 71a157e8ed
			
		
	
	
	71a157e8ed
	
	
	
		
			
			machine is compatible is an OF-specific call. It should have the of_ prefix to protect the global namespace. Signed-off-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Michal Simek <monstr@monstr.eu>
		
			
				
	
	
		
			714 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			714 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Windfarm PowerMac thermal control.
 | |
|  * Control loops for machines with SMU and PPC970MP processors.
 | |
|  *
 | |
|  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
 | |
|  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
 | |
|  *
 | |
|  * Use and redistribute under the terms of the GNU GPL v2.
 | |
|  */
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/smu.h>
 | |
| 
 | |
| #include "windfarm.h"
 | |
| #include "windfarm_pid.h"
 | |
| 
 | |
| #define VERSION "0.2"
 | |
| 
 | |
| #define DEBUG
 | |
| #undef LOTSA_DEBUG
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DBG(args...)	printk(args)
 | |
| #else
 | |
| #define DBG(args...)	do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #ifdef LOTSA_DEBUG
 | |
| #define DBG_LOTS(args...)	printk(args)
 | |
| #else
 | |
| #define DBG_LOTS(args...)	do { } while(0)
 | |
| #endif
 | |
| 
 | |
| /* define this to force CPU overtemp to 60 degree, useful for testing
 | |
|  * the overtemp code
 | |
|  */
 | |
| #undef HACKED_OVERTEMP
 | |
| 
 | |
| /* We currently only handle 2 chips, 4 cores... */
 | |
| #define NR_CHIPS	2
 | |
| #define NR_CORES	4
 | |
| #define NR_CPU_FANS	3 * NR_CHIPS
 | |
| 
 | |
| /* Controls and sensors */
 | |
| static struct wf_sensor *sens_cpu_temp[NR_CORES];
 | |
| static struct wf_sensor *sens_cpu_power[NR_CORES];
 | |
| static struct wf_sensor *hd_temp;
 | |
| static struct wf_sensor *slots_power;
 | |
| static struct wf_sensor *u4_temp;
 | |
| 
 | |
| static struct wf_control *cpu_fans[NR_CPU_FANS];
 | |
| static char *cpu_fan_names[NR_CPU_FANS] = {
 | |
| 	"cpu-rear-fan-0",
 | |
| 	"cpu-rear-fan-1",
 | |
| 	"cpu-front-fan-0",
 | |
| 	"cpu-front-fan-1",
 | |
| 	"cpu-pump-0",
 | |
| 	"cpu-pump-1",
 | |
| };
 | |
| static struct wf_control *cpufreq_clamp;
 | |
| 
 | |
| /* Second pump isn't required (and isn't actually present) */
 | |
| #define CPU_FANS_REQD		(NR_CPU_FANS - 2)
 | |
| #define FIRST_PUMP		4
 | |
| #define LAST_PUMP		5
 | |
| 
 | |
| /* We keep a temperature history for average calculation of 180s */
 | |
| #define CPU_TEMP_HIST_SIZE	180
 | |
| 
 | |
| /* Scale factor for fan speed, *100 */
 | |
| static int cpu_fan_scale[NR_CPU_FANS] = {
 | |
| 	100,
 | |
| 	100,
 | |
| 	97,		/* inlet fans run at 97% of exhaust fan */
 | |
