 edf7c8148e
			
		
	
	
	edf7c8148e
	
	
	
		
			
			* 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: add IRQ context simulation in module mce-inject x86, mce, therm_throt: Don't report power limit and package level thermal throttle events in mcelog x86, MCE: Drain mcelog buffer x86, mce: Add wrappers for registering on the decode chain
		
			
				
	
	
		
			1889 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1889 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 | |
|  *
 | |
|  * This driver supports the memory controllers found on the Intel
 | |
|  * processor family Sandy Bridge.
 | |
|  *
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License version 2 only.
 | |
|  *
 | |
|  * Copyright (c) 2011 by:
 | |
|  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_ids.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/edac.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #include "edac_core.h"
 | |
| 
 | |
| /* Static vars */
 | |
| static LIST_HEAD(sbridge_edac_list);
 | |
| static DEFINE_MUTEX(sbridge_edac_lock);
 | |
| static int probed;
 | |
| 
 | |
| /*
 | |
|  * Alter this version for the module when modifications are made
 | |
|  */
 | |
| #define SBRIDGE_REVISION    " Ver: 1.0.0 "
 | |
| #define EDAC_MOD_STR      "sbridge_edac"
 | |
| 
 | |
| /*
 | |
|  * Debug macros
 | |
|  */
 | |
| #define sbridge_printk(level, fmt, arg...)			\
 | |
| 	edac_printk(level, "sbridge", fmt, ##arg)
 | |
| 
 | |
| #define sbridge_mc_printk(mci, level, fmt, arg...)		\
 | |
| 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
 | |
| 
 | |
| /*
 | |
|  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 | |
|  */
 | |
| #define GET_BITFIELD(v, lo, hi)	\
 | |
| 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
 | |
| 
 | |
| /*
 | |
|  * sbridge Memory Controller Registers
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * FIXME: For now, let's order by device function, as it makes
 | |
|  * easier for driver's development proccess. This table should be
 | |
|  * moved to pci_id.h when submitted upstream
 | |
|  */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently, unused, but will be needed in the future
 | |
| 	 * implementations, as they hold the error counters
 | |
| 	 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
 | |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
 | |
| 
 | |
| /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
 | |
| static const u32 dram_rule[] = {
 | |
| 	0x80, 0x88, 0x90, 0x98, 0xa0,
 | |
| 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
 | |
| };
 | |
| #define MAX_SAD		ARRAY_SIZE(dram_rule)
 | |
| 
 | |
| #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
 | |
| #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
 | |
| #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
 | |
| #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
 | |
| 
 | |
| static char *get_dram_attr(u32 reg)
 | |
| {
 | |
| 	switch(DRAM_ATTR(reg)) {
 | |
| 		case 0:
 | |
| 			return "DRAM";
 | |
| 		case 1:
 | |
| 			return "MMCFG";
 | |
| 		case 2:
 | |
| 			return "NXM";
 | |
| 		default:
 | |
| 			return "unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const u32 interleave_list[] = {
 | |
| 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
 | |
| 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
 | |
| };
 | |
| #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
 | |
| 
 | |
| #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
 | |
| #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
 | |
| #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
 | |
| #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
 | |
| #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
 | |
| #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
 | |
| #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
 | |
| #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
 | |
| 
 | |
| static inline int sad_pkg(u32 reg, int interleave)
 | |
| {
 | |
| 	switch (interleave) {
 | |
| 	case 0:
 | |
| 		return SAD_PKG0(reg);
 | |
| 	case 1:
 | |
| 		return SAD_PKG1(reg);
 | |
| 	case 2:
 | |
| 		return SAD_PKG2(reg);
 | |
| 	case 3:
 | |
| 		return SAD_PKG3(reg);
 | |
| 	case 4:
 | |
| 		return SAD_PKG4(reg);
 | |
| 	case 5:
 | |
| 		return SAD_PKG5(reg);
 | |
| 	case 6:
 | |
| 		return SAD_PKG6(reg);
 | |
| 	case 7:
 | |
| 		return SAD_PKG7(reg);
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Devices 12 Function 7 */
 | |
| 
 | |
| #define TOLM		0x80
 | |
| #define	TOHM		0x84
 | |
| 
 | |
| #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 | |
| #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 | |
| 
 | |
| /* Device 13 Function 6 */
 | |
| 
 | |
| #define SAD_TARGET	0xf0
 | |
| 
 | |
| #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
 | |
| 
 | |
| #define SAD_CONTROL	0xf4
 | |
| 
 | |
| #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
 | |
| 
 | |
| /* Device 14 function 0 */
 | |
| 
 | |
| static const u32 tad_dram_rule[] = {
 | |
| 	0x40, 0x44, 0x48, 0x4c,
 | |
| 	0x50, 0x54, 0x58, 0x5c,
 | |
| 	0x60, 0x64, 0x68, 0x6c,
 | |
| };
 | |
| #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
 | |
| 
 | |
| #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 | |
| #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
 | |
| #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
 | |
| #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
 | |
| #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
 | |
| #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
 | |
| #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
 | |
| 
 | |
| /* Device 15, function 0 */
 | |
| 
 | |
| #define MCMTR			0x7c
 | |
| 
 | |
| #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
 | |
| #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
 | |
| #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
 | |
| 
 | |
| /* Device 15, function 1 */
 | |
| 
 | |
| #define RASENABLES		0xac
 | |
| #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
 | |
| 
 | |
| /* Device 15, functions 2-5 */
 | |
| 
 | |
| static const int mtr_regs[] = {
 | |
| 	0x80, 0x84, 0x88,
 | |
| };
 | |
| 
 | |
| #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
 | |
| #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
 | |
| #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
 | |
| #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
 | |
| #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
 | |
| 
 | |
| static const u32 tad_ch_nilv_offset[] = {
 | |
| 	0x90, 0x94, 0x98, 0x9c,
 | |
| 	0xa0, 0xa4, 0xa8, 0xac,
 | |
| 	0xb0, 0xb4, 0xb8, 0xbc,
 | |
| };
 | |
| #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
 | |
| #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
 | |
| 
 | |
| static const u32 rir_way_limit[] = {
 | |
| 	0x108, 0x10c, 0x110, 0x114, 0x118,
 | |
| };
 | |
| #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 | |
| 
 | |
| #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
 | |
| #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
 | |
| #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
 | |
| 
 | |
| #define MAX_RIR_WAY	8
 | |
| 
 | |
| static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 | |
| 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 | |
| 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 | |
| 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 | |
| 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 | |
