 e9f3a49c96
			
		
	
	
	e9f3a49c96
	
	
	
		
			
			Otherwise if a previously physical channel is used as a logical channel, the LNK may have old values which affect the operation of the logical channel since the LNK register has different semantics between physical and logical channels. Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com> Reviewed-by: Jonas ABERG <jonas.aberg@stericsson.com> Signed-off-by: Narayanan G <narayanan.gopalakrishnan@stericsson.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Vinod Koul <vinod.koul@linux.intel.com>
		
			
				
	
	
		
			3364 lines
		
	
	
	
		
			84 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3364 lines
		
	
	
	
		
			84 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) Ericsson AB 2007-2008
 | |
|  * Copyright (C) ST-Ericsson SA 2008-2010
 | |
|  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
 | |
|  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
 | |
|  * License terms: GNU General Public License (GPL) version 2
 | |
|  */
 | |
| 
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/amba/bus.h>
 | |
| 
 | |
| #include <plat/ste_dma40.h>
 | |
| 
 | |
| #include "ste_dma40_ll.h"
 | |
| 
 | |
| #define D40_NAME "dma40"
 | |
| 
 | |
| #define D40_PHY_CHAN -1
 | |
| 
 | |
| /* For masking out/in 2 bit channel positions */
 | |
| #define D40_CHAN_POS(chan)  (2 * (chan / 2))
 | |
| #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
 | |
| 
 | |
| /* Maximum iterations taken before giving up suspending a channel */
 | |
| #define D40_SUSPEND_MAX_IT 500
 | |
| 
 | |
| /* Milliseconds */
 | |
| #define DMA40_AUTOSUSPEND_DELAY	100
 | |
| 
 | |
| /* Hardware requirement on LCLA alignment */
 | |
| #define LCLA_ALIGNMENT 0x40000
 | |
| 
 | |
| /* Max number of links per event group */
 | |
| #define D40_LCLA_LINK_PER_EVENT_GRP 128
 | |
| #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
 | |
| 
 | |
| /* Attempts before giving up to trying to get pages that are aligned */
 | |
| #define MAX_LCLA_ALLOC_ATTEMPTS 256
 | |
| 
 | |
| /* Bit markings for allocation map */
 | |
| #define D40_ALLOC_FREE		(1 << 31)
 | |
| #define D40_ALLOC_PHY		(1 << 30)
 | |
| #define D40_ALLOC_LOG_FREE	0
 | |
| 
 | |
| /**
 | |
|  * enum 40_command - The different commands and/or statuses.
 | |
|  *
 | |
|  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 | |
|  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 | |
|  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 | |
|  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 | |
|  */
 | |
| enum d40_command {
 | |
| 	D40_DMA_STOP		= 0,
 | |
| 	D40_DMA_RUN		= 1,
 | |
| 	D40_DMA_SUSPEND_REQ	= 2,
 | |
| 	D40_DMA_SUSPENDED	= 3
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are the registers that has to be saved and later restored
 | |
|  * when the DMA hw is powered off.
 | |
|  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 | |
|  */
 | |
| static u32 d40_backup_regs[] = {
 | |
| 	D40_DREG_LCPA,
 | |
| 	D40_DREG_LCLA,
 | |
| 	D40_DREG_PRMSE,
 | |
| 	D40_DREG_PRMSO,
 | |
| 	D40_DREG_PRMOE,
 | |
| 	D40_DREG_PRMOO,
 | |
| };
 | |
| 
 | |
| #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 | |
| 
 | |
| /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
 | |
| static u32 d40_backup_regs_v3[] = {
 | |
| 	D40_DREG_PSEG1,
 | |
| 	D40_DREG_PSEG2,
 | |
| 	D40_DREG_PSEG3,
 | |
| 	D40_DREG_PSEG4,
 | |
| 	D40_DREG_PCEG1,
 | |
| 	D40_DREG_PCEG2,
 | |
| 	D40_DREG_PCEG3,
 | |
| 	D40_DREG_PCEG4,
 | |
| 	D40_DREG_RSEG1,
 | |
| 	D40_DREG_RSEG2,
 | |
| 	D40_DREG_RSEG3,
 | |
| 	D40_DREG_RSEG4,
 | |
| 	D40_DREG_RCEG1,
 | |
| 	D40_DREG_RCEG2,
 | |
| 	D40_DREG_RCEG3,
 | |
| 	D40_DREG_RCEG4,
 | |
| };
 | |
| 
 | |
| #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
 | |
| 
 | |
| static u32 d40_backup_regs_chan[] = {
 | |
| 	D40_CHAN_REG_SSCFG,
 | |
| 	D40_CHAN_REG_SSELT,
 | |
| 	D40_CHAN_REG_SSPTR,
 | |
| 	D40_CHAN_REG_SSLNK,
 | |
| 	D40_CHAN_REG_SDCFG,
 | |
| 	D40_CHAN_REG_SDELT,
 | |
| 	D40_CHAN_REG_SDPTR,
 | |
| 	D40_CHAN_REG_SDLNK,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_lli_pool - Structure for keeping LLIs in memory
 | |
|  *
 | |
|  * @base: Pointer to memory area when the pre_alloc_lli's are not large
 | |
|  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 | |
|  * pre_alloc_lli is used.
 | |
|  * @dma_addr: DMA address, if mapped
 | |
|  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 | |
|  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 | |
|  * one buffer to one buffer.
 | |
|  */
 | |
| struct d40_lli_pool {
 | |
| 	void	*base;
 | |
| 	int	 size;
 | |
| 	dma_addr_t	dma_addr;
 | |
| 	/* Space for dst and src, plus an extra for padding */
 | |
| 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_desc - A descriptor is one DMA job.
 | |
|  *
 | |
|  * @lli_phy: LLI settings for physical channel. Both src and dst=
 | |
|  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 | |
|  * lli_len equals one.
 | |
|  * @lli_log: Same as above but for logical channels.
 | |
|  * @lli_pool: The pool with two entries pre-allocated.
 | |
|  * @lli_len: Number of llis of current descriptor.
 | |
|  * @lli_current: Number of transferred llis.
 | |
|  * @lcla_alloc: Number of LCLA entries allocated.
 | |
|  * @txd: DMA engine struct. Used for among other things for communication
 | |
|  * during a transfer.
 | |
|  * @node: List entry.
 | |
|  * @is_in_client_list: true if the client owns this descriptor.
 | |
|  * @cyclic: true if this is a cyclic job
 | |
|  *
 | |
|  * This descriptor is used for both logical and physical transfers.
 | |
|  */
 | |
| struct d40_desc {
 | |
| 	/* LLI physical */
 | |
| 	struct d40_phy_lli_bidir	 lli_phy;
 | |
| 	/* LLI logical */
 | |
| 	struct d40_log_lli_bidir	 lli_log;
 | |
| 
 | |
| 	struct d40_lli_pool		 lli_pool;
 | |
| 	int				 lli_len;
 | |
| 	int				 lli_current;
 | |
| 	int				 lcla_alloc;
 | |
| 
 | |
| 	struct dma_async_tx_descriptor	 txd;
 | |
| 	struct list_head		 node;
 | |
| 
 | |
| 	bool				 is_in_client_list;
 | |
| 	bool				 cyclic;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_lcla_pool - LCLA pool settings and data.
 | |
|  *
 | |
|  * @base: The virtual address of LCLA. 18 bit aligned.
 | |
|  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 | |
|  * This pointer is only there for clean-up on error.
 | |
|  * @pages: The number of pages needed for all physical channels.
 | |
|  * Only used later for clean-up on error
 | |
|  * @lock: Lock to protect the content in this struct.
 | |
|  * @alloc_map: big map over which LCLA entry is own by which job.
 | |
|  */
 | |
| struct d40_lcla_pool {
 | |
| 	void		*base;
 | |
| 	dma_addr_t	dma_addr;
 | |
| 	void		*base_unaligned;
 | |
| 	int		 pages;
 | |
| 	spinlock_t	 lock;
 | |
| 	struct d40_desc	**alloc_map;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_phy_res - struct for handling eventlines mapped to physical
 | |
|  * channels.
 | |
|  *
 | |
|  * @lock: A lock protection this entity.
 | |
|  * @reserved: True if used by secure world or otherwise.
 | |
|  * @num: The physical channel number of this entity.
 | |
|  * @allocated_src: Bit mapped to show which src event line's are mapped to
 | |
|  * this physical channel. Can also be free or physically allocated.
 | |
|  * @allocated_dst: Same as for src but is dst.
 | |
|  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 | |
|  * event line number.
 | |
|  */
 | |
| struct d40_phy_res {
 | |
| 	spinlock_t lock;
 | |
| 	bool	   reserved;
 | |
| 	int	   num;
 | |
| 	u32	   allocated_src;
 | |
| 	u32	   allocated_dst;
 | |
| };
 | |
| 
 | |
| struct d40_base;
 | |
| 
 | |
| /**
 | |
|  * struct d40_chan - Struct that describes a channel.
 | |
|  *
 | |
|  * @lock: A spinlock to protect this struct.
 | |
|  * @log_num: The logical number, if any of this channel.
 | |
|  * @completed: Starts with 1, after first interrupt it is set to dma engine's
 | |
|  * current cookie.
 | |
|  * @pending_tx: The number of pending transfers. Used between interrupt handler
 | |
|  * and tasklet.
 | |
|  * @busy: Set to true when transfer is ongoing on this channel.
 | |
|  * @phy_chan: Pointer to physical channel which this instance runs on. If this
 | |
|  * point is NULL, then the channel is not allocated.
 | |
|  * @chan: DMA engine handle.
 | |
|  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 | |
|  * transfer and call client callback.
 | |
|  * @client: Cliented owned descriptor list.
 | |
|  * @pending_queue: Submitted jobs, to be issued by issue_pending()
 | |
|  * @active: Active descriptor.
 | |
|  * @queue: Queued jobs.
 | |
|  * @prepare_queue: Prepared jobs.
 | |
|  * @dma_cfg: The client configuration of this dma channel.
 | |
|  * @configured: whether the dma_cfg configuration is valid
 | |
|  * @base: Pointer to the device instance struct.
 | |
|  * @src_def_cfg: Default cfg register setting for src.
 | |
|  * @dst_def_cfg: Default cfg register setting for dst.
 | |
|  * @log_def: Default logical channel settings.
 | |
|  * @lcpa: Pointer to dst and src lcpa settings.
 | |
|  * @runtime_addr: runtime configured address.
 | |
|  * @runtime_direction: runtime configured direction.
 | |
|  *
 | |
|  * This struct can either "be" a logical or a physical channel.