| 	97,
 | |
| 	100,		/* updated later */
 | |
| 	100,		/* updated later */
 | |
| };
 | |
| 
 | |
| static struct wf_control *backside_fan;
 | |
| static struct wf_control *slots_fan;
 | |
| static struct wf_control *drive_bay_fan;
 | |
| 
 | |
| /* PID loop state */
 | |
| static struct wf_cpu_pid_state cpu_pid[NR_CORES];
 | |
| static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
 | |
| static int cpu_thist_pt;
 | |
| static s64 cpu_thist_total;
 | |
| static s32 cpu_all_tmax = 100 << 16;
 | |
| static int cpu_last_target;
 | |
| static struct wf_pid_state backside_pid;
 | |
| static int backside_tick;
 | |
| static struct wf_pid_state slots_pid;
 | |
| static int slots_started;
 | |
| static struct wf_pid_state drive_bay_pid;
 | |
| static int drive_bay_tick;
 | |
| 
 | |
| static int nr_cores;
 | |
| static int have_all_controls;
 | |
| static int have_all_sensors;
 | |
| static int started;
 | |
| 
 | |
| static int failure_state;
 | |
| #define FAILURE_SENSOR		1
 | |
| #define FAILURE_FAN		2
 | |
| #define FAILURE_PERM		4
 | |
| #define FAILURE_LOW_OVERTEMP	8
 | |
| #define FAILURE_HIGH_OVERTEMP	16
 | |
| 
 | |
| /* Overtemp values */
 | |
| #define LOW_OVER_AVERAGE	0
 | |
| #define LOW_OVER_IMMEDIATE	(10 << 16)
 | |
| #define LOW_OVER_CLEAR		((-10) << 16)
 | |
| #define HIGH_OVER_IMMEDIATE	(14 << 16)
 | |
| #define HIGH_OVER_AVERAGE	(10 << 16)
 | |
| #define HIGH_OVER_IMMEDIATE	(14 << 16)
 | |
| 
 | |
| 
 | |
| /* Implementation... */
 | |
| static int create_cpu_loop(int cpu)
 | |
| {
 | |
| 	int chip = cpu / 2;
 | |
| 	int core = cpu & 1;
 | |
| 	struct smu_sdbp_header *hdr;
 | |
| 	struct smu_sdbp_cpupiddata *piddata;
 | |
| 	struct wf_cpu_pid_param pid;
 | |
| 	struct wf_control *main_fan = cpu_fans[0];
 | |
| 	s32 tmax;
 | |
| 	int fmin;
 | |
| 
 | |
| 	/* Get PID params from the appropriate SAT */
 | |
| 	hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
 | |
| 	if (hdr == NULL) {
 | |
| 		printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
 | |
| 
 | |
| 	/* Get FVT params to get Tmax; if not found, assume default */
 | |
| 	hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
 | |
| 	if (hdr) {
 | |
| 		struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
 | |
| 		tmax = fvt->maxtemp << 16;
 | |
| 	} else
 | |
| 		tmax = 95 << 16;	/* default to 95 degrees C */
 | |
| 
 | |
| 	/* We keep a global tmax for overtemp calculations */
 | |
| 	if (tmax < cpu_all_tmax)
 | |
| 		cpu_all_tmax = tmax;
 | |
| 
 | |
| 	/*
 | |
| 	 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
 | |
| 	 * 515 for the 2-way.  That appears to be overkill, so for now,
 | |
| 	 * impose a minimum of 750 or 515.