| 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 | |
| };
 | |
| 
 | |
| #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
 | |
| #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
 | |
| 
 | |
| /* Device 16, functions 2-7 */
 | |
| 
 | |
| /*
 | |
|  * FIXME: Implement the error count reads directly
 | |
|  */
 | |
| 
 | |
| static const u32 correrrcnt[] = {
 | |
| 	0x104, 0x108, 0x10c, 0x110,
 | |
| };
 | |
| 
 | |
| #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
 | |
| #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
 | |
| #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
 | |
| #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
 | |
| 
 | |
| static const u32 correrrthrsld[] = {
 | |
| 	0x11c, 0x120, 0x124, 0x128,
 | |
| };
 | |
| 
 | |
| #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
 | |
| #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
 | |
| 
 | |
| 
 | |
| /* Device 17, function 0 */
 | |
| 
 | |
| #define RANK_CFG_A		0x0328
 | |
| 
 | |
| #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
 | |
| 
 | |
| /*
 | |
|  * sbridge structs
 | |
|  */
 | |
| 
 | |
| #define NUM_CHANNELS	4
 | |
| #define MAX_DIMMS	3		/* Max DIMMS per channel */
 | |
| 
 | |
| struct sbridge_info {
 | |
| 	u32	mcmtr;
 | |
| };
 | |
| 
 | |
| struct sbridge_channel {
 | |
| 	u32		ranks;
 | |
| 	u32		dimms;
 | |
| };
 | |
| 
 | |
| struct pci_id_descr {
 | |
| 	int			dev;
 | |
| 	int			func;
 | |
| 	int 			dev_id;
 | |
| 	int			optional;
 | |
| };
 | |
| 
 | |
| struct pci_id_table {
 | |
| 	const struct pci_id_descr	*descr;
 | |
| 	int				n_devs;
 | |
| };
 | |
| 
 | |
| struct sbridge_dev {
 | |
| 	struct list_head	list;
 | |
| 	u8			bus, mc;
 | |
| 	u8			node_id, source_id;
 | |
| 	struct pci_dev		**pdev;
 | |
| 	int			n_devs;
 | |
| 	struct mem_ctl_info	*mci;
 | |
| };
 | |
| 
 | |
| struct sbridge_pvt {
 | |
| 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
 | |
| 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
 | |
| 	struct pci_dev		*pci_br;
 | |
| 	struct pci_dev		*pci_tad[NUM_CHANNELS];
 | |
| 
 | |
| 	struct sbridge_dev	*sbridge_dev;
 | |
| 
 | |
| 	struct sbridge_info	info;
 | |
| 	struct sbridge_channel	channel[NUM_CHANNELS];
 | |
| 
 | |
| 	int 			csrow_map[NUM_CHANNELS][MAX_DIMMS];
 | |
| 
 | |
| 	/* Memory type detection */
 | |
| 	bool			is_mirrored, is_lockstep, is_close_pg;
 | |
| 
 | |
| 	/* Fifo double buffers */
 | |
| 	struct mce		mce_entry[MCE_LOG_LEN];
 | |
| 	struct mce		mce_outentry[MCE_LOG_LEN];
 | |
| 
 | |
| 	/* Fifo in/out counters */
 | |
| 	unsigned		mce_in, mce_out;
 | |
| 
 | |
| 	/* Count indicator to show errors not got */
 | |
| 	unsigned		mce_overrun;
 | |
| 
 | |
| 	/* Memory description */
 | |
| 	u64			tolm, tohm;
 | |
| };
 | |
| 
 | |
| #define PCI_DESCR(device, function, device_id)	\
 | |
| 	.dev = (device),			\
 | |
| 	.func = (function),			\
 | |
| 	.dev_id = (device_id)
 | |
| 
 | |
| static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 | |
| 		/* Processor Home Agent */
 | |
| 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
 | |
| 
 | |
| 		/* Memory controller */
 | |
| 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
 | |
| 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
 | |
| 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
 | |
| 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
 | |
| 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
 | |
| 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
 | |
| 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
 | |
| 
 | |
| 		/* System Address Decoder */
 | |
| 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
 | |
| 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
 | |
| 
 | |
| 		/* Broadcast Registers */
 | |
| 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
 | |
| };
 | |
| 
 | |
| #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
 | |
| static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	pci_device_id	table for which devices we are looking for
 | |
|  */
 | |
| static const struct pci_device_id sbridge_pci_tbl[] __devinitdata = {
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Anciliary status routines
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static inline int numrank(u32 mtr)
 | |
| {
 | |
| 	int ranks = (1 << RANK_CNT_BITS(mtr));
 | |
| 
 | |
| 	if (ranks > 4) {
 | |
| 		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
 | |
| 			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ranks;
 | |
| }
 | |
| 
 | |
| static inline int numrow(u32 mtr)
 | |
| {
 | |
| 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
 | |
| 
 | |
| 	if (rows < 13 || rows > 18) {
 | |
| 		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
 | |
| 			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 1 << rows;
 | |
| }
 | |
| 
 | |
| static inline int numcol(u32 mtr)
 | |
| {
 | |
| 	int cols = (COL_WIDTH_BITS(mtr) + 10);
 | |
| 
 | |
| 	if (cols > 12) {
 | |
| 		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
 | |
| 			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 1 << cols;
 | |
| }
 | |
| 
 | |
| static struct sbridge_dev *get_sbridge_dev(u8 bus)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		if (sbridge_dev->bus == bus)
 | |
| 			return sbridge_dev;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
 | |
| 					   const struct pci_id_table *table)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 | |
| 	if (!sbridge_dev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
 | |
| 				   GFP_KERNEL);
 | |
| 	if (!sbridge_dev->pdev) {
 | |
| 		kfree(sbridge_dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_dev->bus = bus;
 | |
| 	sbridge_dev->n_devs = table->n_devs;
 | |
| 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 | |
| 
 | |
| 	return sbridge_dev;
 | |
| }
 | |
| 
 | |
| static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	list_del(&sbridge_dev->list);
 | |
| 	kfree(sbridge_dev->pdev);
 | |
| 	kfree(sbridge_dev);
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Memory check routines
 | |
|  ****************************************************************************/
 | |
| static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
 | |
| 					  unsigned func)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sbridge_dev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		if (!sbridge_dev->pdev[i])
 | |
| 			continue;
 | |
| 
 | |
| 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
 | |
| 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
 | |
| 			debugf1("Associated %02x.%02x.%d with %p\n",
 | |
| 				bus, slot, func, sbridge_dev->pdev[i]);
 | |
| 			return sbridge_dev->pdev[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sbridge_get_active_channels() - gets the number of channels and csrows
 | |
|  * bus:		Device bus
 | |
|  * @channels:	Number of channels that will be returned
 | |
|  * @csrows:	Number of csrows found
 | |
|  *
 | |
|  * Since EDAC core needs to know in advance the number of available channels
 | |
|  * and csrows, in order to allocate memory for csrows/channels, it is needed
 | |
|  * to run two similar steps. At the first step, implemented on this function,
 | |
|  * it checks the number of csrows/channels present at one socket, identified
 | |
|  * by the associated PCI bus.
 | |
|  * this is used in order to properly allocate the size of mci components.
 | |
|  * Note: one csrow is one dimm.