 | |
|  */
 | |
| struct d40_chan {
 | |
| 	spinlock_t			 lock;
 | |
| 	int				 log_num;
 | |
| 	/* ID of the most recent completed transfer */
 | |
| 	int				 completed;
 | |
| 	int				 pending_tx;
 | |
| 	bool				 busy;
 | |
| 	struct d40_phy_res		*phy_chan;
 | |
| 	struct dma_chan			 chan;
 | |
| 	struct tasklet_struct		 tasklet;
 | |
| 	struct list_head		 client;
 | |
| 	struct list_head		 pending_queue;
 | |
| 	struct list_head		 active;
 | |
| 	struct list_head		 queue;
 | |
| 	struct list_head		 prepare_queue;
 | |
| 	struct stedma40_chan_cfg	 dma_cfg;
 | |
| 	bool				 configured;
 | |
| 	struct d40_base			*base;
 | |
| 	/* Default register configurations */
 | |
| 	u32				 src_def_cfg;
 | |
| 	u32				 dst_def_cfg;
 | |
| 	struct d40_def_lcsp		 log_def;
 | |
| 	struct d40_log_lli_full		*lcpa;
 | |
| 	/* Runtime reconfiguration */
 | |
| 	dma_addr_t			runtime_addr;
 | |
| 	enum dma_transfer_direction	runtime_direction;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_base - The big global struct, one for each probe'd instance.
 | |
|  *
 | |
|  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 | |
|  * @execmd_lock: Lock for execute command usage since several channels share
 | |
|  * the same physical register.
 | |
|  * @dev: The device structure.
 | |
|  * @virtbase: The virtual base address of the DMA's register.
 | |
|  * @rev: silicon revision detected.
 | |
|  * @clk: Pointer to the DMA clock structure.
 | |
|  * @phy_start: Physical memory start of the DMA registers.
 | |
|  * @phy_size: Size of the DMA register map.
 | |
|  * @irq: The IRQ number.
 | |
|  * @num_phy_chans: The number of physical channels. Read from HW. This
 | |
|  * is the number of available channels for this driver, not counting "Secure
 | |
|  * mode" allocated physical channels.
 | |
|  * @num_log_chans: The number of logical channels. Calculated from
 | |
|  * num_phy_chans.
 | |
|  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 | |
|  * @dma_slave: dma_device channels that can do only do slave transfers.
 | |
|  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 | |
|  * @phy_chans: Room for all possible physical channels in system.
 | |
|  * @log_chans: Room for all possible logical channels in system.
 | |
|  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 | |
|  * to log_chans entries.
 | |
|  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 | |
|  * to phy_chans entries.
 | |
|  * @plat_data: Pointer to provided platform_data which is the driver
 | |
|  * configuration.
 | |
|  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 | |
|  * @phy_res: Vector containing all physical channels.
 | |
|  * @lcla_pool: lcla pool settings and data.
 | |
|  * @lcpa_base: The virtual mapped address of LCPA.
 | |
|  * @phy_lcpa: The physical address of the LCPA.
 | |
|  * @lcpa_size: The size of the LCPA area.
 | |
|  * @desc_slab: cache for descriptors.
 | |
|  * @reg_val_backup: Here the values of some hardware registers are stored
 | |
|  * before the DMA is powered off. They are restored when the power is back on.
 | |
|  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
 | |
|  * later.
 | |
|  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 | |
|  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 | |
|  * @initialized: true if the dma has been initialized
 | |
|  */
 | |
| struct d40_base {
 | |
| 	spinlock_t			 interrupt_lock;
 | |
| 	spinlock_t			 execmd_lock;
 | |
| 	struct device			 *dev;
 | |
| 	void __iomem			 *virtbase;
 | |
| 	u8				  rev:4;
 | |
| 	struct clk			 *clk;
 | |
| 	phys_addr_t			  phy_start;
 | |
| 	resource_size_t			  phy_size;
 | |
| 	int				  irq;
 | |
| 	int				  num_phy_chans;
 | |
| 	int				  num_log_chans;
 | |
| 	struct dma_device		  dma_both;
 | |
| 	struct dma_device		  dma_slave;
 | |
| 	struct dma_device		  dma_memcpy;
 | |
| 	struct d40_chan			 *phy_chans;
 | |
| 	struct d40_chan			 *log_chans;
 | |
| 	struct d40_chan			**lookup_log_chans;
 | |
| 	struct d40_chan			**lookup_phy_chans;
 | |
| 	struct stedma40_platform_data	 *plat_data;
 | |
| 	struct regulator		 *lcpa_regulator;
 | |
| 	/* Physical half channels */
 | |
| 	struct d40_phy_res		 *phy_res;
 | |
| 	struct d40_lcla_pool		  lcla_pool;
 | |
| 	void				 *lcpa_base;
 | |
| 	dma_addr_t			  phy_lcpa;
 | |
| 	resource_size_t			  lcpa_size;
 | |
| 	struct kmem_cache		 *desc_slab;
 | |
| 	u32				  reg_val_backup[BACKUP_REGS_SZ];
 | |
| 	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
 | |
| 	u32				 *reg_val_backup_chan;
 | |
| 	u16				  gcc_pwr_off_mask;
 | |
| 	bool				  initialized;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_interrupt_lookup - lookup table for interrupt handler
 | |
|  *
 | |
|  * @src: Interrupt mask register.
 | |
|  * @clr: Interrupt clear register.
 | |
|  * @is_error: true if this is an error interrupt.
 | |
|  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 | |
|  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 | |
|  */
 | |
| struct d40_interrupt_lookup {
 | |
| 	u32 src;
 | |
| 	u32 clr;
 | |
| 	bool is_error;
 | |
| 	int offset;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct d40_reg_val - simple lookup struct
 | |
|  *
 | |
|  * @reg: The register.
 | |
|  * @val: The value that belongs to the register in reg.
 | |
|  */
 | |
| struct d40_reg_val {
 | |
| 	unsigned int reg;
 | |
| 	unsigned int val;
 | |
| };
 | |
| 
 | |
| static struct device *chan2dev(struct d40_chan *d40c)
 | |
| {
 | |
| 	return &d40c->chan.dev->device;
 | |
| }
 | |
| 
 | |
| static bool chan_is_physical(struct d40_chan *chan)
 | |
| {
 | |
| 	return chan->log_num == D40_PHY_CHAN;
 | |
| }
 | |
| 
 | |
| static bool chan_is_logical(struct d40_chan *chan)
 | |
| {
 | |
| 	return !chan_is_physical(chan);
 | |
| }
 | |
| 
 | |
| static void __iomem *chan_base(struct d40_chan *chan)
 | |
| {
 | |
| 	return chan->base->virtbase + D40_DREG_PCBASE +
 | |
| 	       chan->phy_chan->num * D40_DREG_PCDELTA;
 | |
| }
 | |
| 
 | |
| #define d40_err(dev, format, arg...)		\
 | |
| 	dev_err(dev, "[%s] " format, __func__, ## arg)
 | |
| 
 | |
| #define chan_err(d40c, format, arg...)		\
 | |
| 	d40_err(chan2dev(d40c), format, ## arg)
 | |
| 
 | |
| static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 | |
| 			      int lli_len)
 | |
| {
 | |
| 	bool is_log = chan_is_logical(d40c);
 | |
| 	u32 align;
 | |
| 	void *base;
 | |
| 
 | |
| 	if (is_log)
 | |
| 		align = sizeof(struct d40_log_lli);
 | |
| 	else
 | |
| 		align = sizeof(struct d40_phy_lli);
 | |
| 
 | |
| 	if (lli_len == 1) {
 | |
| 		base = d40d->lli_pool.pre_alloc_lli;
 | |
| 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 | |
| 		d40d->lli_pool.base = NULL;
 | |
| 	} else {
 | |
| 		d40d->lli_pool.size = lli_len * 2 * align;
 | |
| 
 | |
| 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 | |
| 		d40d->lli_pool.base = base;
 | |
| 
 | |
| 		if (d40d->lli_pool.base == NULL)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (is_log) {
 | |
| 		d40d->lli_log.src = PTR_ALIGN(base, align);
 | |
| 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 | |
| 
 | |
| 		d40d->lli_pool.dma_addr = 0;
 | |
| 	} else {
 | |
| 		d40d->lli_phy.src = PTR_ALIGN(base, align);
 | |
| 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 | |
| 
 | |
| 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 | |
| 							 d40d->lli_phy.src,
 | |
| 							 d40d->lli_pool.size,
 | |
| 							 DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (dma_mapping_error(d40c->base->dev,
 | |
| 				      d40d->lli_pool.dma_addr)) {
 | |
| 			kfree(d40d->lli_pool.base);
 | |
| 			d40d->lli_pool.base = NULL;
 | |
| 			d40d->lli_pool.dma_addr = 0;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 | |
| {
 | |
| 	if (d40d->lli_pool.dma_addr)
 | |
| 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 | |
| 				 d40d->lli_pool.size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	kfree(d40d->lli_pool.base);
 | |
| 	d40d->lli_pool.base = NULL;
 | |
| 	d40d->lli_pool.size = 0;
 | |
| 	d40d->lli_log.src = NULL;
 | |
| 	d40d->lli_log.dst = NULL;
 | |
| 	d40d->lli_phy.src = NULL;
 | |
| 	d40d->lli_phy.dst = NULL;
 | |
| }
 | |
| 
 | |
| static int d40_lcla_alloc_one(struct d40_chan *d40c,
 | |
| 			      struct d40_desc *d40d)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	int ret = -EINVAL;
 | |
| 	int p;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 | |
| 
 | |
| 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate both src and dst at the same time, therefore the half
 | |
| 	 * start on 1 since 0 can't be used since zero is used as end marker.
