(rdev, tmp, mddev) {
 | |
| 		if (!rdev->meta_bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = super_load(rdev, freshest);
 | |
| 
 | |
| 		switch (ret) {
 | |
| 		case 1:
 | |
| 			freshest = rdev;
 | |
| 			break;
 | |
| 		case 0:
 | |
| 			break;
 | |
| 		default:
 | |
| 			ti->error = "Failed to load superblock";
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!freshest)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validation of the freshest device provides the source of
 | |
| 	 * validation for the remaining devices.
 | |
| 	 */
 | |
| 	ti->error = "Unable to assemble array: Invalid superblocks";
 | |
| 	if (super_validate(mddev, freshest))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rdev_for_each(rdev, tmp, mddev)
 | |
| 		if ((rdev != freshest) && super_validate(mddev, rdev))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct a RAID4/5/6 mapping:
 | |
|  * Args:
 | |
|  *	<raid_type> <#raid_params> <raid_params>		\
 | |
|  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
 | |
|  *
 | |
|  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
 | |
|  * details on possible <raid_params>.
 | |
|  */
 | |
| static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct raid_type *rt;
 | |
| 	unsigned long num_raid_params, num_raid_devs;
 | |
| 	struct raid_set *rs = NULL;
 | |
| 
 | |
| 	/* Must have at least <raid_type> <#raid_params> */
 | |
| 	if (argc < 2) {
 | |
| 		ti->error = "Too few arguments";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* raid type */
 | |
| 	rt = get_raid_type(argv[0]);
 | |
| 	if (!rt) {
 | |
| 		ti->error = "Unrecognised raid_type";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	argc--;
 | |
| 	argv++;
 | |
| 
 | |
| 	/* number of RAID parameters */
 | |
| 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
 | |
| 		ti->error = "Cannot understand number of RAID parameters";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	argc--;
 | |
| 	argv++;
 | |
| 
 | |
| 	/* Skip over RAID params for now and find out # of devices */
 | |
| 	if (num_raid_params + 1 > argc) {
 | |
| 		ti->error = "Arguments do not agree with counts given";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
 | |
| 	    (num_raid_devs >= INT_MAX)) {
 | |
| 		ti->error = "Cannot understand number of raid devices";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
 | |
| 	if (IS_ERR(rs))
 | |
| 		return PTR_ERR(rs);
 | |
| 
 | |
| 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
 | |
| 	if (ret)
 | |
| 		goto bad;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 
 | |
| 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
 | |
| 	argv += num_raid_params + 1;
 | |
| 
 | |
| 	if (argc != (num_raid_devs * 2)) {
 | |
| 		ti->error = "Supplied RAID devices does not match the count given";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	ret = dev_parms(rs, argv);
 | |
| 	if (ret)
 | |
| 		goto bad;
 | |
| 
 | |
| 	rs->md.sync_super = super_sync;
 | |
| 	ret = analyse_superblocks(ti, rs);
 | |
| 	if (ret)
 | |
| 		goto bad;
 | |
| 
 | |
| 	INIT_WORK(&rs->md.event_work, do_table_event);
 | |
| 	ti->private = rs;
 | |
| 
 | |
| 	mutex_lock(&rs->md.reconfig_mutex);
 | |
| 	ret = md_run(&rs->md);
 | |
| 	rs->md.in_sync = 0; /* Assume already marked dirty */
 | |
| 	mutex_unlock(&rs->md.reconfig_mutex);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		ti->error = "Fail to run raid array";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	rs->callbacks.congested_fn = raid_is_congested;
 | |
| 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
 | |
| 
 | |
| 	mddev_suspend(&rs->md);
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	context_free(rs);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid_dtr(struct dm_target *ti)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 
 | |
| 	list_del_init(&rs->callbacks.list);
 | |
| 	md_stop(&rs->md);
 | |
| 	context_free(rs);
 | |
| }
 | |
| 
 | |
| static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 	struct mddev *mddev = &rs->md;
 | |
| 
 | |
| 	mddev->pers->make_request(mddev, bio);
 | |
| 
 | |
| 	return DM_MAPIO_SUBMITTED;
 | |
| }
 | |
| 
 | |
| static int raid_status(struct dm_target *ti, status_type_t type,
 | |
| 		       char *result, unsigned maxlen)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
 | |
| 	unsigned sz = 0;
 | |
| 	int i, array_in_sync = 0;
 | |
| 	sector_t sync;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case STATUSTYPE_INFO:
 | |
| 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
 | |
| 
 | |
| 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
 | |
| 			sync = rs->md.curr_resync_completed;
 | |
| 		else
 | |
| 			sync = rs->md.recovery_cp;
 | |
| 
 | |
| 		if (sync >= rs->md.resync_max_sectors) {
 | |
| 			array_in_sync = 1;
 | |
| 			sync = rs->md.resync_max_sectors;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The array may be doing an initial sync, or it may
 | |
| 			 * be rebuilding individual components.  If all the
 | |
| 			 * devices are In_sync, then it is the array that is
 | |
| 			 * being initialized.