 | |
|  */
 | |
| static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
 | |
| 				      unsigned *csrows)
 | |
| {
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	int i, j;
 | |
| 	u32 mcmtr;
 | |
| 
 | |
| 	*channels = 0;
 | |
| 	*csrows = 0;
 | |
| 
 | |
| 	pdev = get_pdev_slot_func(bus, 15, 0);
 | |
| 	if (!pdev) {
 | |
| 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
 | |
| 					"%2x.%02d.%d!!!\n",
 | |
| 					bus, 15, 0);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
 | |
| 	if (!IS_ECC_ENABLED(mcmtr)) {
 | |
| 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		u32 mtr;
 | |
| 
 | |
| 		/* Device 15 functions 2 - 5  */
 | |
| 		pdev = get_pdev_slot_func(bus, 15, 2 + i);
 | |
| 		if (!pdev) {
 | |
| 			sbridge_printk(KERN_ERR, "Couldn't find PCI device "
 | |
| 						 "%2x.%02d.%d!!!\n",
 | |
| 						 bus, 15, 2 + i);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		(*channels)++;
 | |
| 
 | |
| 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
 | |
| 			pci_read_config_dword(pdev, mtr_regs[j], &mtr);
 | |
| 			debugf1("Bus#%02x channel #%d  MTR%d = %x\n", bus, i, j, mtr);
 | |
| 			if (IS_DIMM_PRESENT(mtr))
 | |
| 				(*csrows)++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	debugf0("Number of active channels: %d, number of active dimms: %d\n",
 | |
| 		*channels, *csrows);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_dimm_config(const struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct csrow_info *csr;
 | |
| 	int i, j, banks, ranks, rows, cols, size, npages;
 | |
| 	int csrow = 0;
 | |
| 	unsigned long last_page = 0;
 | |
| 	u32 reg;
 | |
| 	enum edac_type mode;
 | |
| 	enum mem_type mtype;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®);
 | |
| 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®);
 | |
| 	pvt->sbridge_dev->node_id = NODE_ID(reg);
 | |
| 	debugf0("mc#%d: Node ID: %d, source ID: %d\n",
 | |
| 		pvt->sbridge_dev->mc,
 | |
| 		pvt->sbridge_dev->node_id,
 | |
| 		pvt->sbridge_dev->source_id);
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_ras, RASENABLES, ®);
 | |
| 	if (IS_MIRROR_ENABLED(reg)) {
 | |
| 		debugf0("Memory mirror is enabled\n");
 | |
| 		pvt->is_mirrored = true;
 | |
| 	} else {
 | |
| 		debugf0("Memory mirror is disabled\n");
 | |
| 		pvt->is_mirrored = false;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
 | |
| 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
 | |
| 		debugf0("Lockstep is enabled\n");
 | |
| 		mode = EDAC_S8ECD8ED;
 | |
| 		pvt->is_lockstep = true;
 | |
| 	} else {
 | |
| 		debugf0("Lockstep is disabled\n");
 | |
| 		mode = EDAC_S4ECD4ED;
 | |
| 		pvt->is_lockstep = false;
 | |
| 	}
 | |
| 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
 | |
| 		debugf0("address map is on closed page mode\n");
 | |
| 		pvt->is_close_pg = true;
 | |
| 	} else {
 | |
| 		debugf0("address map is on open page mode\n");
 | |
| 		pvt->is_close_pg = false;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, ®);
 | |
| 	if (IS_RDIMM_ENABLED(reg)) {
 | |
| 		/* FIXME: Can also be LRDIMM */
 | |
| 		debugf0("Memory is registered\n");
 | |
| 		mtype = MEM_RDDR3;
 | |
| 	} else {
 | |
| 		debugf0("Memory is unregistered\n");
 | |
| 		mtype = MEM_DDR3;
 | |
| 	}
 | |
| 
 | |
| 	/* On all supported DDR3 DIMM types, there are 8 banks available */
 | |
| 	banks = 8;
 | |
| 
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		u32 mtr;
 | |
| 
 | |
| 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
 | |
| 			pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					      mtr_regs[j], &mtr);
 | |
| 			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr);
 | |
| 			if (IS_DIMM_PRESENT(mtr)) {
 | |
| 				pvt->channel[i].dimms++;
 | |
| 
 | |
| 				ranks = numrank(mtr);
 | |
| 				rows = numrow(mtr);
 | |
| 				cols = numcol(mtr);
 | |
| 
 | |
| 				/* DDR3 has 8 I/O banks */
 | |
| 				size = (rows * cols * banks * ranks) >> (20 - 3);
 | |
| 				npages = MiB_TO_PAGES(size);
 | |
| 
 | |
| 				debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
 | |
| 					pvt->sbridge_dev->mc, i, j,
 | |
| 					size, npages,
 | |
| 					banks, ranks, rows, cols);
 | |
| 				csr = &mci->csrows[csrow];
 | |
| 
 | |
| 				csr->first_page = last_page;
 | |
| 				csr->last_page = last_page + npages - 1;
 | |
| 				csr->page_mask = 0UL;	/* Unused */
 | |
| 				csr->nr_pages = npages;
 | |
| 				csr->grain = 32;
 | |
| 				csr->csrow_idx = csrow;
 | |
| 				csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
 | |
| 				csr->ce_count = 0;
 | |
| 				csr->ue_count = 0;
 | |
| 				csr->mtype = mtype;
 | |
| 				csr->edac_mode = mode;
 | |
| 				csr->nr_channels = 1;
 | |
| 				csr->channels[0].chan_idx = i;
 | |
| 				csr->channels[0].ce_count = 0;
 | |
| 				pvt->csrow_map[i][j] = csrow;
 | |
| 				snprintf(csr->channels[0].label,
 | |
| 					 sizeof(csr->channels[0].label),
 | |
| 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
 | |
| 					 pvt->sbridge_dev->source_id, i, j);
 | |
| 				last_page += npages;
 | |
| 				csrow++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void get_memory_layout(const struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	int i, j, k, n_sads, n_tads, sad_interl;
 | |
| 	u32 reg;
 | |
| 	u64 limit, prv = 0;
 | |
| 	u64 tmp_mb;
 | |
| 	u32 rir_way;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1) Get TOLM/TOHM ranges
 | |
| 	 */
 | |
| 
 | |
| 	/* Address range is 32:28 */
 | |
| 	pci_read_config_dword(pvt->pci_sad1, TOLM,
 | |
| 			      ®);
 | |
| 	pvt->tolm = GET_TOLM(reg);
 | |
| 	tmp_mb = (1 + pvt->tolm) >> 20;
 | |
| 
 | |
| 	debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n",
 | |
| 		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tolm);
 | |
| 
 | |
| 	/* Address range is already 45:25 */
 | |
| 	pci_read_config_dword(pvt->pci_sad1, TOHM,
 | |
| 			      ®);
 | |
| 	pvt->tohm = GET_TOHM(reg);
 | |
| 	tmp_mb = (1 + pvt->tohm) >> 20;
 | |
| 
 | |
| 	debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)",
 | |
| 		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tohm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2) Get SAD range and SAD Interleave list
 | |
| 	 * TAD registers contain the interleave wayness. However, it
 | |
| 	 * seems simpler to just discover it indirectly, with the
 | |
| 	 * algorithm bellow.