 | |
| 	 */
 | |
| 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 | |
| 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
 | |
| 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
 | |
| 			d40d->lcla_alloc++;
 | |
| 			ret = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int d40_lcla_free_all(struct d40_chan *d40c,
 | |
| 			     struct d40_desc *d40d)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (chan_is_physical(d40c))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 | |
| 
 | |
| 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 | |
| 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 | |
| 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
 | |
| 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 | |
| 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
 | |
| 			d40d->lcla_alloc--;
 | |
| 			if (d40d->lcla_alloc == 0) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void d40_desc_remove(struct d40_desc *d40d)
 | |
| {
 | |
| 	list_del(&d40d->node);
 | |
| }
 | |
| 
 | |
| static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *desc = NULL;
 | |
| 
 | |
| 	if (!list_empty(&d40c->client)) {
 | |
| 		struct d40_desc *d;
 | |
| 		struct d40_desc *_d;
 | |
| 
 | |
| 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 | |
| 			if (async_tx_test_ack(&d->txd)) {
 | |
| 				d40_desc_remove(d);
 | |
| 				desc = d;
 | |
| 				memset(desc, 0, sizeof(*desc));
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!desc)
 | |
| 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 | |
| 
 | |
| 	if (desc)
 | |
| 		INIT_LIST_HEAD(&desc->node);
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 | |
| {
 | |
| 
 | |
| 	d40_pool_lli_free(d40c, d40d);
 | |
| 	d40_lcla_free_all(d40c, d40d);
 | |
| 	kmem_cache_free(d40c->base->desc_slab, d40d);
 | |
| }
 | |
| 
 | |
| static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 | |
| {
 | |
| 	list_add_tail(&desc->node, &d40c->active);
 | |
| }
 | |
| 
 | |
| static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 | |
| {
 | |
| 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 | |
| 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 | |
| 	void __iomem *base = chan_base(chan);
 | |
| 
 | |
| 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 | |
| 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 | |
| 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 | |
| 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 | |
| 
 | |
| 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 | |
| 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 | |
| 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 | |
| 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 | |
| }
 | |
| 
 | |
| static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 | |
| {
 | |
| 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 | |
| 	struct d40_log_lli_bidir *lli = &desc->lli_log;
 | |
| 	int lli_current = desc->lli_current;
 | |
| 	int lli_len = desc->lli_len;
 | |
| 	bool cyclic = desc->cyclic;
 | |
| 	int curr_lcla = -EINVAL;
 | |
| 	int first_lcla = 0;
 | |
| 	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 | |
| 	bool linkback;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have partially running cyclic transfers, in case we did't get
 | |
| 	 * enough LCLA entries.
 | |
| 	 */
 | |
| 	linkback = cyclic && lli_current == 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For linkback, we need one LCLA even with only one link, because we
 | |
| 	 * can't link back to the one in LCPA space
 | |
| 	 */
 | |
| 	if (linkback || (lli_len - lli_current > 1)) {
 | |
| 		curr_lcla = d40_lcla_alloc_one(chan, desc);
 | |
| 		first_lcla = curr_lcla;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For linkback, we normally load the LCPA in the loop since we need to
 | |
| 	 * link it to the second LCLA and not the first.  However, if we
 | |
| 	 * couldn't even get a first LCLA, then we have to run in LCPA and
 | |
| 	 * reload manually.
 | |
| 	 */
 | |
| 	if (!linkback || curr_lcla == -EINVAL) {
 | |
| 		unsigned int flags = 0;
 | |
| 
 | |
| 		if (curr_lcla == -EINVAL)
 | |
| 			flags |= LLI_TERM_INT;
 | |
| 
 | |
| 		d40_log_lli_lcpa_write(chan->lcpa,
 | |
| 				       &lli->dst[lli_current],
 | |
| 				       &lli->src[lli_current],
 | |
| 				       curr_lcla,
 | |
| 				       flags);
 | |
| 		lli_current++;
 | |
| 	}
 | |
| 
 | |
| 	if (curr_lcla < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (; lli_current < lli_len; lli_current++) {
 | |
| 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 | |
| 					   8 * curr_lcla * 2;
 | |
| 		struct d40_log_lli *lcla = pool->base + lcla_offset;
 | |
| 		unsigned int flags = 0;
 | |
| 		int next_lcla;
 | |
| 
 | |
| 		if (lli_current + 1 < lli_len)
 | |
| 			next_lcla = d40_lcla_alloc_one(chan, desc);
 | |
| 		else
 | |
| 			next_lcla = linkback ? first_lcla : -EINVAL;
 | |
| 
 | |
| 		if (cyclic || next_lcla == -EINVAL)
 | |
| 			flags |= LLI_TERM_INT;
 | |
| 
 | |
| 		if (linkback && curr_lcla == first_lcla) {
 | |
| 			/* First link goes in both LCPA and LCLA */
 | |
| 			d40_log_lli_lcpa_write(chan->lcpa,
 | |
| 					       &lli->dst[lli_current],
 | |
| 					       &lli->src[lli_current],
 | |
| 					       next_lcla, flags);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * One unused LCLA in the cyclic case if the very first
 | |
| 		 * next_lcla fails...
 | |
| 		 */
 | |
| 		d40_log_lli_lcla_write(lcla,
 | |
| 				       &lli->dst[lli_current],
 | |
| 				       &lli->src[lli_current],
 | |
| 				       next_lcla, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Cache maintenance is not needed if lcla is
 | |
| 		 * mapped in esram
 | |
| 		 */
 | |
| 		if (!use_esram_lcla) {
 | |
| 			dma_sync_single_range_for_device(chan->base->dev,
 | |
| 						pool->dma_addr, lcla_offset,
 | |
| 						2 * sizeof(struct d40_log_lli),
 | |
| 						DMA_TO_DEVICE);
 | |
| 		}
 | |
| 		curr_lcla = next_lcla;
 | |
| 
 | |
| 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 | |
| 			lli_current++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	desc->lli_current = lli_current;
 | |
| }
 | |
| 
 | |
| static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 | |
| {
 | |
| 	if (chan_is_physical(d40c)) {
 | |
| 		d40_phy_lli_load(d40c, d40d);
 | |
| 		d40d->lli_current = d40d->lli_len;
 | |
| 	} else
 | |
| 		d40_log_lli_to_lcxa(d40c, d40d);
 | |
| }
 | |
| 
 | |
| static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d;
 | |
| 
 | |
| 	if (list_empty(&d40c->active))
 | |
| 		return NULL;
 | |
| 
 | |
| 	d = list_first_entry(&d40c->active,
 | |
| 			     struct d40_desc,
 | |
| 			     node);
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| /* remove desc from current queue and add it to the pending_queue */
 | |
| static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 | |
| {
 | |
| 	d40_desc_remove(desc);
 | |
| 	desc->is_in_client_list = false;
 | |
| 	list_add_tail(&desc->node, &d40c->pending_queue);
 | |
| }
 | |
| 
 | |
| static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d;
 | |
| 
 | |
| 	if (list_empty(&d40c->pending_queue))
 | |
| 		return NULL;
 | |
| 
 | |
| 	d = list_first_entry(&d40c->pending_queue,
 | |
| 			     struct d40_desc,
 | |
| 			     node);
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d;
 | |
| 
 | |
| 	if (list_empty(&d40c->queue))
 | |
| 		return NULL;
 | |
| 
 | |
| 	d = list_first_entry(&d40c->queue,
 | |
| 			     struct d40_desc,
 | |
| 			     node);
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| static int d40_psize_2_burst_size(bool is_log, int psize)
 | |
| {
 | |
| 	if (is_log) {
 | |
| 		if (psize == STEDMA40_PSIZE_LOG_1)
 | |
| 			return 1;
 | |
| 	} else {
 | |
| 		if (psize == STEDMA40_PSIZE_PHY_1)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 2 << psize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The dma only supports transmitting packages up to
 | |
|  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 | |
|  * dma elements required to send the entire sg list
 | |
|  */
 | |
| static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 | |
| {
 | |
| 	int dmalen;
 | |
| 	u32 max_w = max(data_width1, data_width2);
 | |
| 	u32 min_w = min(data_width1, data_width2);
 | |
| 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
 | |
| 
 | |
| 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
 | |
| 		seg_max -= (1 << max_w);
 | |
| 
 | |
| 	if (!IS_ALIGNED(size, 1 << max_w))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (size <= seg_max)
 | |
| 		dmalen = 1;
 | |
| 	else {
 | |
| 		dmalen = size / seg_max;
 | |
| 		if (dmalen * seg_max < size)
 | |
| 			dmalen++;
 | |
| 	}
 | |
| 	return dmalen;
 | |
| }
 | |
| 
 | |
| static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
 | |
| 			   u32 data_width1, u32 data_width2)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 	int len = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, sg_len, i) {
 | |
| 		ret = d40_size_2_dmalen(sg_dma_len(sg),
 | |
| 					data_width1, data_width2);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		len += ret;
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static void dma40_backup(void __iomem *baseaddr, u32 *backup,
 | |
| 			 u32 *regaddr, int num, bool save)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		void __iomem *addr = baseaddr + regaddr[i];
 | |
| 
 | |
| 		if (save)
 | |
| 			backup[i] = readl_relaxed(addr);
 | |
| 		else
 | |
| 			writel_relaxed(backup[i], addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void d40_save_restore_registers(struct d40_base *base, bool save)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Save/Restore channel specific registers */
 | |
| 	for (i = 0; i < base->num_phy_chans; i++) {
 | |
| 		void __iomem *addr;
 | |
| 		int idx;
 | |
| 
 | |
| 		if (base->phy_res[i].reserved)
 | |
| 			continue;
 | |
| 
 | |
| 		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
 | |
| 		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
 | |
| 
 | |
| 		dma40_backup(addr, &base->reg_val_backup_chan[idx],
 | |
| 			     d40_backup_regs_chan,
 | |
| 			     ARRAY_SIZE(d40_backup_regs_chan),
 | |
| 			     save);
 | |
| 	}
 | |
| 
 | |
| 	/* Save/Restore global registers */
 | |
| 	dma40_backup(base->virtbase, base->reg_val_backup,
 | |
| 		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
 | |
| 		     save);
 | |
| 
 | |
| 	/* Save/Restore registers only existing on dma40 v3 and later */
 | |
| 	if (base->rev >= 3)
 | |
| 		dma40_backup(base->virtbase, base->reg_val_backup_v3,
 | |
| 			     d40_backup_regs_v3,
 | |
| 			     ARRAY_SIZE(d40_backup_regs_v3),
 | |
| 			     save);
 | |
| }
 | |
| #else
 | |
| static void d40_save_restore_registers(struct d40_base *base, bool save)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int d40_channel_execute_command(struct d40_chan *d40c,
 | |
| 				       enum d40_command command)
 | |
| {
 | |
| 	u32 status;
 | |
| 	int i;
 | |
| 	void __iomem *active_reg;
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 	u32 wmask;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
 | |
| 
 | |
| 	if (d40c->phy_chan->num % 2 == 0)
 | |
| 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
 | |
| 	else
 | |
| 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
 | |
| 
 | |
| 	if (command == D40_DMA_SUSPEND_REQ) {
 | |
| 		status = (readl(active_reg) &
 | |
| 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 | |
| 			D40_CHAN_POS(d40c->phy_chan->num);
 | |
| 
 | |
| 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
 | |
| 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
 | |
| 	       active_reg);
 | |
| 
 | |
| 	if (command == D40_DMA_SUSPEND_REQ) {
 | |
| 
 | |
| 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
 | |
| 			status = (readl(active_reg) &
 | |
| 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 | |
| 				D40_CHAN_POS(d40c->phy_chan->num);
 | |
| 
 | |
| 			cpu_relax();
 | |
| 			/*
 | |
| 			 * Reduce the number of bus accesses while
 | |
| 			 * waiting for the DMA to suspend.