 | |
| 	 */
 | |
| 	fmin = (nr_cores > 2) ? 750 : 515;
 | |
| 
 | |
| 	/* Initialize PID loop */
 | |
| 	pid.interval = 1;	/* seconds */
 | |
| 	pid.history_len = piddata->history_len;
 | |
| 	pid.gd = piddata->gd;
 | |
| 	pid.gp = piddata->gp;
 | |
| 	pid.gr = piddata->gr / piddata->history_len;
 | |
| 	pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
 | |
| 	pid.ttarget = tmax - (piddata->target_temp_delta << 16);
 | |
| 	pid.tmax = tmax;
 | |
| 	pid.min = main_fan->ops->get_min(main_fan);
 | |
| 	pid.max = main_fan->ops->get_max(main_fan);
 | |
| 	if (pid.min < fmin)
 | |
| 		pid.min = fmin;
 | |
| 
 | |
| 	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_max_all_fans(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* We max all CPU fans in case of a sensor error. We also do the
 | |
| 	 * cpufreq clamping now, even if it's supposedly done later by the
 | |
| 	 * generic code anyway, we do it earlier here to react faster
 | |
| 	 */
 | |
| 	if (cpufreq_clamp)
 | |
| 		wf_control_set_max(cpufreq_clamp);
 | |
| 	for (i = 0; i < NR_CPU_FANS; ++i)
 | |
| 		if (cpu_fans[i])
 | |
| 			wf_control_set_max(cpu_fans[i]);
 | |
| }
 | |
| 
 | |
| static int cpu_check_overtemp(s32 temp)
 | |
| {
 | |
| 	int new_state = 0;
 | |
| 	s32 t_avg, t_old;
 | |
| 
 | |
| 	/* First check for immediate overtemps */
 | |
| 	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
 | |
| 		new_state |= FAILURE_LOW_OVERTEMP;
 | |
| 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 | |
| 			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
 | |
| 			       " temperature !\n");
 | |
| 	}
 | |
| 	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
 | |
| 		new_state |= FAILURE_HIGH_OVERTEMP;
 | |
| 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 | |
| 			printk(KERN_ERR "windfarm: Critical overtemp due to"
 | |
| 			       " immediate CPU temperature !\n");
 | |
| 	}
 | |
| 
 | |
| 	/* We calculate a history of max temperatures and use that for the
 | |
| 	 * overtemp management
 | |
| 	 */
 | |
| 	t_old = cpu_thist[cpu_thist_pt];
 | |
| 	cpu_thist[cpu_thist_pt] = temp;
 | |
| 	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
 | |
| 	cpu_thist_total -= t_old;
 | |
| 	cpu_thist_total += temp;
 | |
| 	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
 | |
| 
 | |
| 	DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
 | |
| 		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
 | |
| 
 | |
| 	/* Now check for average overtemps */
 | |
| 	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
 | |
| 		new_state |= FAILURE_LOW_OVERTEMP;
 | |
| 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 | |
| 			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
 | |
| 			       " temperature !\n");
 | |
| 	}
 | |
| 	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
 | |
| 		new_state |= FAILURE_HIGH_OVERTEMP;
 | |
| 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 | |
| 			printk(KERN_ERR "windfarm: Critical overtemp due to"
 | |
| 			       " average CPU temperature !\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Now handle overtemp conditions. We don't currently use the windfarm
 | |
| 	 * overtemp handling core as it's not fully suited to the needs of those
 | |
| 	 * new machine. This will be fixed later.
 | |
| 	 */
 | |
| 	if (new_state) {
 | |
| 		/* High overtemp -> immediate shutdown */
 | |
| 		if (new_state & FAILURE_HIGH_OVERTEMP)
 | |
| 			machine_power_off();
 | |
| 		if ((failure_state & new_state) != new_state)
 | |
| 			cpu_max_all_fans();
 | |
| 		failure_state |= new_state;