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
 | |
| 		/* SAD_LIMIT Address range is 45:26 */
 | |
| 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
 | |
| 				      ®);
 | |
| 		limit = SAD_LIMIT(reg);
 | |
| 
 | |
| 		if (!DRAM_RULE_ENABLE(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		if (limit <= prv)
 | |
| 			break;
 | |
| 
 | |
| 		tmp_mb = (limit + 1) >> 20;
 | |
| 		debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n",
 | |
| 			n_sads,
 | |
| 			get_dram_attr(reg),
 | |
| 			tmp_mb / 1000, tmp_mb % 1000,
 | |
| 			((u64)tmp_mb) << 20L,
 | |
| 			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
 | |
| 			reg);
 | |
| 		prv = limit;
 | |
| 
 | |
| 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
 | |
| 				      ®);
 | |
| 		sad_interl = sad_pkg(reg, 0);
 | |
| 		for (j = 0; j < 8; j++) {
 | |
| 			if (j > 0 && sad_interl == sad_pkg(reg, j))
 | |
| 				break;
 | |
| 
 | |
| 			debugf0("SAD#%d, interleave #%d: %d\n",
 | |
| 			n_sads, j, sad_pkg(reg, j));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3) Get TAD range
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
 | |
| 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
 | |
| 				      ®);
 | |
| 		limit = TAD_LIMIT(reg);
 | |
| 		if (limit <= prv)
 | |
| 			break;
 | |
| 		tmp_mb = (limit + 1) >> 20;
 | |
| 
 | |
| 		debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
 | |
| 			n_tads, tmp_mb / 1000, tmp_mb % 1000,
 | |
| 			((u64)tmp_mb) << 20L,
 | |
| 			(u32)TAD_SOCK(reg),
 | |
| 			(u32)TAD_CH(reg),
 | |
| 			(u32)TAD_TGT0(reg),
 | |
| 			(u32)TAD_TGT1(reg),
 | |
| 			(u32)TAD_TGT2(reg),
 | |
| 			(u32)TAD_TGT3(reg),
 | |
| 			reg);
 | |
| 		prv = tmp_mb;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 4) Get TAD offsets, per each channel
 | |
| 	 */
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		if (!pvt->channel[i].dimms)
 | |
| 			continue;
 | |
| 		for (j = 0; j < n_tads; j++) {
 | |
| 			pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					      tad_ch_nilv_offset[j],
 | |
| 					      ®);
 | |
| 			tmp_mb = TAD_OFFSET(reg) >> 20;
 | |
| 			debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n",
 | |
| 				i, j,
 | |
| 				tmp_mb / 1000, tmp_mb % 1000,
 | |
| 				((u64)tmp_mb) << 20L,
 | |
| 				reg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 6) Get RIR Wayness/Limit, per each channel
 | |
| 	 */
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		if (!pvt->channel[i].dimms)
 | |
| 			continue;
 | |
| 		for (j = 0; j < MAX_RIR_RANGES; j++) {
 | |
| 			pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					      rir_way_limit[j],
 | |
| 					      ®);
 | |
| 
 | |
| 			if (!IS_RIR_VALID(reg))
 | |
| 				continue;
 | |
| 
 | |
| 			tmp_mb = RIR_LIMIT(reg) >> 20;
 | |
| 			rir_way = 1 << RIR_WAY(reg);
 | |
| 			debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n",
 | |
| 				i, j,
 | |
| 				tmp_mb / 1000, tmp_mb % 1000,
 | |
| 				((u64)tmp_mb) << 20L,
 | |
| 				rir_way,
 | |
| 				reg);
 | |
| 
 | |
| 			for (k = 0; k < rir_way; k++) {
 | |
| 				pci_read_config_dword(pvt->pci_tad[i],
 | |
| 						      rir_offset[j][k],
 | |
| 						      ®);
 | |
| 				tmp_mb = RIR_OFFSET(reg) << 6;
 | |
| 
 | |
| 				debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
 | |
| 					i, j, k,
 | |
| 					tmp_mb / 1000, tmp_mb % 1000,
 | |
| 					((u64)tmp_mb) << 20L,
 | |
| 					(u32)RIR_RNK_TGT(reg),
 | |
| 					reg);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		if (sbridge_dev->node_id == node_id)
 | |
| 			return sbridge_dev->mci;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int get_memory_error_data(struct mem_ctl_info *mci,
 | |
| 				 u64 addr,
 | |
| 				 u8 *socket,
 | |
| 				 long *channel_mask,
 | |
| 				 u8 *rank,
 | |
| 				 char *area_type)
 | |
| {
 | |
| 	struct mem_ctl_info	*new_mci;
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	char			msg[256];
 | |
| 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
 | |
| 	int			sad_interl, idx, base_ch;
 | |
| 	int			interleave_mode;
 | |
| 	unsigned		sad_interleave[MAX_INTERLEAVE];
 | |
| 	u32			reg;
 | |
| 	u8			ch_way,sck_way;
 | |
| 	u32			tad_offset;
 | |
| 	u32			rir_way;
 | |
| 	u64			ch_addr, offset, limit, prv = 0;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 0) Check if the address is at special memory ranges
 | |
| 	 * The check bellow is probably enough to fill all cases where
 | |
| 	 * the error is not inside a memory, except for the legacy
 | |
| 	 * range (e. g. VGA addresses). It is unlikely, however, that the
 | |
| 	 * memory controller would generate an error on that range.