 | |
| 			 */
 | |
| 			udelay(3);
 | |
| 
 | |
| 			if (status == D40_DMA_STOP ||
 | |
| 			    status == D40_DMA_SUSPENDED)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (i == D40_SUSPEND_MAX_IT) {
 | |
| 			chan_err(d40c,
 | |
| 				"unable to suspend the chl %d (log: %d) status %x\n",
 | |
| 				d40c->phy_chan->num, d40c->log_num,
 | |
| 				status);
 | |
| 			dump_stack();
 | |
| 			ret = -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void d40_term_all(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d40d;
 | |
| 	struct d40_desc *_d;
 | |
| 
 | |
| 	/* Release active descriptors */
 | |
| 	while ((d40d = d40_first_active_get(d40c))) {
 | |
| 		d40_desc_remove(d40d);
 | |
| 		d40_desc_free(d40c, d40d);
 | |
| 	}
 | |
| 
 | |
| 	/* Release queued descriptors waiting for transfer */
 | |
| 	while ((d40d = d40_first_queued(d40c))) {
 | |
| 		d40_desc_remove(d40d);
 | |
| 		d40_desc_free(d40c, d40d);
 | |
| 	}
 | |
| 
 | |
| 	/* Release pending descriptors */
 | |
| 	while ((d40d = d40_first_pending(d40c))) {
 | |
| 		d40_desc_remove(d40d);
 | |
| 		d40_desc_free(d40c, d40d);
 | |
| 	}
 | |
| 
 | |
| 	/* Release client owned descriptors */
 | |
| 	if (!list_empty(&d40c->client))
 | |
| 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
 | |
| 			d40_desc_remove(d40d);
 | |
| 			d40_desc_free(d40c, d40d);
 | |
| 		}
 | |
| 
 | |
| 	/* Release descriptors in prepare queue */
 | |
| 	if (!list_empty(&d40c->prepare_queue))
 | |
| 		list_for_each_entry_safe(d40d, _d,
 | |
| 					 &d40c->prepare_queue, node) {
 | |
| 			d40_desc_remove(d40d);
 | |
| 			d40_desc_free(d40c, d40d);
 | |
| 		}
 | |
| 
 | |
| 	d40c->pending_tx = 0;
 | |
| 	d40c->busy = false;
 | |
| }
 | |
| 
 | |
| static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
 | |
| 				   u32 event, int reg)
 | |
| {
 | |
| 	void __iomem *addr = chan_base(d40c) + reg;
 | |
| 	int tries;
 | |
| 
 | |
| 	if (!enable) {
 | |
| 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
 | |
| 		       | ~D40_EVENTLINE_MASK(event), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The hardware sometimes doesn't register the enable when src and dst
 | |
| 	 * event lines are active on the same logical channel.  Retry to ensure
 | |
| 	 * it does.  Usually only one retry is sufficient.
 | |
| 	 */
 | |
| 	tries = 100;
 | |
| 	while (--tries) {
 | |
| 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
 | |
| 		       | ~D40_EVENTLINE_MASK(event), addr);
 | |
| 
 | |
| 		if (readl(addr) & D40_EVENTLINE_MASK(event))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (tries != 99)
 | |
| 		dev_dbg(chan2dev(d40c),
 | |
| 			"[%s] workaround enable S%cLNK (%d tries)\n",
 | |
| 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
 | |
| 			100 - tries);
 | |
| 
 | |
| 	WARN_ON(!tries);
 | |
| }
 | |
| 
 | |
| static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
 | |
| 
 | |
| 	/* Enable event line connected to device (or memcpy) */
 | |
| 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
 | |
| 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
 | |
| 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
 | |
| 
 | |
| 		__d40_config_set_event(d40c, do_enable, event,
 | |
| 				       D40_CHAN_REG_SSLNK);
 | |
| 	}
 | |
| 
 | |
| 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
 | |
| 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
 | |
| 
 | |
| 		__d40_config_set_event(d40c, do_enable, event,
 | |
| 				       D40_CHAN_REG_SDLNK);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
 | |
| }
 | |
| 
 | |
| static u32 d40_chan_has_events(struct d40_chan *d40c)
 | |
| {
 | |
| 	void __iomem *chanbase = chan_base(d40c);
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
 | |
| 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static u32 d40_get_prmo(struct d40_chan *d40c)
 | |
| {
 | |
| 	static const unsigned int phy_map[] = {
 | |
| 		[STEDMA40_PCHAN_BASIC_MODE]
 | |
| 			= D40_DREG_PRMO_PCHAN_BASIC,
 | |
| 		[STEDMA40_PCHAN_MODULO_MODE]
 | |
| 			= D40_DREG_PRMO_PCHAN_MODULO,
 | |
| 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
 | |
| 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
 | |
| 	};
 | |
| 	static const unsigned int log_map[] = {
 | |
| 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
 | |
| 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
 | |
| 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
 | |
| 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
 | |
| 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
 | |
| 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
 | |
| 	};
 | |
| 
 | |
| 	if (chan_is_physical(d40c))
 | |
| 		return phy_map[d40c->dma_cfg.mode_opt];
 | |
| 	else
 | |
| 		return log_map[d40c->dma_cfg.mode_opt];
 | |
| }
 | |
| 
 | |
| static void d40_config_write(struct d40_chan *d40c)
 | |
| {
 | |
| 	u32 addr_base;
 | |
| 	u32 var;
 | |
| 
 | |
| 	/* Odd addresses are even addresses + 4 */
 | |
| 	addr_base = (d40c->phy_chan->num % 2) * 4;
 | |
| 	/* Setup channel mode to logical or physical */
 | |
| 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
 | |
| 		D40_CHAN_POS(d40c->phy_chan->num);
 | |
| 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
 | |
| 
 | |
| 	/* Setup operational mode option register */
 | |
| 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
 | |
| 
 | |
| 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
 | |
| 
 | |
| 	if (chan_is_logical(d40c)) {
 | |
| 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
 | |
| 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
 | |
| 		void __iomem *chanbase = chan_base(d40c);
 | |
| 
 | |
| 		/* Set default config for CFG reg */
 | |
| 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
 | |
| 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
 | |
| 
 | |
| 		/* Set LIDX for lcla */
 | |
| 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
 | |
| 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
 | |
| 
 | |
| 		/* Clear LNK which will be used by d40_chan_has_events() */
 | |
| 		writel(0, chanbase + D40_CHAN_REG_SSLNK);
 | |
| 		writel(0, chanbase + D40_CHAN_REG_SDLNK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 d40_residue(struct d40_chan *d40c)
 | |
| {
 | |
| 	u32 num_elt;
 | |
| 
 | |
| 	if (chan_is_logical(d40c))
 | |
| 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
 | |
| 			>> D40_MEM_LCSP2_ECNT_POS;
 | |
| 	else {
 | |
| 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
 | |
| 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
 | |
| 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
 | |
| 	}
 | |
| 
 | |
| 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
 | |
| }
 | |
| 
 | |
| static bool d40_tx_is_linked(struct d40_chan *d40c)
 | |
| {
 | |
| 	bool is_link;
 | |
| 
 | |
| 	if (chan_is_logical(d40c))
 | |
| 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
 | |
| 	else
 | |
| 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
 | |
| 			  & D40_SREG_LNK_PHYS_LNK_MASK;
 | |
| 
 | |
| 	return is_link;
 | |
| }
 | |
| 
 | |
| static int d40_pause(struct d40_chan *d40c)
 | |
| {
 | |
| 	int res = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!d40c->busy)
 | |
| 		return 0;
 | |
| 
 | |
| 	pm_runtime_get_sync(d40c->base->dev);
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
 | |
| 	if (res == 0) {
 | |
| 		if (chan_is_logical(d40c)) {
 | |
| 			d40_config_set_event(d40c, false);
 | |
| 			/* Resume the other logical channels if any */
 | |
| 			if (d40_chan_has_events(d40c))
 | |
| 				res = d40_channel_execute_command(d40c,
 | |
| 								  D40_DMA_RUN);
 | |
| 		}
 | |
| 	}
 | |
| 	pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 	pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int d40_resume(struct d40_chan *d40c)
 | |
| {
 | |
| 	int res = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!d40c->busy)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 	pm_runtime_get_sync(d40c->base->dev);
 | |
| 	if (d40c->base->rev == 0)
 | |
| 		if (chan_is_logical(d40c)) {
 | |
| 			res = d40_channel_execute_command(d40c,
 | |
| 							  D40_DMA_SUSPEND_REQ);
 | |
| 			goto no_suspend;
 | |
| 		}
 | |
| 
 | |
| 	/* If bytes left to transfer or linked tx resume job */
 | |
| 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
 | |
| 
 | |
| 		if (chan_is_logical(d40c))
 | |
| 			d40_config_set_event(d40c, true);
 | |
| 
 | |
| 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
 | |
| 	}
 | |
| 
 | |
| no_suspend:
 | |
| 	pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 	pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int d40_terminate_all(struct d40_chan *chan)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = d40_pause(chan);
 | |
| 	if (!ret && chan_is_physical(chan))
 | |
| 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 	d40_term_all(chan);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	struct d40_chan *d40c = container_of(tx->chan,
 | |
| 					     struct d40_chan,
 | |
| 					     chan);
 | |
| 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	d40c->chan.cookie++;
 | |
| 
 | |
| 	if (d40c->chan.cookie < 0)
 | |
| 		d40c->chan.cookie = 1;
 | |
| 
 | |
| 	d40d->txd.cookie = d40c->chan.cookie;
 | |
| 
 | |
| 	d40_desc_queue(d40c, d40d);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 
 | |
| 	return tx->cookie;
 | |
| }
 | |
| 
 | |
| static int d40_start(struct d40_chan *d40c)
 | |
| {
 | |
| 	if (d40c->base->rev == 0) {
 | |
| 		int err;
 | |
| 
 | |
| 		if (chan_is_logical(d40c)) {
 | |
| 			err = d40_channel_execute_command(d40c,
 | |
| 							  D40_DMA_SUSPEND_REQ);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (chan_is_logical(d40c))
 | |
| 		d40_config_set_event(d40c, true);
 | |
| 
 | |
| 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
 | |
| }
 | |
| 
 | |
| static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d40d;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Start queued jobs, if any */
 | |
| 	d40d = d40_first_queued(d40c);
 | |
| 
 | |
| 	if (d40d != NULL) {
 | |
| 		if (!d40c->busy)
 | |
| 			d40c->busy = true;
 | |
| 
 | |
| 		pm_runtime_get_sync(d40c->base->dev);
 | |
| 
 | |
| 		/* Remove from queue */
 | |
| 		d40_desc_remove(d40d);
 | |
| 
 | |
| 		/* Add to active queue */
 | |
| 		d40_desc_submit(d40c, d40d);
 | |
| 
 | |
| 		/* Initiate DMA job */
 | |
| 		d40_desc_load(d40c, d40d);
 | |
| 
 | |
| 		/* Start dma job */
 | |
| 		err = d40_start(d40c);
 | |
| 
 | |
| 		if (err)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return d40d;
 | |
| }
 | |
| 
 | |
| /* called from interrupt context */
 | |
| static void dma_tc_handle(struct d40_chan *d40c)
 | |
| {
 | |
| 	struct d40_desc *d40d;
 | |
| 
 | |
| 	/* Get first active entry from list */
 | |
| 	d40d = d40_first_active_get(d40c);
 | |
| 
 | |
| 	if (d40d == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (d40d->cyclic) {
 | |
| 		/*
 | |
| 		 * If this was a paritially loaded list, we need to reloaded
 | |
| 		 * it, and only when the list is completed.  We need to check
 | |
| 		 * for done because the interrupt will hit for every link, and
 | |
| 		 * not just the last one.