 | |
| 	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
 | |
| 		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
 | |
| 		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
 | |
| 		failure_state &= ~FAILURE_LOW_OVERTEMP;
 | |
| 	}
 | |
| 
 | |
| 	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
 | |
| }
 | |
| 
 | |
| static void cpu_fans_tick(void)
 | |
| {
 | |
| 	int err, cpu;
 | |
| 	s32 greatest_delta = 0;
 | |
| 	s32 temp, power, t_max = 0;
 | |
| 	int i, t, target = 0;
 | |
| 	struct wf_sensor *sr;
 | |
| 	struct wf_control *ct;
 | |
| 	struct wf_cpu_pid_state *sp;
 | |
| 
 | |
| 	DBG_LOTS(KERN_DEBUG);
 | |
| 	for (cpu = 0; cpu < nr_cores; ++cpu) {
 | |
| 		/* Get CPU core temperature */
 | |
| 		sr = sens_cpu_temp[cpu];
 | |
| 		err = sr->ops->get_value(sr, &temp);
 | |
| 		if (err) {
 | |
| 			DBG("\n");
 | |
| 			printk(KERN_WARNING "windfarm: CPU %d temperature "
 | |
| 			       "sensor error %d\n", cpu, err);
 | |
| 			failure_state |= FAILURE_SENSOR;
 | |
| 			cpu_max_all_fans();
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Keep track of highest temp */
 | |
| 		t_max = max(t_max, temp);
 | |
| 
 | |
| 		/* Get CPU power */
 | |
| 		sr = sens_cpu_power[cpu];
 | |
| 		err = sr->ops->get_value(sr, &power);
 | |
| 		if (err) {
 | |
| 			DBG("\n");
 | |
| 			printk(KERN_WARNING "windfarm: CPU %d power "
 | |
| 			       "sensor error %d\n", cpu, err);
 | |
| 			failure_state |= FAILURE_SENSOR;
 | |
| 			cpu_max_all_fans();
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Run PID */
 | |
| 		sp = &cpu_pid[cpu];
 | |
| 		t = wf_cpu_pid_run(sp, power, temp);
 | |
| 
 | |
| 		if (cpu == 0 || sp->last_delta > greatest_delta) {
 | |
| 			greatest_delta = sp->last_delta;
 | |
| 			target = t;
 | |
| 		}
 | |
| 		DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
 | |
| 		    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
 | |
| 	}
 | |
| 	DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
 | |
| 
 | |
| 	/* Darwin limits decrease to 20 per iteration */
 | |
| 	if (target < (cpu_last_target - 20))
 | |
| 		target = cpu_last_target - 20;
 | |
| 	cpu_last_target = target;
 | |
| 	for (cpu = 0; cpu < nr_cores; ++cpu)
 | |
| 		cpu_pid[cpu].target = target;
 | |
| 
 | |
| 	/* Handle possible overtemps */
 | |
| 	if (cpu_check_overtemp(t_max))
 | |
| 		return;
 | |
| 
 | |
| 	/* Set fans */
 | |
| 	for (i = 0; i < NR_CPU_FANS; ++i) {
 | |
| 		ct = cpu_fans[i];
 | |
| 		if (ct == NULL)
 | |
| 			continue;
 | |
| 		err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
 | |
| 		if (err) {
 | |
| 			printk(KERN_WARNING "windfarm: fan %s reports "
 | |
| 			       "error %d\n", ct->name, err);
 | |
| 			failure_state |= FAILURE_FAN;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Backside/U4 fan */
 | |
| static struct wf_pid_param backside_param = {
 | |
| 	.interval	= 5,
 | |
| 	.history_len	= 2,
 | |
| 	.gd		= 48 << 20,
 | |
| 	.gp		= 5 << 20,
 | |
| 	.gr		= 0,
 | |
| 	.itarget	= 64 << 16,
 | |
| 	.additive	= 1,
 | |
| };
 | |
| 
 | |
| static void backside_fan_tick(void)
 | |
| {
 | |
| 	s32 temp;
 | |
| 	int speed;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!backside_fan || !u4_temp)
 | |
| 		return;
 | |
| 	if (!backside_tick) {
 | |
| 		/* first time; initialize things */
 | |
| 		printk(KERN_INFO "windfarm: Backside control loop started.\n");
 | |
| 		backside_param.min = backside_fan->ops->get_min(backside_fan);
 | |
| 		backside_param.max = backside_fan->ops->get_max(backside_fan);
 | |
| 		wf_pid_init(&backside_pid, &backside_param);