 | |
| 	 */
 | |
| 	if ((addr > (u64) pvt->tolm) && (addr < (1L << 32))) {
 | |
| 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (addr >= (u64)pvt->tohm) {
 | |
| 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1) Get socket
 | |
| 	 */
 | |
| 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
 | |
| 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
 | |
| 				      ®);
 | |
| 
 | |
| 		if (!DRAM_RULE_ENABLE(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		limit = SAD_LIMIT(reg);
 | |
| 		if (limit <= prv) {
 | |
| 			sprintf(msg, "Can't discover the memory socket");
 | |
| 			edac_mc_handle_ce_no_info(mci, msg);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if  (addr <= limit)
 | |
| 			break;
 | |
| 		prv = limit;
 | |
| 	}
 | |
| 	if (n_sads == MAX_SAD) {
 | |
| 		sprintf(msg, "Can't discover the memory socket");
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	area_type = get_dram_attr(reg);
 | |
| 	interleave_mode = INTERLEAVE_MODE(reg);
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
 | |
| 			      ®);
 | |
| 	sad_interl = sad_pkg(reg, 0);
 | |
| 	for (sad_way = 0; sad_way < 8; sad_way++) {
 | |
| 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
 | |
| 			break;
 | |
| 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
 | |
| 		debugf0("SAD interleave #%d: %d\n",
 | |
| 			sad_way, sad_interleave[sad_way]);
 | |
| 	}
 | |
| 	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
 | |
| 		pvt->sbridge_dev->mc,
 | |
| 		n_sads,
 | |
| 		addr,
 | |
| 		limit,
 | |
| 		sad_way + 7,
 | |
| 		INTERLEAVE_MODE(reg) ? "" : "XOR[18:16]");
 | |
| 	if (interleave_mode)
 | |
| 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
 | |
| 	else
 | |
| 		idx = (addr >> 6) & 7;
 | |
| 	switch (sad_way) {
 | |
| 	case 1:
 | |
| 		idx = 0;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		idx = idx & 1;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		idx = idx & 3;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		break;
 | |
| 	default:
 | |
| 		sprintf(msg, "Can't discover socket interleave");
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	*socket = sad_interleave[idx];
 | |
| 	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
 | |
| 		idx, sad_way, *socket);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move to the proper node structure, in order to access the
 | |
| 	 * right PCI registers
 | |
| 	 */
 | |
| 	new_mci = get_mci_for_node_id(*socket);
 | |
| 	if (!new_mci) {
 | |
| 		sprintf(msg, "Struct for socket #%u wasn't initialized",
 | |
| 			*socket);
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	mci = new_mci;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2) Get memory channel
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
 | |
| 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
 | |
| 				      ®);
 | |
| 		limit = TAD_LIMIT(reg);
 | |
| 		if (limit <= prv) {
 | |
| 			sprintf(msg, "Can't discover the memory channel");
 | |
| 			edac_mc_handle_ce_no_info(mci, msg);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if  (addr <= limit)
 | |
| 			break;
 | |
| 		prv = limit;
 | |
| 	}
 | |
| 	ch_way = TAD_CH(reg) + 1;
 | |
| 	sck_way = TAD_SOCK(reg) + 1;
 | |
| 	/*
 | |
| 	 * FIXME: Is it right to always use channel 0 for offsets?
 | |
| 	 */
 | |
| 	pci_read_config_dword(pvt->pci_tad[0],
 | |
| 				tad_ch_nilv_offset[n_tads],
 | |
| 				&tad_offset);
 | |
| 
 | |
| 	if (ch_way == 3)
 | |
| 		idx = addr >> 6;
 | |
| 	else
 | |
| 		idx = addr >> (6 + sck_way);
 | |
| 	idx = idx % ch_way;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
 | |
| 	 */
 | |
| 	switch (idx) {
 | |
| 	case 0:
 | |
| 		base_ch = TAD_TGT0(reg);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		base_ch = TAD_TGT1(reg);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		base_ch = TAD_TGT2(reg);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		base_ch = TAD_TGT3(reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		sprintf(msg, "Can't discover the TAD target");
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	*channel_mask = 1 << base_ch;
 | |
| 
 | |
| 	if (pvt->is_mirrored) {
 | |
| 		*channel_mask |= 1 << ((base_ch + 2) % 4);
 | |
| 		switch(ch_way) {
 | |
| 		case 2:
 | |
| 		case 4:
 | |
| 			sck_xch = 1 << sck_way * (ch_way >> 1);
 | |
| 			break;
 | |
| 		default:
 | |
| 			sprintf(msg, "Invalid mirror set. Can't decode addr");
 | |
| 			edac_mc_handle_ce_no_info(mci, msg);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else
 | |
| 		sck_xch = (1 << sck_way) * ch_way;
 | |
| 
 | |
| 	if (pvt->is_lockstep)
 | |
| 		*channel_mask |= 1 << ((base_ch + 1) % 4);
 | |
| 
 | |
| 	offset = TAD_OFFSET(tad_offset);
 | |
| 
 | |
| 	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
 | |
| 		n_tads,
 | |
| 		addr,
 | |
| 		limit,
 | |
| 		(u32)TAD_SOCK(reg),
 | |
| 		ch_way,
 | |
| 		offset,
 | |
| 		idx,
 | |
| 		base_ch,
 | |
| 		*channel_mask);
 | |
| 
 | |
| 	/* Calculate channel address */
 | |
| 	/* Remove the TAD offset */
 | |
| 
 | |
| 	if (offset > addr) {
 | |
| 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
 | |
| 			offset, addr);
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	addr -= offset;
 | |
| 	/* Store the low bits [0:6] of the addr */
 | |
| 	ch_addr = addr & 0x7f;
 | |
| 	/* Remove socket wayness and remove 6 bits */
 | |
| 	addr >>= 6;
 | |
| 	addr /= sck_xch;
 | |
| #if 0
 | |
| 	/* Divide by channel way */
 | |
| 	addr = addr / ch_way;
 | |
| #endif
 | |
| 	/* Recover the last 6 bits */
 | |
| 	ch_addr |= addr << 6;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3) Decode rank
 | |
| 	 */
 | |
| 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
 | |
| 		pci_read_config_dword(pvt->pci_tad[base_ch],
 | |
| 				      rir_way_limit[n_rir],
 | |
| 				      ®);
 | |
| 
 | |
| 		if (!IS_RIR_VALID(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		limit = RIR_LIMIT(reg);
 | |
| 
 | |
| 		debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n",
 | |
| 			n_rir,
 | |
| 			(limit >> 20) / 1000, (limit >> 20) % 1000,
 | |
| 			limit,
 | |
| 			1 << RIR_WAY(reg));
 | |
| 		if  (ch_addr <= limit)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (n_rir == MAX_RIR_RANGES) {
 | |
| 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
 | |
| 			ch_addr);
 | |
| 		edac_mc_handle_ce_no_info(mci, msg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	rir_way = RIR_WAY(reg);
 | |
| 	if (pvt->is_close_pg)
 | |
| 		idx = (ch_addr >> 6);
 | |
| 	else
 | |
| 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
 | |
| 	idx %= 1 << rir_way;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_tad[base_ch],
 | |
| 			      rir_offset[n_rir][idx],
 | |
| 			      ®);
 | |
| 	*rank = RIR_RNK_TGT(reg);
 | |
| 
 | |
| 	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
 | |
| 		n_rir,
 | |
| 		ch_addr,
 | |
| 		limit,
 | |
| 		rir_way,
 | |
| 		idx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 	Device initialization routines: put/get, init/exit