 | |
| 		 */
 | |
| 		if (d40d->lli_current < d40d->lli_len
 | |
| 		    && !d40_tx_is_linked(d40c)
 | |
| 		    && !d40_residue(d40c)) {
 | |
| 			d40_lcla_free_all(d40c, d40d);
 | |
| 			d40_desc_load(d40c, d40d);
 | |
| 			(void) d40_start(d40c);
 | |
| 
 | |
| 			if (d40d->lli_current == d40d->lli_len)
 | |
| 				d40d->lli_current = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		d40_lcla_free_all(d40c, d40d);
 | |
| 
 | |
| 		if (d40d->lli_current < d40d->lli_len) {
 | |
| 			d40_desc_load(d40c, d40d);
 | |
| 			/* Start dma job */
 | |
| 			(void) d40_start(d40c);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (d40_queue_start(d40c) == NULL)
 | |
| 			d40c->busy = false;
 | |
| 		pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 		pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	}
 | |
| 
 | |
| 	d40c->pending_tx++;
 | |
| 	tasklet_schedule(&d40c->tasklet);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void dma_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct d40_chan *d40c = (struct d40_chan *) data;
 | |
| 	struct d40_desc *d40d;
 | |
| 	unsigned long flags;
 | |
| 	dma_async_tx_callback callback;
 | |
| 	void *callback_param;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	/* Get first active entry from list */
 | |
| 	d40d = d40_first_active_get(d40c);
 | |
| 	if (d40d == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!d40d->cyclic)
 | |
| 		d40c->completed = d40d->txd.cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * If terminating a channel pending_tx is set to zero.
 | |
| 	 * This prevents any finished active jobs to return to the client.
 | |
| 	 */
 | |
| 	if (d40c->pending_tx == 0) {
 | |
| 		spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Callback to client */
 | |
| 	callback = d40d->txd.callback;
 | |
| 	callback_param = d40d->txd.callback_param;
 | |
| 
 | |
| 	if (!d40d->cyclic) {
 | |
| 		if (async_tx_test_ack(&d40d->txd)) {
 | |
| 			d40_desc_remove(d40d);
 | |
| 			d40_desc_free(d40c, d40d);
 | |
| 		} else {
 | |
| 			if (!d40d->is_in_client_list) {
 | |
| 				d40_desc_remove(d40d);
 | |
| 				d40_lcla_free_all(d40c, d40d);
 | |
| 				list_add_tail(&d40d->node, &d40c->client);
 | |
| 				d40d->is_in_client_list = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	d40c->pending_tx--;
 | |
| 
 | |
| 	if (d40c->pending_tx)
 | |
| 		tasklet_schedule(&d40c->tasklet);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 
 | |
| 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
 | |
| 		callback(callback_param);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
|  err:
 | |
| 	/* Rescue manoeuvre if receiving double interrupts */
 | |
| 	if (d40c->pending_tx > 0)
 | |
| 		d40c->pending_tx--;
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| }
 | |
| 
 | |
| static irqreturn_t d40_handle_interrupt(int irq, void *data)
 | |
| {
 | |
| 	static const struct d40_interrupt_lookup il[] = {
 | |
| 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 | |
| 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 | |
| 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 | |
| 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 | |
| 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 | |
| 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 | |
| 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 | |
| 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 | |
| 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 | |
| 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 | |
| 	};
 | |
| 
 | |
| 	int i;
 | |
| 	u32 regs[ARRAY_SIZE(il)];
 | |
| 	u32 idx;
 | |
| 	u32 row;
 | |
| 	long chan = -1;
 | |
| 	struct d40_chan *d40c;
 | |
| 	unsigned long flags;
 | |
| 	struct d40_base *base = data;
 | |
| 
 | |
| 	spin_lock_irqsave(&base->interrupt_lock, flags);
 | |
| 
 | |
| 	/* Read interrupt status of both logical and physical channels */
 | |
| 	for (i = 0; i < ARRAY_SIZE(il); i++)
 | |
| 		regs[i] = readl(base->virtbase + il[i].src);
 | |
| 
 | |
| 	for (;;) {
 | |
| 
 | |
| 		chan = find_next_bit((unsigned long *)regs,
 | |
| 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
 | |
| 
 | |
| 		/* No more set bits found? */
 | |
| 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
 | |
| 			break;
 | |
| 
 | |
| 		row = chan / BITS_PER_LONG;
 | |
| 		idx = chan & (BITS_PER_LONG - 1);
 | |
| 
 | |
| 		/* ACK interrupt */
 | |
| 		writel(1 << idx, base->virtbase + il[row].clr);
 | |
| 
 | |
| 		if (il[row].offset == D40_PHY_CHAN)
 | |
| 			d40c = base->lookup_phy_chans[idx];
 | |
| 		else
 | |
| 			d40c = base->lookup_log_chans[il[row].offset + idx];
 | |
| 		spin_lock(&d40c->lock);
 | |
| 
 | |
| 		if (!il[row].is_error)
 | |
| 			dma_tc_handle(d40c);
 | |
| 		else
 | |
| 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
 | |
| 				chan, il[row].offset, idx);
 | |
| 
 | |
| 		spin_unlock(&d40c->lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int d40_validate_conf(struct d40_chan *d40c,
 | |
| 			     struct stedma40_chan_cfg *conf)
 | |
| {
 | |
| 	int res = 0;
 | |
| 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
 | |
| 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
 | |
| 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
 | |
| 
 | |
| 	if (!conf->dir) {
 | |
| 		chan_err(d40c, "Invalid direction.\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
 | |
| 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
 | |
| 	    d40c->runtime_addr == 0) {
 | |
| 
 | |
| 		chan_err(d40c, "Invalid TX channel address (%d)\n",
 | |
| 			 conf->dst_dev_type);
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
 | |
| 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
 | |
| 	    d40c->runtime_addr == 0) {
 | |
| 		chan_err(d40c, "Invalid RX channel address (%d)\n",
 | |
| 			conf->src_dev_type);
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
 | |
| 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
 | |
| 		chan_err(d40c, "Invalid dst\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
 | |
| 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
 | |
| 		chan_err(d40c, "Invalid src\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
 | |
| 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
 | |
| 		chan_err(d40c, "No event line\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
 | |
| 	    (src_event_group != dst_event_group)) {
 | |
| 		chan_err(d40c, "Invalid event group\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
 | |
| 		/*
 | |
| 		 * DMAC HW supports it. Will be added to this driver,
 | |
| 		 * in case any dma client requires it.