 | |
| 			 */
 | |
| 			for (i = 0; i < rs->md.raid_disks; i++)
 | |
| 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 | |
| 					array_in_sync = 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Status characters:
 | |
| 		 *  'D' = Dead/Failed device
 | |
| 		 *  'a' = Alive but not in-sync
 | |
| 		 *  'A' = Alive and in-sync
 | |
| 		 */
 | |
| 		for (i = 0; i < rs->md.raid_disks; i++) {
 | |
| 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
 | |
| 				DMEMIT("D");
 | |
| 			else if (!array_in_sync ||
 | |
| 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
 | |
| 				DMEMIT("a");
 | |
| 			else
 | |
| 				DMEMIT("A");
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * In-sync ratio:
 | |
| 		 *  The in-sync ratio shows the progress of:
 | |
| 		 *   - Initializing the array
 | |
| 		 *   - Rebuilding a subset of devices of the array
 | |
| 		 *  The user can distinguish between the two by referring
 | |
| 		 *  to the status characters.
 | |
| 		 */
 | |
| 		DMEMIT(" %llu/%llu",
 | |
| 		       (unsigned long long) sync,
 | |
| 		       (unsigned long long) rs->md.resync_max_sectors);
 | |
| 
 | |
| 		break;
 | |
| 	case STATUSTYPE_TABLE:
 | |
| 		/* The string you would use to construct this array */
 | |
| 		for (i = 0; i < rs->md.raid_disks; i++) {
 | |
| 			if ((rs->print_flags & DMPF_REBUILD) &&
 | |
| 			    rs->dev[i].data_dev &&
 | |
| 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
 | |
| 				raid_param_cnt += 2; /* for rebuilds */
 | |
| 			if (rs->dev[i].data_dev &&
 | |
| 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
 | |
| 				raid_param_cnt += 2;
 | |
| 		}
 | |
| 
 | |
| 		raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
 | |
| 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
 | |
| 			raid_param_cnt--;
 | |
| 
 | |
| 		DMEMIT("%s %u %u", rs->raid_type->name,
 | |
| 		       raid_param_cnt, rs->md.chunk_sectors);
 | |
| 
 | |
| 		if ((rs->print_flags & DMPF_SYNC) &&
 | |
| 		    (rs->md.recovery_cp == MaxSector))
 | |
| 			DMEMIT(" sync");
 | |
| 		if (rs->print_flags & DMPF_NOSYNC)
 | |
| 			DMEMIT(" nosync");
 | |
| 
 | |
| 		for (i = 0; i < rs->md.raid_disks; i++)
 | |
| 			if ((rs->print_flags & DMPF_REBUILD) &&
 | |
| 			    rs->dev[i].data_dev &&
 | |
| 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
 | |
| 				DMEMIT(" rebuild %u", i);
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
 | |
| 			DMEMIT(" daemon_sleep %lu",
 | |
| 			       rs->md.bitmap_info.daemon_sleep);
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
 | |
| 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
 | |
| 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
 | |
| 
 | |
| 		for (i = 0; i < rs->md.raid_disks; i++)
 | |
| 			if (rs->dev[i].data_dev &&
 | |
| 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
 | |
| 				DMEMIT(" write_mostly %u", i);
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
 | |