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  *	sbridge_put_all_devices	'put' all the devices that we have
 | |
|  *				reserved via 'get'
 | |
|  */
 | |
| static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	debugf0(__FILE__ ": %s()\n", __func__);
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		struct pci_dev *pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 		debugf0("Removing dev %02x:%02x.%d\n",
 | |
| 			pdev->bus->number,
 | |
| 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 | |
| 		pci_dev_put(pdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sbridge_put_all_devices(void)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
 | |
| 		sbridge_put_devices(sbridge_dev);
 | |
| 		free_sbridge_dev(sbridge_dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
 | |
|  *			device/functions we want to reference for this driver
 | |
|  *
 | |
|  *			Need to 'get' device 16 func 1 and func 2
 | |
|  */
 | |
| static int sbridge_get_onedevice(struct pci_dev **prev,
 | |
| 				 u8 *num_mc,
 | |
| 				 const struct pci_id_table *table,
 | |
| 				 const unsigned devno)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 	const struct pci_id_descr *dev_descr = &table->descr[devno];
 | |
| 
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	u8 bus = 0;
 | |
| 
 | |
| 	sbridge_printk(KERN_INFO,
 | |
| 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
 | |
| 		dev_descr->dev, dev_descr->func,
 | |
| 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 			      dev_descr->dev_id, *prev);
 | |
| 
 | |
| 	if (!pdev) {
 | |
| 		if (*prev) {
 | |
| 			*prev = pdev;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (dev_descr->optional)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (devno == 0)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		sbridge_printk(KERN_INFO,
 | |
| 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
 | |
| 			dev_descr->dev, dev_descr->func,
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 		/* End of list, leave */
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	bus = pdev->bus->number;
 | |
| 
 | |
| 	sbridge_dev = get_sbridge_dev(bus);
 | |
| 	if (!sbridge_dev) {
 | |
| 		sbridge_dev = alloc_sbridge_dev(bus, table);
 | |
| 		if (!sbridge_dev) {
 | |
| 			pci_dev_put(pdev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		(*num_mc)++;
 | |
| 	}
 | |
| 
 | |
| 	if (sbridge_dev->pdev[devno]) {
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 			"Duplicated device for "
 | |
| 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
 | |
| 			bus, dev_descr->dev, dev_descr->func,
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 		pci_dev_put(pdev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_dev->pdev[devno] = pdev;
 | |
| 
 | |
| 	/* Sanity check */
 | |
| 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
 | |
| 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 			"Device PCI ID %04x:%04x "
 | |
| 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
 | |
| 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
 | |
| 			bus, dev_descr->dev, dev_descr->func);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Be sure that the device is enabled */
 | |
| 	if (unlikely(pci_enable_device(pdev) < 0)) {
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 			"Couldn't enable "
 | |
| 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
 | |
| 			bus, dev_descr->dev, dev_descr->func,
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
 | |
| 		bus, dev_descr->dev,
 | |
| 		dev_descr->func,
 | |
| 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 	/*
 | |
| 	 * As stated on drivers/pci/search.c, the reference count for
 | |
| 	 * @from is always decremented if it is not %NULL. So, as we need
 | |
| 	 * to get all devices up to null, we need to do a get for the device
 | |
| 	 */
 | |
| 	pci_dev_get(pdev);
 | |
| 
 | |
| 	*prev = pdev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sbridge_get_all_devices(u8 *num_mc)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
 | |
| 
 | |
| 	while (table && table->descr) {
 | |
| 		for (i = 0; i < table->n_devs; i++) {
 | |
| 			pdev = NULL;
 | |
| 			do {
 | |
| 				rc = sbridge_get_onedevice(&pdev, num_mc,
 | |
| 							   table, i);
 | |
| 				if (rc < 0) {
 | |
| 					if (i == 0) {
 | |
| 						i = table->n_devs;
 | |
| 						break;
 | |
| 					}
 | |
| 					sbridge_put_all_devices();
 | |
| 					return -ENODEV;
 | |
| 				}
 | |
| 			} while (pdev);
 | |
| 		}
 | |
| 		table++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 			 struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	int i, func, slot;
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 		slot = PCI_SLOT(pdev->devfn);
 | |
| 		func = PCI_FUNC(pdev->devfn);
 | |
| 		switch (slot) {
 | |
| 		case 12:
 | |
| 			switch (func) {
 | |
| 			case 6:
 | |
| 				pvt->pci_sad0 = pdev;
 | |
| 				break;
 | |
| 			case 7:
 | |
| 				pvt->pci_sad1 = pdev;
 | |
| 				break;
 | |
| 			default:
 | |
| 				goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 13:
 | |
| 			switch (func) {
 | |
| 			case 6:
 | |
| 				pvt->pci_br = pdev;
 | |
| 				break;
 | |
| 			default:
 | |
| 				goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 14:
 | |
| 			switch (func) {
 | |
| 			case 0:
 | |
| 				pvt->pci_ha0 = pdev;
 | |
| 				break;
 | |
| 			default:
 | |
| 				goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 15:
 | |
| 			switch (func) {
 | |
| 			case 0:
 | |
| 				pvt->pci_ta = pdev;
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				pvt->pci_ras = pdev;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3:
 | |
| 			case 4:
 | |
| 			case 5:
 | |
| 				pvt->pci_tad[func - 2] = pdev;
 | |
| 				break;
 | |
| 			default:
 | |
| 				goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 17:
 | |
| 			switch (func) {
 | |
| 			case 0:
 | |
| 				pvt->pci_ddrio = pdev;
 | |
| 				break;
 | |
| 			default:
 | |
| 				goto error;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
 | |
| 			sbridge_dev->bus,
 | |
| 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
 | |
| 			pdev);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if everything were registered */
 | |
| 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
 | |
| 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
 | |
| 	    !pvt->pci_ddrio)
 | |
| 		goto enodev;
 | |
| 
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		if (!pvt->pci_tad[i])
 | |
| 			goto enodev;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| 
 | |
| error:
 | |
| 	sbridge_printk(KERN_ERR, "Device %d, function %d "
 | |
| 		      "is out of the expected range\n",
 | |
| 		      slot, func);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Error check routines
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * While Sandy Bridge has error count registers, SMI BIOS read values from
 | |
|  * and resets the counters. So, they are not reliable for the OS to read
 | |
|  * from them. So, we have no option but to just trust on whatever MCE is
 | |
|  * telling us about the errors.