 | |
| 		 */
 | |
| 		chan_err(d40c, "periph to periph not supported\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
 | |
| 	    (1 << conf->src_info.data_width) !=
 | |
| 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
 | |
| 	    (1 << conf->dst_info.data_width)) {
 | |
| 		/*
 | |
| 		 * The DMAC hardware only supports
 | |
| 		 * src (burst x width) == dst (burst x width)
 | |
| 		 */
 | |
| 
 | |
| 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
 | |
| 		res = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static bool d40_alloc_mask_set(struct d40_phy_res *phy,
 | |
| 			       bool is_src, int log_event_line, bool is_log,
 | |
| 			       bool *first_user)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&phy->lock, flags);
 | |
| 
 | |
| 	*first_user = ((phy->allocated_src | phy->allocated_dst)
 | |
| 			== D40_ALLOC_FREE);
 | |
| 
 | |
| 	if (!is_log) {
 | |
| 		/* Physical interrupts are masked per physical full channel */
 | |
| 		if (phy->allocated_src == D40_ALLOC_FREE &&
 | |
| 		    phy->allocated_dst == D40_ALLOC_FREE) {
 | |
| 			phy->allocated_dst = D40_ALLOC_PHY;
 | |
| 			phy->allocated_src = D40_ALLOC_PHY;
 | |
| 			goto found;
 | |
| 		} else
 | |
| 			goto not_found;
 | |
| 	}
 | |
| 
 | |
| 	/* Logical channel */
 | |
| 	if (is_src) {
 | |
| 		if (phy->allocated_src == D40_ALLOC_PHY)
 | |
| 			goto not_found;
 | |
| 
 | |
| 		if (phy->allocated_src == D40_ALLOC_FREE)
 | |
| 			phy->allocated_src = D40_ALLOC_LOG_FREE;
 | |
| 
 | |
| 		if (!(phy->allocated_src & (1 << log_event_line))) {
 | |
| 			phy->allocated_src |= 1 << log_event_line;
 | |
| 			goto found;
 | |
| 		} else
 | |
| 			goto not_found;
 | |
| 	} else {
 | |
| 		if (phy->allocated_dst == D40_ALLOC_PHY)
 | |
| 			goto not_found;
 | |
| 
 | |
| 		if (phy->allocated_dst == D40_ALLOC_FREE)
 | |
| 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
 | |
| 
 | |
| 		if (!(phy->allocated_dst & (1 << log_event_line))) {
 | |
| 			phy->allocated_dst |= 1 << log_event_line;
 | |
| 			goto found;
 | |
| 		} else
 | |
| 			goto not_found;
 | |
| 	}
 | |
| 
 | |
| not_found:
 | |
| 	spin_unlock_irqrestore(&phy->lock, flags);
 | |
| 	return false;
 | |
| found:
 | |
| 	spin_unlock_irqrestore(&phy->lock, flags);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
 | |
| 			       int log_event_line)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool is_free = false;
 | |
| 
 | |
| 	spin_lock_irqsave(&phy->lock, flags);
 | |
| 	if (!log_event_line) {
 | |
| 		phy->allocated_dst = D40_ALLOC_FREE;
 | |
| 		phy->allocated_src = D40_ALLOC_FREE;
 | |
| 		is_free = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Logical channel */
 | |
| 	if (is_src) {
 | |
| 		phy->allocated_src &= ~(1 << log_event_line);
 | |
| 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
 | |
| 			phy->allocated_src = D40_ALLOC_FREE;
 | |
| 	} else {
 | |
| 		phy->allocated_dst &= ~(1 << log_event_line);
 | |
| 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
 | |
| 			phy->allocated_dst = D40_ALLOC_FREE;
 | |
| 	}
 | |
| 
 | |
| 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
 | |
| 		   D40_ALLOC_FREE);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&phy->lock, flags);
 | |
| 
 | |
| 	return is_free;
 | |
| }
 | |
| 
 | |
| static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
 | |
| {
 | |
| 	int dev_type;
 | |
| 	int event_group;
 | |
| 	int event_line;
 | |
| 	struct d40_phy_res *phys;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int log_num;
 | |
| 	bool is_src;
 | |
| 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
 | |
| 
 | |
| 	phys = d40c->base->phy_res;
 | |
| 
 | |
| 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
 | |
| 		dev_type = d40c->dma_cfg.src_dev_type;
 | |
| 		log_num = 2 * dev_type;
 | |
| 		is_src = true;
 | |
| 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
 | |
| 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
 | |
| 		/* dst event lines are used for logical memcpy */
 | |
| 		dev_type = d40c->dma_cfg.dst_dev_type;
 | |
| 		log_num = 2 * dev_type + 1;
 | |
| 		is_src = false;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	event_group = D40_TYPE_TO_GROUP(dev_type);
 | |
| 	event_line = D40_TYPE_TO_EVENT(dev_type);
 | |
| 
 | |
| 	if (!is_log) {
 | |
| 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
 | |
| 			/* Find physical half channel */
 | |
| 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
 | |
| 
 | |
| 				if (d40_alloc_mask_set(&phys[i], is_src,
 | |
| 						       0, is_log,
 | |
| 						       first_phy_user))
 | |
| 					goto found_phy;
 | |
| 			}
 | |
| 		} else
 | |
| 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
 | |
| 				int phy_num = j  + event_group * 2;
 | |
| 				for (i = phy_num; i < phy_num + 2; i++) {
 | |
| 					if (d40_alloc_mask_set(&phys[i],
 | |
| 							       is_src,
 | |
| 							       0,
 | |
| 							       is_log,
 | |
| 							       first_phy_user))
 | |
| 						goto found_phy;
 | |
| 				}
 | |
| 			}
 | |
| 		return -EINVAL;
 | |
| found_phy:
 | |
| 		d40c->phy_chan = &phys[i];
 | |
| 		d40c->log_num = D40_PHY_CHAN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (dev_type == -1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Find logical channel */
 | |
| 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
 | |
| 		int phy_num = j + event_group * 2;
 | |
| 
 | |
| 		if (d40c->dma_cfg.use_fixed_channel) {
 | |
| 			i = d40c->dma_cfg.phy_channel;
 | |
| 
 | |
| 			if ((i != phy_num) && (i != phy_num + 1)) {
 | |
| 				dev_err(chan2dev(d40c),
 | |
| 					"invalid fixed phy channel %d\n", i);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
 | |
| 					       is_log, first_phy_user))
 | |
| 				goto found_log;
 | |
| 
 | |
| 			dev_err(chan2dev(d40c),
 | |
| 				"could not allocate fixed phy channel %d\n", i);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Spread logical channels across all available physical rather
 | |
| 		 * than pack every logical channel at the first available phy
 | |
| 		 * channels.
 | |
| 		 */
 | |
| 		if (is_src) {
 | |
| 			for (i = phy_num; i < phy_num + 2; i++) {
 | |
| 				if (d40_alloc_mask_set(&phys[i], is_src,
 | |
| 						       event_line, is_log,
 | |
| 						       first_phy_user))
 | |
| 					goto found_log;
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (i = phy_num + 1; i >= phy_num; i--) {
 | |
| 				if (d40_alloc_mask_set(&phys[i], is_src,
 | |
| 						       event_line, is_log,
 | |
| 						       first_phy_user))
 | |
| 					goto found_log;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| 
 | |
| found_log:
 | |
| 	d40c->phy_chan = &phys[i];
 | |
| 	d40c->log_num = log_num;
 | |
| out:
 | |
| 
 | |
| 	if (is_log)
 | |
| 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
 | |
| 	else
 | |
| 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int d40_config_memcpy(struct d40_chan *d40c)
 | |
| {
 | |
| 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
 | |
| 
 | |
| 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
 | |
| 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
 | |
| 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
 | |
| 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
 | |
| 			memcpy[d40c->chan.chan_id];
 | |
| 
 | |
| 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
 | |
| 		   dma_has_cap(DMA_SLAVE, cap)) {
 | |
| 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
 | |
| 	} else {
 | |
| 		chan_err(d40c, "No memcpy\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int d40_free_dma(struct d40_chan *d40c)
 | |
| {
 | |
| 
 | |
| 	int res = 0;
 | |
| 	u32 event;
 | |
| 	struct d40_phy_res *phy = d40c->phy_chan;
 | |
| 	bool is_src;
 | |
| 
 | |
| 	/* Terminate all queued and active transfers */
 | |
| 	d40_term_all(d40c);
 | |
| 
 | |
| 	if (phy == NULL) {
 | |
| 		chan_err(d40c, "phy == null\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (phy->allocated_src == D40_ALLOC_FREE &&
 | |
| 	    phy->allocated_dst == D40_ALLOC_FREE) {
 | |
| 		chan_err(d40c, "channel already free\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
 | |
| 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
 | |
| 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
 | |
| 		is_src = false;
 | |
| 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
 | |
| 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
 | |
| 		is_src = true;
 | |
| 	} else {
 | |
| 		chan_err(d40c, "Unknown direction\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_get_sync(d40c->base->dev);
 | |
| 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
 | |
| 	if (res) {
 | |
| 		chan_err(d40c, "suspend failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (chan_is_logical(d40c)) {
 | |
| 		/* Release logical channel, deactivate the event line */
 | |
| 
 | |
| 		d40_config_set_event(d40c, false);
 | |
| 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if there are more logical allocation
 | |
| 		 * on this phy channel.
 | |
| 		 */
 | |
| 		if (!d40_alloc_mask_free(phy, is_src, event)) {
 | |
| 			/* Resume the other logical channels if any */
 | |
| 			if (d40_chan_has_events(d40c)) {
 | |
| 				res = d40_channel_execute_command(d40c,
 | |
| 								  D40_DMA_RUN);
 | |
| 				if (res)
 | |
| 					chan_err(d40c,
 | |
| 						"Executing RUN command\n");
 | |
| 			}
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		(void) d40_alloc_mask_free(phy, is_src, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Release physical channel */
 | |
| 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
 | |
| 	if (res) {
 | |
| 		chan_err(d40c, "Failed to stop channel\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (d40c->busy) {
 | |
| 		pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 		pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	}
 | |
| 
 | |
| 	d40c->busy = false;
 | |
| 	d40c->phy_chan = NULL;
 | |
| 	d40c->configured = false;
 | |
| 	d40c->base->lookup_phy_chans[phy->num] = NULL;
 | |
| out:
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 	pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static bool d40_is_paused(struct d40_chan *d40c)
 | |
| {
 | |
| 	void __iomem *chanbase = chan_base(d40c);
 | |
| 	bool is_paused = false;
 | |
| 	unsigned long flags;
 | |
| 	void __iomem *active_reg;
 | |
| 	u32 status;
 | |
| 	u32 event;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	if (chan_is_physical(d40c)) {
 | |
| 		if (d40c->phy_chan->num % 2 == 0)
 | |
| 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
 | |