 | |
| 		backside_tick = 1;
 | |
| 	}
 | |
| 	if (--backside_tick > 0)
 | |
| 		return;
 | |
| 	backside_tick = backside_pid.param.interval;
 | |
| 
 | |
| 	err = u4_temp->ops->get_value(u4_temp, &temp);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
 | |
| 		       err);
 | |
| 		failure_state |= FAILURE_SENSOR;
 | |
| 		wf_control_set_max(backside_fan);
 | |
| 		return;
 | |
| 	}
 | |
| 	speed = wf_pid_run(&backside_pid, temp);
 | |
| 	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
 | |
| 		 FIX32TOPRINT(temp), speed);
 | |
| 
 | |
| 	err = backside_fan->ops->set_value(backside_fan, speed);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
 | |
| 		failure_state |= FAILURE_FAN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Drive bay fan */
 | |
| static struct wf_pid_param drive_bay_prm = {
 | |
| 	.interval	= 5,
 | |
| 	.history_len	= 2,
 | |
| 	.gd		= 30 << 20,
 | |
| 	.gp		= 5 << 20,
 | |
| 	.gr		= 0,
 | |
| 	.itarget	= 40 << 16,
 | |
| 	.additive	= 1,
 | |
| };
 | |
| 
 | |
| static void drive_bay_fan_tick(void)
 | |
| {
 | |
| 	s32 temp;
 | |
| 	int speed;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!drive_bay_fan || !hd_temp)
 | |
| 		return;
 | |
| 	if (!drive_bay_tick) {
 | |
| 		/* first time; initialize things */
 | |
| 		printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
 | |
| 		drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
 | |
| 		drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
 | |
| 		wf_pid_init(&drive_bay_pid, &drive_bay_prm);
 | |
| 		drive_bay_tick = 1;
 | |
| 	}
 | |
| 	if (--drive_bay_tick > 0)
 | |
| 		return;
 | |
| 	drive_bay_tick = drive_bay_pid.param.interval;
 | |
| 
 | |
| 	err = hd_temp->ops->get_value(hd_temp, &temp);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: drive bay temp sensor "
 | |
| 		       "error %d\n", err);
 | |
| 		failure_state |= FAILURE_SENSOR;
 | |
| 		wf_control_set_max(drive_bay_fan);
 | |
| 		return;
 | |
| 	}
 | |
| 	speed = wf_pid_run(&drive_bay_pid, temp);
 | |
| 	DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
 | |
| 		 FIX32TOPRINT(temp), speed);
 | |
| 
 | |
| 	err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
 | |
| 		failure_state |= FAILURE_FAN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* PCI slots area fan */
 | |
| /* This makes the fan speed proportional to the power consumed */
 | |
| static struct wf_pid_param slots_param = {
 | |
| 	.interval	= 1,
 | |
| 	.history_len	= 2,
 | |
| 	.gd		= 0,
 | |
| 	.gp		= 0,
 | |
| 	.gr		= 0x1277952,
 | |
| 	.itarget	= 0,
 | |
| 	.min		= 1560,
 | |
| 	.max		= 3510,
 | |
| };
 | |
| 
 | |
| static void slots_fan_tick(void)
 | |
| {
 | |
| 	s32 power;
 | |
| 	int speed;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!slots_fan || !slots_power)
 | |
| 		return;
 | |
| 	if (!slots_started) {
 | |
| 		/* first time; initialize things */
 | |
| 		printk(KERN_INFO "windfarm: Slots control loop started.\n");
 | |
| 		wf_pid_init(&slots_pid, &slots_param);
 | |
| 		slots_started = 1;
 | |
| 	}
 | |
| 
 | |
| 	err = slots_power->ops->get_value(slots_power, &power);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
 | |
| 		       err);
 | |
| 		failure_state |= FAILURE_SENSOR;
 | |
| 		wf_control_set_max(slots_fan);
 | |
| 		return;
 | |
| 	}
 | |
| 	speed = wf_pid_run(&slots_pid, power);
 | |
| 	DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
 | |
| 		 FIX32TOPRINT(power), speed);
 | |
| 
 | |
| 	err = slots_fan->ops->set_value(slots_fan, speed);
 | |
| 	if (err) {
 | |
| 		printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