 | |
|  */
 | |
| static void sbridge_mce_output_error(struct mem_ctl_info *mci,
 | |
| 				    const struct mce *m)
 | |
| {
 | |
| 	struct mem_ctl_info *new_mci;
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	char *type, *optype, *msg, *recoverable_msg;
 | |
| 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
 | |
| 	bool overflow = GET_BITFIELD(m->status, 62, 62);
 | |
| 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
 | |
| 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
 | |
| 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
 | |
| 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
 | |
| 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
 | |
| 	u32 channel = GET_BITFIELD(m->status, 0, 3);
 | |
| 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
 | |
| 	long channel_mask, first_channel;
 | |
| 	u8  rank, socket;
 | |
| 	int csrow, rc, dimm;
 | |
| 	char *area_type = "Unknown";
 | |
| 
 | |
| 	if (ripv)
 | |
| 		type = "NON_FATAL";
 | |
| 	else
 | |
| 		type = "FATAL";
 | |
| 
 | |
| 	/*
 | |
| 	 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
 | |
| 	 * memory errors should fit in this mask:
 | |
| 	 *	000f 0000 1mmm cccc (binary)
 | |
| 	 * where:
 | |
| 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
 | |
| 	 *	    won't be shown
 | |
| 	 *	mmm = error type
 | |
| 	 *	cccc = channel
 | |
| 	 * If the mask doesn't match, report an error to the parsing logic
 | |
| 	 */
 | |
| 	if (! ((errcode & 0xef80) == 0x80)) {
 | |
| 		optype = "Can't parse: it is not a mem";
 | |
| 	} else {
 | |
| 		switch (optypenum) {
 | |
| 		case 0:
 | |
| 			optype = "generic undef request";
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			optype = "memory read";
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			optype = "memory write";
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			optype = "addr/cmd";
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			optype = "memory scrubbing";
 | |
| 			break;
 | |
| 		default:
 | |
| 			optype = "reserved";
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = get_memory_error_data(mci, m->addr, &socket,
 | |
| 				   &channel_mask, &rank, area_type);
 | |
| 	if (rc < 0)
 | |
| 		return;
 | |
| 	new_mci = get_mci_for_node_id(socket);
 | |
| 	if (!new_mci) {
 | |
| 		edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
 | |
| 		return;
 | |
| 	}
 | |
| 	mci = new_mci;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
 | |
| 
 | |
| 	if (rank < 4)
 | |
| 		dimm = 0;
 | |
| 	else if (rank < 8)
 | |
| 		dimm = 1;
 | |
| 	else
 | |
| 		dimm = 2;
 | |
| 
 | |
| 	csrow = pvt->csrow_map[first_channel][dimm];
 | |
| 
 | |
| 	if (uncorrected_error && recoverable)
 | |
| 		recoverable_msg = " recoverable";
 | |
| 	else
 | |
| 		recoverable_msg = "";
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: What should we do with "channel" information on mcelog?
 | |
| 	 * Probably, we can just discard it, as the channel information
 | |
| 	 * comes from the get_memory_error_data() address decoding
 | |
| 	 */
 | |
| 	msg = kasprintf(GFP_ATOMIC,
 | |
| 			"%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
 | |
| 			"addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
 | |
| 			core_err_cnt,
 | |
| 			area_type,
 | |
| 			optype,
 | |
| 			type,
 | |
| 			recoverable_msg,
 | |
| 			overflow ? "OVERFLOW" : "",
 | |
| 			m->cpu,
 | |
| 			mscod, errcode,
 | |
| 			channel,		/* 1111b means not specified */
 | |
| 			(long long) m->addr,
 | |
| 			socket,
 | |
| 			first_channel,		/* This is the real channel on SB */
 | |
| 			channel_mask,
 | |
| 			rank);
 | |
| 
 | |
| 	debugf0("%s", msg);
 | |
| 
 | |
| 	/* Call the helper to output message */
 | |
| 	if (uncorrected_error)
 | |
| 		edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
 | |
| 	else
 | |
| 		edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
 | |
| 
 | |
| 	kfree(msg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_check_error	Retrieve and process errors reported by the
 | |
|  *				hardware. Called by the Core module.
 | |
|  */
 | |
| static void sbridge_check_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	int i;
 | |
| 	unsigned count = 0;
 | |
| 	struct mce *m;
 | |
| 
 | |
| 	/*
 | |
| 	 * MCE first step: Copy all mce errors into a temporary buffer
 | |
| 	 * We use a double buffering here, to reduce the risk of
 | |
| 	 * loosing an error.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
 | |
| 		% MCE_LOG_LEN;
 | |
| 	if (!count)
 | |
| 		return;
 | |
| 
 | |
| 	m = pvt->mce_outentry;
 | |
| 	if (pvt->mce_in + count > MCE_LOG_LEN) {
 | |
| 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
 | |
| 
 | |
| 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_in = 0;
 | |
| 		count -= l;
 | |
| 		m += l;
 | |
| 	}
 | |
| 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
 | |
| 	smp_wmb();
 | |
| 	pvt->mce_in += count;
 | |
| 
 | |
| 	smp_rmb();
 | |
| 	if (pvt->mce_overrun) {
 | |
| 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
 | |
| 			      pvt->mce_overrun);
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_overrun = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * MCE second step: parse errors and display
 | |
| 	 */
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sbridge_mce_check_error	Replicates mcelog routine to get errors
 | |
|  *				This routine simply queues mcelog errors, and
 | |
|  *				return. The error itself should be handled later
 | |
|  *				by sbridge_check_error.
 | |
|  * WARNING: As this routine should be called at NMI time, extra care should
 | |
|  * be taken to avoid deadlocks, and to be as fast as possible.
 | |
|  */
 | |
| static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct mce *mce = (struct mce *)data;
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 
 | |
| 	mci = get_mci_for_node_id(mce->socketid);
 | |
| 	if (!mci)
 | |
| 		return NOTIFY_BAD;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Just let mcelog handle it if the error is
 | |
| 	 * outside the memory controller. A memory error
 | |
| 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
 | |
| 	 * bit 12 has an special meaning.