| 		else
 | |
| 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
 | |
| 
 | |
| 		status = (readl(active_reg) &
 | |
| 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 | |
| 			D40_CHAN_POS(d40c->phy_chan->num);
 | |
| 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
 | |
| 			is_paused = true;
 | |
| 
 | |
| 		goto _exit;
 | |
| 	}
 | |
| 
 | |
| 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
 | |
| 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
 | |
| 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
 | |
| 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
 | |
| 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
 | |
| 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
 | |
| 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
 | |
| 	} else {
 | |
| 		chan_err(d40c, "Unknown direction\n");
 | |
| 		goto _exit;
 | |
| 	}
 | |
| 
 | |
| 	status = (status & D40_EVENTLINE_MASK(event)) >>
 | |
| 		D40_EVENTLINE_POS(event);
 | |
| 
 | |
| 	if (status != D40_DMA_RUN)
 | |
| 		is_paused = true;
 | |
| _exit:
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 	return is_paused;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static u32 stedma40_residue(struct dma_chan *chan)
 | |
| {
 | |
| 	struct d40_chan *d40c =
 | |
| 		container_of(chan, struct d40_chan, chan);
 | |
| 	u32 bytes_left;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 	bytes_left = d40_residue(d40c);
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 
 | |
| 	return bytes_left;
 | |
| }
 | |
| 
 | |
| static int
 | |
| d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
 | |
| 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
 | |
| 		unsigned int sg_len, dma_addr_t src_dev_addr,
 | |
| 		dma_addr_t dst_dev_addr)
 | |
| {
 | |
| 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
 | |
| 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
 | |
| 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = d40_log_sg_to_lli(sg_src, sg_len,
 | |
| 				src_dev_addr,
 | |
| 				desc->lli_log.src,
 | |
| 				chan->log_def.lcsp1,
 | |
| 				src_info->data_width,
 | |
| 				dst_info->data_width);
 | |
| 
 | |
| 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
 | |
| 				dst_dev_addr,
 | |
| 				desc->lli_log.dst,
 | |
| 				chan->log_def.lcsp3,
 | |
| 				dst_info->data_width,
 | |
| 				src_info->data_width);
 | |
| 
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
 | |
| 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
 | |
| 		unsigned int sg_len, dma_addr_t src_dev_addr,
 | |
| 		dma_addr_t dst_dev_addr)
 | |
| {
 | |
| 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
 | |
| 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
 | |
| 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
 | |
| 	unsigned long flags = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (desc->cyclic)
 | |
| 		flags |= LLI_CYCLIC | LLI_TERM_INT;
 | |
| 
 | |
| 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
 | |
| 				desc->lli_phy.src,
 | |
| 				virt_to_phys(desc->lli_phy.src),
 | |
| 				chan->src_def_cfg,
 | |
| 				src_info, dst_info, flags);
 | |
| 
 | |
| 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
 | |
| 				desc->lli_phy.dst,
 | |
| 				virt_to_phys(desc->lli_phy.dst),
 | |
| 				chan->dst_def_cfg,
 | |
| 				dst_info, src_info, flags);
 | |
| 
 | |
| 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
 | |
| 				   desc->lli_pool.size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct d40_desc *
 | |
| d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
 | |
| 	      unsigned int sg_len, unsigned long dma_flags)
 | |
| {
 | |
| 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
 | |
| 	struct d40_desc *desc;
 | |
| 	int ret;
 | |
| 
 | |
| 	desc = d40_desc_get(chan);
 | |
| 	if (!desc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
 | |
| 					cfg->dst_info.data_width);
 | |
| 	if (desc->lli_len < 0) {
 | |
| 		chan_err(chan, "Unaligned size\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
 | |
| 	if (ret < 0) {
 | |
| 		chan_err(chan, "Could not allocate lli\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	desc->lli_current = 0;
 | |
| 	desc->txd.flags = dma_flags;
 | |
| 	desc->txd.tx_submit = d40_tx_submit;
 | |
| 
 | |
| 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
 | |
| 
 | |
| 	return desc;
 | |
| 
 | |
| err:
 | |
| 	d40_desc_free(chan, desc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static dma_addr_t
 | |
| d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
 | |
| {
 | |
| 	struct stedma40_platform_data *plat = chan->base->plat_data;
 | |
| 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
 | |
| 	dma_addr_t addr = 0;
 | |
| 
 | |
| 	if (chan->runtime_addr)
 | |
| 		return chan->runtime_addr;
 | |
| 
 | |
| 	if (direction == DMA_DEV_TO_MEM)
 | |
| 		addr = plat->dev_rx[cfg->src_dev_type];
 | |
| 	else if (direction == DMA_MEM_TO_DEV)
 | |
| 		addr = plat->dev_tx[cfg->dst_dev_type];
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
 | |
| 	    struct scatterlist *sg_dst, unsigned int sg_len,
 | |
| 	    enum dma_transfer_direction direction, unsigned long dma_flags)
 | |
| {
 | |
| 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
 | |
| 	dma_addr_t src_dev_addr = 0;
 | |
| 	dma_addr_t dst_dev_addr = 0;
 | |
| 	struct d40_desc *desc;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!chan->phy_chan) {
 | |
| 		chan_err(chan, "Cannot prepare unallocated channel\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->lock, flags);
 | |
| 
 | |
| 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
 | |
| 	if (desc == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
 | |
| 		desc->cyclic = true;
 | |
| 
 | |
| 	if (direction != DMA_NONE) {
 | |
| 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
 | |
| 
 | |
| 		if (direction == DMA_DEV_TO_MEM)
 | |
| 			src_dev_addr = dev_addr;
 | |
| 		else if (direction == DMA_MEM_TO_DEV)
 | |
| 			dst_dev_addr = dev_addr;
 | |
| 	}
 | |
| 
 | |
| 	if (chan_is_logical(chan))
 | |
| 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
 | |
| 				      sg_len, src_dev_addr, dst_dev_addr);
 | |
| 	else
 | |
| 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
 | |
| 				      sg_len, src_dev_addr, dst_dev_addr);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
 | |
| 			 chan_is_logical(chan) ? "log" : "phy", ret);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * add descriptor to the prepare queue in order to be able
 | |
| 	 * to free them later in terminate_all
 | |
| 	 */
 | |
| 	list_add_tail(&desc->node, &chan->prepare_queue);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 
 | |
| 	return &desc->txd;
 | |
| 
 | |
| err:
 | |
| 	if (desc)
 | |
| 		d40_desc_free(chan, desc);
 | |
| 	spin_unlock_irqrestore(&chan->lock, flags);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| bool stedma40_filter(struct dma_chan *chan, void *data)
 | |
| {
 | |
| 	struct stedma40_chan_cfg *info = data;
 | |
| 	struct d40_chan *d40c =
 | |
| 		container_of(chan, struct d40_chan, chan);
 | |
| 	int err;
 | |
| 
 | |
| 	if (data) {
 | |
| 		err = d40_validate_conf(d40c, info);
 | |
| 		if (!err)
 | |
| 			d40c->dma_cfg = *info;
 | |
| 	} else
 | |
| 		err = d40_config_memcpy(d40c);
 | |
| 
 | |
| 	if (!err)
 | |
| 		d40c->configured = true;
 | |
| 
 | |
| 	return err == 0;
 | |
| }
 | |
| EXPORT_SYMBOL(stedma40_filter);
 | |
| 
 | |
| static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
 | |
| {
 | |
| 	bool realtime = d40c->dma_cfg.realtime;
 | |
| 	bool highprio = d40c->dma_cfg.high_priority;
 | |
| 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
 | |
| 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
 | |
| 	u32 event = D40_TYPE_TO_EVENT(dev_type);
 | |
| 	u32 group = D40_TYPE_TO_GROUP(dev_type);
 | |
| 	u32 bit = 1 << event;
 | |
| 
 | |
| 	/* Destination event lines are stored in the upper halfword */
 | |
| 	if (!src)
 | |
| 		bit <<= 16;
 | |
| 
 | |
| 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
 | |
| 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
 | |
| }
 | |
| 
 | |
| static void d40_set_prio_realtime(struct d40_chan *d40c)
 | |
| {
 | |
| 	if (d40c->base->rev < 3)
 | |
| 		return;
 | |
| 
 | |
| 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
 | |
| 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
 | |
| 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
 | |
| 
 | |
| 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
 | |
| 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
 | |
| 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
 | |
| }
 | |
| 
 | |
| /* DMA ENGINE functions */
 | |
| static int d40_alloc_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long flags;
 | |
| 	struct d40_chan *d40c =
 | |
| 		container_of(chan, struct d40_chan, chan);
 | |
| 	bool is_free_phy;
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	d40c->completed = chan->cookie = 1;
 | |
| 
 | |
| 	/* If no dma configuration is set use default configuration (memcpy) */
 | |
| 	if (!d40c->configured) {
 | |
| 		err = d40_config_memcpy(d40c);
 | |
| 		if (err) {
 | |
| 			chan_err(d40c, "Failed to configure memcpy channel\n");
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = d40_allocate_channel(d40c, &is_free_phy);
 | |
| 	if (err) {
 | |
| 		chan_err(d40c, "Failed to allocate channel\n");
 | |
| 		d40c->configured = false;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_get_sync(d40c->base->dev);
 | |
| 	/* Fill in basic CFG register values */
 | |
| 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
 | |
| 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
 | |
| 
 | |
| 	d40_set_prio_realtime(d40c);
 | |
| 
 | |
| 	if (chan_is_logical(d40c)) {
 | |
| 		d40_log_cfg(&d40c->dma_cfg,
 | |
| 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
 | |
| 
 | |
| 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
 | |
| 			d40c->lcpa = d40c->base->lcpa_base +
 | |
| 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
 | |
| 		else
 | |
| 			d40c->lcpa = d40c->base->lcpa_base +
 | |
| 			  d40c->dma_cfg.dst_dev_type *
 | |
| 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
 | |
| 		 chan_is_logical(d40c) ? "logical" : "physical",
 | |
| 		 d40c->phy_chan->num,
 | |
| 		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Only write channel configuration to the DMA if the physical
 | |
| 	 * resource is free. In case of multiple logical channels
 | |
| 	 * on the same physical resource, only the first write is necessary.