 | |
| 		failure_state |= FAILURE_FAN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_fail_state(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (cpufreq_clamp)
 | |
| 		wf_control_set_max(cpufreq_clamp);
 | |
| 	for (i = 0; i < NR_CPU_FANS; ++i)
 | |
| 		if (cpu_fans[i])
 | |
| 			wf_control_set_max(cpu_fans[i]);
 | |
| 	if (backside_fan)
 | |
| 		wf_control_set_max(backside_fan);
 | |
| 	if (slots_fan)
 | |
| 		wf_control_set_max(slots_fan);
 | |
| 	if (drive_bay_fan)
 | |
| 		wf_control_set_max(drive_bay_fan);
 | |
| }
 | |
| 
 | |
| static void pm112_tick(void)
 | |
| {
 | |
| 	int i, last_failure;
 | |
| 
 | |
| 	if (!started) {
 | |
| 		started = 1;
 | |
| 		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
 | |
| 		for (i = 0; i < nr_cores; ++i) {
 | |
| 			if (create_cpu_loop(i) < 0) {
 | |
| 				failure_state = FAILURE_PERM;
 | |
| 				set_fail_state();
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
 | |
| 
 | |
| #ifdef HACKED_OVERTEMP
 | |
| 		cpu_all_tmax = 60 << 16;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Permanent failure, bail out */
 | |
| 	if (failure_state & FAILURE_PERM)
 | |
| 		return;
 | |
| 	/* Clear all failure bits except low overtemp which will be eventually
 | |
| 	 * cleared by the control loop itself
 | |
| 	 */
 | |
| 	last_failure = failure_state;
 | |
| 	failure_state &= FAILURE_LOW_OVERTEMP;
 | |
| 	cpu_fans_tick();
 | |
| 	backside_fan_tick();
 | |
| 	slots_fan_tick();
 | |
| 	drive_bay_fan_tick();
 | |
| 
 | |
| 	DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
 | |
| 		 last_failure, failure_state);
 | |
| 
 | |
| 	/* Check for failures. Any failure causes cpufreq clamping */
 | |
| 	if (failure_state && last_failure == 0 && cpufreq_clamp)
 | |
| 		wf_control_set_max(cpufreq_clamp);
 | |
| 	if (failure_state == 0 && last_failure && cpufreq_clamp)
 | |
| 		wf_control_set_min(cpufreq_clamp);
 | |
| 
 | |
| 	/* That's it for now, we might want to deal with other failures
 | |
| 	 * differently in the future though
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void pm112_new_control(struct wf_control *ct)
 | |
| {
 | |
| 	int i, max_exhaust;
 | |
| 
 | |
| 	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
 | |
| 		if (wf_get_control(ct) == 0)
 | |
| 			cpufreq_clamp = ct;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NR_CPU_FANS; ++i) {
 | |
| 		if (!strcmp(ct->name, cpu_fan_names[i])) {
 | |
| 			if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
 | |
| 				cpu_fans[i] = ct;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i >= NR_CPU_FANS) {
 | |
| 		/* not a CPU fan, try the others */
 | |
| 		if (!strcmp(ct->name, "backside-fan")) {
 | |
| 			if (backside_fan == NULL && wf_get_control(ct) == 0)
 | |
| 				backside_fan = ct;
 | |
| 		} else if (!strcmp(ct->name, "slots-fan")) {
 | |
| 			if (slots_fan == NULL && wf_get_control(ct) == 0)
 | |
| 				slots_fan = ct;
 | |
| 		} else if (!strcmp(ct->name, "drive-bay-fan")) {
 | |
| 			if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
 | |
| 				drive_bay_fan = ct;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CPU_FANS_REQD; ++i)
 | |
| 		if (cpu_fans[i] == NULL)
 | |
| 			return;
 | |
| 
 | |
| 	/* work out pump scaling factors */
 | |
| 	max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
 | |
| 	for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
 | |
| 		if ((ct = cpu_fans[i]) != NULL)
 | |
| 			cpu_fan_scale[i] =
 | |
| 				ct->ops->get_max(ct) * 100 / max_exhaust;
 | |
| 
 | |
| 	have_all_controls = 1;
 | |