| 			DMEMIT(" max_write_behind %lu",
 | |
| 			       rs->md.bitmap_info.max_write_behind);
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
 | |
| 			struct r5conf *conf = rs->md.private;
 | |
| 
 | |
| 			/* convert from kiB to sectors */
 | |
| 			DMEMIT(" stripe_cache %d",
 | |
| 			       conf ? conf->max_nr_stripes * 2 : 0);
 | |
| 		}
 | |
| 
 | |
| 		if (rs->print_flags & DMPF_REGION_SIZE)
 | |
| 			DMEMIT(" region_size %lu",
 | |
| 			       rs->md.bitmap_info.chunksize >> 9);
 | |
| 
 | |
| 		DMEMIT(" %d", rs->md.raid_disks);
 | |
| 		for (i = 0; i < rs->md.raid_disks; i++) {
 | |
| 			if (rs->dev[i].meta_dev)
 | |
| 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
 | |
| 			else
 | |
| 				DMEMIT(" -");
 | |
| 
 | |
| 			if (rs->dev[i].data_dev)
 | |
| 				DMEMIT(" %s", rs->dev[i].data_dev->name);
 | |
| 			else
 | |
| 				DMEMIT(" -");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 	unsigned i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
 | |
| 		if (rs->dev[i].data_dev)
 | |
| 			ret = fn(ti,
 | |
| 				 rs->dev[i].data_dev,
 | |
| 				 0, /* No offset on data devs */
 | |
| 				 rs->md.dev_sectors,
 | |
| 				 data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 	unsigned chunk_size = rs->md.chunk_sectors << 9;
 | |
| 	struct r5conf *conf = rs->md.private;
 | |
| 
 | |
| 	blk_limits_io_min(limits, chunk_size);
 | |
| 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
 | |
| }
 | |
| 
 | |
| static void raid_presuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 
 | |
| 	md_stop_writes(&rs->md);
 | |
| }
 | |
| 
 | |
| static void raid_postsuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 
 | |
| 	mddev_suspend(&rs->md);
 | |
| }
 | |
| 
 | |
| static void raid_resume(struct dm_target *ti)
 | |
| {
 | |
| 	struct raid_set *rs = ti->private;
 | |
| 
 | |
| 	bitmap_load(&rs->md);
 | |
| 	mddev_resume(&rs->md);
 | |
| }
 | |
| 
 | |
| static struct target_type raid_target = {
 | |
| 	.name = "raid",
 | |
| 	.version = {1, 1, 0},
 | |
| 	.module = THIS_MODULE,
 | |
| 	.ctr = raid_ctr,
 | |
| 	.dtr = raid_dtr,
 | |
| 	.map = raid_map,
 | |
| 	.status = raid_status,
 | |
| 	.iterate_devices = raid_iterate_devices,
 | |
| 	.io_hints = raid_io_hints,
 | |
| 	.presuspend = raid_presuspend,
 | |
| 	.postsuspend = raid_postsuspend,
 | |
| 	.resume = raid_resume,
 | |
| };
 | |
| 
 | |
| static int __init dm_raid_init(void)
 | |
| {
 | |
| 	return dm_register_target(&raid_target);
 | |
| }
 | |
| 
 | |
| static void __exit dm_raid_exit(void)
 | |
| {
 | |
| 	dm_unregister_target(&raid_target);
 | |
| }
 | |
| 
 | |
| module_init(dm_raid_init);
 | |
| module_exit(dm_raid_exit);
 | |
| 
 | |
| MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
 | |
| MODULE_ALIAS("dm-raid4");
 | |
| MODULE_ALIAS("dm-raid5");
 | |
| MODULE_ALIAS("dm-raid6");
 | |
| MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
 | |
| MODULE_LICENSE("GPL");
 |