 | |
| 	 */
 | |
| 	if ((mce->status & 0xefff) >> 7 != 1)
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
 | |
| 
 | |
| 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
 | |
| 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
 | |
| 	printk("TSC %llx ", mce->tsc);
 | |
| 	printk("ADDR %llx ", mce->addr);
 | |
| 	printk("MISC %llx ", mce->misc);
 | |
| 
 | |
| 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
 | |
| 		mce->cpuvendor, mce->cpuid, mce->time,
 | |
| 		mce->socketid, mce->apicid);
 | |
| 
 | |
| 	/* Only handle if it is the right mc controller */
 | |
| 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	smp_rmb();
 | |
| 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_overrun++;
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy memory error at the ringbuffer */
 | |
| 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
 | |
| 	smp_wmb();
 | |
| 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
 | |
| 
 | |
| 	/* Handle fatal errors immediately */
 | |
| 	if (mce->mcgstatus & 1)
 | |
| 		sbridge_check_error(mci);
 | |
| 
 | |
| 	/* Advice mcelog that the error were handled */
 | |
| 	return NOTIFY_STOP;
 | |
| }
 | |
| 
 | |
| static struct notifier_block sbridge_mce_dec = {
 | |
| 	.notifier_call      = sbridge_mce_check_error,
 | |
| };
 | |
| 
 | |
| /****************************************************************************
 | |
| 			EDAC register/unregister logic
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci = sbridge_dev->mci;
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 
 | |
| 	if (unlikely(!mci || !mci->pvt_info)) {
 | |
| 		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
 | |
| 			__func__, &sbridge_dev->pdev[0]->dev);
 | |
| 
 | |
| 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
 | |
| 		__func__, mci, &sbridge_dev->pdev[0]->dev);
 | |
| 
 | |
| 	mce_unregister_decode_chain(&sbridge_mce_dec);
 | |
| 
 | |
| 	/* Remove MC sysfs nodes */
 | |
| 	edac_mc_del_mc(mci->dev);
 | |
| 
 | |
| 	debugf1("%s: free mci struct\n", mci->ctl_name);
 | |
| 	kfree(mci->ctl_name);
 | |
| 	edac_mc_free(mci);
 | |
| 	sbridge_dev->mci = NULL;
 | |
| }
 | |
| 
 | |
| static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 	int rc, channels, csrows;
 | |
| 
 | |
| 	/* Check the number of active and not disabled channels */
 | |
| 	rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
 | |
| 	if (unlikely(rc < 0))
 | |
| 		return rc;
 | |
| 
 | |
| 	/* allocate a new MC control structure */
 | |
| 	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
 | |
| 	if (unlikely(!mci))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
 | |
| 		__func__, mci, &sbridge_dev->pdev[0]->dev);
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	memset(pvt, 0, sizeof(*pvt));
 | |
| 
 | |
| 	/* Associate sbridge_dev and mci for future usage */
 | |
| 	pvt->sbridge_dev = sbridge_dev;
 | |
| 	sbridge_dev->mci = mci;
 | |
| 
 | |
| 	mci->mtype_cap = MEM_FLAG_DDR3;
 | |
| 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
 | |
| 	mci->edac_cap = EDAC_FLAG_NONE;
 | |
| 	mci->mod_name = "sbridge_edac.c";
 | |
| 	mci->mod_ver = SBRIDGE_REVISION;
 | |
| 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
 | |
| 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
 | |
| 	mci->ctl_page_to_phys = NULL;
 | |
| 
 | |
| 	/* Set the function pointer to an actual operation function */
 | |
| 	mci->edac_check = sbridge_check_error;
 | |
| 
 | |
| 	/* Store pci devices at mci for faster access */
 | |
| 	rc = mci_bind_devs(mci, sbridge_dev);
 | |
| 	if (unlikely(rc < 0))
 | |
| 		goto fail0;
 | |
| 
 | |
| 	/* Get dimm basic config and the memory layout */
 | |
| 	get_dimm_config(mci);
 | |
| 	get_memory_layout(mci);
 | |
| 
 | |
| 	/* record ptr to the generic device */
 | |
| 	mci->dev = &sbridge_dev->pdev[0]->dev;
 | |
| 
 | |
| 	/* add this new MC control structure to EDAC's list of MCs */
 | |
| 	if (unlikely(edac_mc_add_mc(mci))) {
 | |
| 		debugf0("MC: " __FILE__
 | |
| 			": %s(): failed edac_mc_add_mc()\n", __func__);
 | |
| 		rc = -EINVAL;
 | |
| 		goto fail0;
 | |
| 	}
 | |
| 
 | |
| 	mce_register_decode_chain(&sbridge_mce_dec);
 | |
| 	return 0;
 | |
| 
 | |
| fail0:
 | |
| 	kfree(mci->ctl_name);
 | |
| 	edac_mc_free(mci);
 | |
| 	sbridge_dev->mci = NULL;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_probe	Probe for ONE instance of device to see if it is
 | |
|  *			present.
 | |
|  *	return:
 | |
|  *		0 for FOUND a device
 | |
|  *		< 0 for error code
 | |
|  */
 | |
| 
 | |
| static int __devinit sbridge_probe(struct pci_dev *pdev,
 | |
| 				  const struct pci_device_id *id)
 | |
| {
 | |
| 	int rc;
 | |
| 	u8 mc, num_mc = 0;
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	/* get the pci devices we want to reserve for our use */
 | |
| 	mutex_lock(&sbridge_edac_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * All memory controllers are allocated at the first pass.
 | |
| 	 */
 | |
| 	if (unlikely(probed >= 1)) {
 | |
| 		mutex_unlock(&sbridge_edac_lock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	probed++;
 | |
| 
 | |
| 	rc = sbridge_get_all_devices(&num_mc);
 | |
| 	if (unlikely(rc < 0))
 | |
| 		goto fail0;
 | |
| 	mc = 0;
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
 | |
| 		sbridge_dev->mc = mc++;
 | |
| 		rc = sbridge_register_mci(sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
 | |
| 
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| 	return 0;
 | |
| 
 | |
| fail1:
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
 | |
| 		sbridge_unregister_mci(sbridge_dev);
 | |
| 
 | |
| 	sbridge_put_all_devices();
 | |
| fail0:
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_remove	destructor for one instance of device
 | |
|  *
 | |
|  */
 | |
| static void __devexit sbridge_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	debugf0(__FILE__ ": %s()\n", __func__);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have a trouble here: pdev value for removal will be wrong, since
 | |
| 	 * it will point to the X58 register used to detect that the machine
 | |
| 	 * is a Nehalem or upper design. However, due to the way several PCI
 | |
| 	 * devices are grouped together to provide MC functionality, we need
 | |
| 	 * to use a different method for releasing the devices
 | |
| 	 */
 | |
| 
 | |
| 	mutex_lock(&sbridge_edac_lock);
 | |
| 
 | |
| 	if (unlikely(!probed)) {
 | |
| 		mutex_unlock(&sbridge_edac_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
 | |
| 		sbridge_unregister_mci(sbridge_dev);
 | |
| 
 | |
| 	/* Release PCI resources */
 | |
| 	sbridge_put_all_devices();
 | |
| 
 | |
| 	probed--;
 | |
| 
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| }
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
 | |
| 
 | |
| /*
 | |
|  *	sbridge_driver	pci_driver structure for this module
 | |
|  *
 | |
|  */
 | |
| static struct pci_driver sbridge_driver = {
 | |
| 	.name     = "sbridge_edac",
 | |
| 	.probe    = sbridge_probe,
 | |
| 	.remove   = __devexit_p(sbridge_remove),
 | |
| 	.id_table = sbridge_pci_tbl,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	sbridge_init		Module entry function
 | |
|  *			Try to initialize this module for its devices
 | |
|  */
 | |
| static int __init sbridge_init(void)
 | |
| {
 | |
| 	int pci_rc;
 | |
| 
 | |
| 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
 | |
| 
 | |
| 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | |
| 	opstate_init();
 | |
| 
 | |
| 	pci_rc = pci_register_driver(&sbridge_driver);
 | |
| 
 | |
| 	if (pci_rc >= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
 | |
| 		      pci_rc);
 | |
| 
 | |
| 	return pci_rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_exit()	Module exit function
 | |
|  *			Unregister the driver
 | |
|  */
 | |
| static void __exit sbridge_exit(void)
 | |
| {
 | |
| 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
 | |
| 	pci_unregister_driver(&sbridge_driver);
 | |
| }
 | |
| 
 | |
| module_init(sbridge_init);
 | |
| module_exit(sbridge_exit);
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
 | |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
 | |
| MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
 | |
| 		   SBRIDGE_REVISION);
 |