| }
 | |
| 
 | |
| static void pm112_new_sensor(struct wf_sensor *sr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!strncmp(sr->name, "cpu-temp-", 9)) {
 | |
| 		i = sr->name[9] - '0';
 | |
| 		if (sr->name[10] == 0 && i < NR_CORES &&
 | |
| 		    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
 | |
| 			sens_cpu_temp[i] = sr;
 | |
| 
 | |
| 	} else if (!strncmp(sr->name, "cpu-power-", 10)) {
 | |
| 		i = sr->name[10] - '0';
 | |
| 		if (sr->name[11] == 0 && i < NR_CORES &&
 | |
| 		    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
 | |
| 			sens_cpu_power[i] = sr;
 | |
| 	} else if (!strcmp(sr->name, "hd-temp")) {
 | |
| 		if (hd_temp == NULL && wf_get_sensor(sr) == 0)
 | |
| 			hd_temp = sr;
 | |
| 	} else if (!strcmp(sr->name, "slots-power")) {
 | |
| 		if (slots_power == NULL && wf_get_sensor(sr) == 0)
 | |
| 			slots_power = sr;
 | |
| 	} else if (!strcmp(sr->name, "backside-temp")) {
 | |
| 		if (u4_temp == NULL && wf_get_sensor(sr) == 0)
 | |
| 			u4_temp = sr;
 | |
| 	} else
 | |
| 		return;
 | |
| 
 | |
| 	/* check if we have all the sensors we need */
 | |
| 	for (i = 0; i < nr_cores; ++i)
 | |
| 		if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
 | |
| 			return;
 | |
| 
 | |
| 	have_all_sensors = 1;
 | |
| }
 | |
| 
 | |
| static int pm112_wf_notify(struct notifier_block *self,
 | |
| 			   unsigned long event, void *data)
 | |
| {
 | |
| 	switch (event) {
 | |
| 	case WF_EVENT_NEW_SENSOR:
 | |
| 		pm112_new_sensor(data);
 | |
| 		break;
 | |
| 	case WF_EVENT_NEW_CONTROL:
 | |
| 		pm112_new_control(data);
 | |
| 		break;
 | |
| 	case WF_EVENT_TICK:
 | |
| 		if (have_all_controls && have_all_sensors)
 | |
| 			pm112_tick();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block pm112_events = {
 | |
| 	.notifier_call = pm112_wf_notify,
 | |
| };
 | |
| 
 | |
| static int wf_pm112_probe(struct platform_device *dev)
 | |
| {
 | |
| 	wf_register_client(&pm112_events);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __devexit wf_pm112_remove(struct platform_device *dev)
 | |
| {
 | |
| 	wf_unregister_client(&pm112_events);
 | |
| 	/* should release all sensors and controls */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver wf_pm112_driver = {
 | |
| 	.probe = wf_pm112_probe,
 | |
| 	.remove = __devexit_p(wf_pm112_remove),
 | |
| 	.driver = {
 | |
| 		.name = "windfarm",
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init wf_pm112_init(void)
 | |
| {
 | |
| 	struct device_node *cpu;
 | |
| 
 | |
| 	if (!of_machine_is_compatible("PowerMac11,2"))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Count the number of CPU cores */
 | |
| 	nr_cores = 0;
 | |
| 	for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
 | |
| 		++nr_cores;
 | |
| 
 | |
| 	printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
 | |
| 
 | |
| #ifdef MODULE
 | |
| 	request_module("windfarm_smu_controls");
 | |
| 	request_module("windfarm_smu_sensors");
 | |
| 	request_module("windfarm_smu_sat");
 | |
| 	request_module("windfarm_lm75_sensor");
 | |
| 	request_module("windfarm_max6690_sensor");
 | |
| 	request_module("windfarm_cpufreq_clamp");
 | |
| 
 | |
| #endif /* MODULE */
 | |
| 
 | |
| 	platform_driver_register(&wf_pm112_driver);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit wf_pm112_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&wf_pm112_driver);
 | |
| }
 | |
| 
 | |
| module_init(wf_pm112_init);
 | |
| module_exit(wf_pm112_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
 | |
| MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:windfarm");
 |