 | |
| 	 */
 | |
| 	if (is_free_phy)
 | |
| 		d40_config_write(d40c);
 | |
| fail:
 | |
| 	pm_runtime_mark_last_busy(d40c->base->dev);
 | |
| 	pm_runtime_put_autosuspend(d40c->base->dev);
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void d40_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct d40_chan *d40c =
 | |
| 		container_of(chan, struct d40_chan, chan);
 | |
| 	int err;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (d40c->phy_chan == NULL) {
 | |
| 		chan_err(d40c, "Cannot free unallocated channel\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	err = d40_free_dma(d40c);
 | |
| 
 | |
| 	if (err)
 | |
| 		chan_err(d40c, "Failed to free channel\n");
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
 | |
| 						       dma_addr_t dst,
 | |
| 						       dma_addr_t src,
 | |
| 						       size_t size,
 | |
| 						       unsigned long dma_flags)
 | |
| {
 | |
| 	struct scatterlist dst_sg;
 | |
| 	struct scatterlist src_sg;
 | |
| 
 | |
| 	sg_init_table(&dst_sg, 1);
 | |
| 	sg_init_table(&src_sg, 1);
 | |
| 
 | |
| 	sg_dma_address(&dst_sg) = dst;
 | |
| 	sg_dma_address(&src_sg) = src;
 | |
| 
 | |
| 	sg_dma_len(&dst_sg) = size;
 | |
| 	sg_dma_len(&src_sg) = size;
 | |
| 
 | |
| 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| d40_prep_memcpy_sg(struct dma_chan *chan,
 | |
| 		   struct scatterlist *dst_sg, unsigned int dst_nents,
 | |
| 		   struct scatterlist *src_sg, unsigned int src_nents,
 | |
| 		   unsigned long dma_flags)
 | |
| {
 | |
| 	if (dst_nents != src_nents)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
 | |
| 							 struct scatterlist *sgl,
 | |
| 							 unsigned int sg_len,
 | |
| 							 enum dma_transfer_direction direction,
 | |
| 							 unsigned long dma_flags)
 | |
| {
 | |
| 	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
 | |
| 		     size_t buf_len, size_t period_len,
 | |
| 		     enum dma_transfer_direction direction)
 | |
| {
 | |
| 	unsigned int periods = buf_len / period_len;
 | |
| 	struct dma_async_tx_descriptor *txd;
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
 | |
| 	for (i = 0; i < periods; i++) {
 | |
| 		sg_dma_address(&sg[i]) = dma_addr;
 | |
| 		sg_dma_len(&sg[i]) = period_len;
 | |
| 		dma_addr += period_len;
 | |
| 	}
 | |
| 
 | |
| 	sg[periods].offset = 0;
 | |
| 	sg[periods].length = 0;
 | |
| 	sg[periods].page_link =
 | |
| 		((unsigned long)sg | 0x01) & ~0x02;
 | |
| 
 | |
| 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
 | |
| 			  DMA_PREP_INTERRUPT);
 | |
| 
 | |
| 	kfree(sg);
 | |
| 
 | |
| 	return txd;
 | |
| }
 | |
| 
 | |
| static enum dma_status d40_tx_status(struct dma_chan *chan,
 | |
| 				     dma_cookie_t cookie,
 | |
| 				     struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
 | |
| 	dma_cookie_t last_used;
 | |
| 	dma_cookie_t last_complete;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (d40c->phy_chan == NULL) {
 | |
| 		chan_err(d40c, "Cannot read status of unallocated channel\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	last_complete = d40c->completed;
 | |
| 	last_used = chan->cookie;
 | |
| 
 | |
| 	if (d40_is_paused(d40c))
 | |
| 		ret = DMA_PAUSED;
 | |
| 	else
 | |
| 		ret = dma_async_is_complete(cookie, last_complete, last_used);
 | |
| 
 | |
| 	dma_set_tx_state(txstate, last_complete, last_used,
 | |
| 			 stedma40_residue(chan));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void d40_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (d40c->phy_chan == NULL) {
 | |
| 		chan_err(d40c, "Channel is not allocated!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&d40c->lock, flags);
 | |
| 
 | |
| 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
 | |
| 
 | |
| 	/* Busy means that queued jobs are already being processed */
 | |
| 	if (!d40c->busy)
 | |
| 		(void) d40_queue_start(d40c);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&d40c->lock, flags);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dma40_config_to_halfchannel(struct d40_chan *d40c,
 | |
| 			    struct stedma40_half_channel_info *info,
 | |
| 			    enum dma_slave_buswidth width,
 | |
| 			    u32 maxburst)
 | |
| {
 | |
| 	enum stedma40_periph_data_width addr_width;
 | |
| 	int psize;
 | |
| 
 | |
| 	switch (width) {
 | |
| 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 | |
| 		addr_width = STEDMA40_BYTE_WIDTH;
 | |
| 		break;
 | |
| 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 | |
| 		addr_width = STEDMA40_HALFWORD_WIDTH;
 | |
| 		break;
 | |
| 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 | |
| 		addr_width = STEDMA40_WORD_WIDTH;
 | |
| 		break;
 | |
| 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 | |
| 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(d40c->base->dev,
 | |
| 			"illegal peripheral address width "
 | |
| 			"requested (%d)\n",
 | |
| 			width);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (chan_is_logical(d40c)) {
 | |
| 		if (maxburst >= 16)
 | |
| 			psize = STEDMA40_PSIZE_LOG_16;
 | |
| 		else if (maxburst >= 8)
 | |
| 			psize = STEDMA40_PSIZE_LOG_8;
 | |
| 		else if (maxburst >= 4)
 | |
| 			psize = STEDMA40_PSIZE_LOG_4;
 | |
| 		else
 | |
| 			psize = STEDMA40_PSIZE_LOG_1;
 | |
| 	} else {
 | |
| 		if (maxburst >= 16)
 | |
| 			psize = STEDMA40_PSIZE_PHY_16;
 | |
| 		else if (maxburst >= 8)
 | |
| 			psize = STEDMA40_PSIZE_PHY_8;
 | |
| 		else if (maxburst >= 4)
 | |
| 			psize = STEDMA40_PSIZE_PHY_4;
 | |
| 		else
 | |
| 			psize = STEDMA40_PSIZE_PHY_1;
 | |
| 	}
 | |
| 
 | |
| 	info->data_width = addr_width;
 | |
| 	info->psize = psize;
 | |
| 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Runtime reconfiguration extension */
 | |
| static int d40_set_runtime_config(struct dma_chan *chan,
 | |
| 				  struct dma_slave_config *config)
 | |
| {
 | |
| 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
 | |
| 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
 | |
| 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 | |
| 	dma_addr_t config_addr;
 | |
| 	u32 src_maxburst, dst_maxburst;
 | |
| 	int ret;
 | |
| 
 | |
| 	src_addr_width = config->src_addr_width;
 | |
| 	src_maxburst = config->src_maxburst;
 | |
| 	dst_addr_width = config->dst_addr_width;
 | |
| 	dst_maxburst = config->dst_maxburst;
 | |
| 
 | |
| 	if (config->direction == DMA_DEV_TO_MEM) {
 | |
| 		dma_addr_t dev_addr_rx =
 | |
| 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
 | |
| 
 | |
| 		config_addr = config->src_addr;
 | |
| 		if (dev_addr_rx)
 | |
| 			dev_dbg(d40c->base->dev,
 | |
| 				"channel has a pre-wired RX address %08x "
 | |
| 				"overriding with %08x\n",
 | |
| 				dev_addr_rx, config_addr);
 | |
| 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
 | |
| 			dev_dbg(d40c->base->dev,
 | |
| 				"channel was not configured for peripheral "
 | |
| 				"to memory transfer (%d) overriding\n",
 | |
| 				cfg->dir);
 | |
| 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
 | |
| 
 | |
| 		/* Configure the memory side */
 | |
| 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 | |
| 			dst_addr_width = src_addr_width;
 | |
| 		if (dst_maxburst == 0)
 | |
| 			dst_maxburst = src_maxburst;
 | |
| 
 | |
| 	} else if (config->direction == DMA_MEM_TO_DEV) {
 | |
| 		dma_addr_t dev_addr_tx =
 | |
| 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
 | |
| 
 | |
| 		config_addr = config->dst_addr;
 | |
| 		if (dev_addr_tx)
 | |
| 			dev_dbg(d40c->base->dev,
 | |
| 				"channel has a pre-wired TX address %08x "
 | |
| 				"overriding with %08x\n",
 | |
| 				dev_addr_tx, config_addr);
 | |
| 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
 | |
| 			dev_dbg(d40c->base->dev,
 | |
| 				"channel was not configured for memory "
 | |
| 				"to peripheral transfer (%d) overriding\n",
 | |
| 				cfg->dir);
 | |
| 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
 | |
| 
 | |
| 		/* Configure the memory side */
 | |
| 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 | |
| 			src_addr_width = dst_addr_width;
 | |
| 		if (src_maxburst == 0)
 | |
| 			src_maxburst = dst_maxburst;
 | |
| 	} else {
 | |
| 		dev_err(d40c->base->dev,
 | |
| 			"unrecognized channel direction %d\n",
 | |
| 			config->direction);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
 | |
| 		dev_err(d40c->base->dev,
 | |
| 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
 | |
| 			src_maxburst,
 | |
| 			src_addr_width,
 | |
| 			dst_maxburst,
 | |
| 			dst_addr_width);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
 | |
| 					  src_addr_width,
 | |
| 					  src_maxburst);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
 | |
| 					  dst_addr_width,
 | |
| 					  dst_maxburst);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Fill in register values */
 | |
| 	if (chan_is_logical(d40c))
 | |
| 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
 | |
| 	else
 | |
| 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
 | |
| 			    &d40c->dst_def_cfg, false);
 | |
| 
 | |
| 	/* These settings will take precedence later */
 | |
| 	d40c->runtime_addr = config_addr;
 | |
| 	d40c->runtime_direction = config->direction;
 | |
| 	dev_dbg(d40c->base->dev,
 | |
| 		"configured channel %s for %s, data width %d/%d, "
 | |
| 		"maxburst %d/%d elements, LE, no flow control\n",
 | |
| 		dma_chan_name(chan),
 | |
| 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
 | |
| 		src_addr_width, dst_addr_width,
 | |
| 		src_maxburst, dst_maxburst);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 | |
| 		       unsigned long arg)
 | |
| {
 | |
| 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
 | |
| 
 | |
| 	if (d40c->phy_chan == NULL) {
 | |
| 		chan_err(d40c, "Channel is not allocated!\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case DMA_TERMINATE_ALL:
 | |
| 		return d40_terminate_all(d40c);
 | |
| 	case DMA_PAUSE:
 | |
| 		return d40_pause(d40c);
 | |
| 	case DMA_RESUME:
 | |
| 		return d40_resume(d40c);
 | |
| 	case DMA_SLAVE_CONFIG:
 | |
| 		return d40_set_runtime_config(chan,
 | |
| 			(struct dma_slave_config *) arg);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Other commands are unimplemented */
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| /* Initialization functions */
 | |
| 
 | |
| static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
 | |
| 				 struct d40_chan *chans, int offset,
 | |
| 				 int num_chans)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct d40_chan *d40c;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dma->channels);
 | |
| 
 | |
| 	for (i = offset; i < offset + num_chans; i++) {
 | |
| 		d40c = &chans[i];
 | |
| 		d40c->base = base;
 | |
| 		d40c->chan.device = dma;
 | |
| 
 | |
| 		spin_lock_init(&d40c->lock);
 | |
| 
 | |
| 		d40c->log_num = D40_PHY_CHAN;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&d40c->active);
 | |
| 		INIT_LIST_HEAD(&d40c->queue);
 | |
| 		INIT_LIST_HEAD(&d40c->pending_queue);
 | |
| 		INIT_LIST_HEAD(&d40c->client);
 | |
| 		INIT_LIST_HEAD(&d40c->prepare_queue);
 | |
| 
 | |
| 		tasklet_init(&d40c->tasklet, dma_tasklet,
 | |
| 			     (unsigned long) d40c);
 | |
| 
 | |
| 		list_add_tail(&d40c->chan.device_node,
 | |
| 			      &dma->channels);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
 | |
| {
 | |
| 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
 | |
| 		dev->device_prep_slave_sg = d40_prep_slave_sg;
 | |
| 
 | |
| 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
 | |
| 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
 | |
| 
 | |
| 		/*
 | |
| 		 * This controller can only access address at even
 | |
| 		 * 32bit boundaries, i.e. 2^2
 | |
| 		 */
 | |
| 		dev->copy_align = 2;
 | |
| 	}
 | |
| 
 | |
| 	if (dma_has_cap(DMA_SG, dev->cap_mask))
 | |
| 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
 | |
| 
 | |
| 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
 | |
| 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
 | |
| 
 | |
| 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
 | |
| 	dev->device_free_chan_resources = d40_free_chan_resources;
 | |
| 	dev->device_issue_pending = d40_issue_pending;
 | |
| 	dev->device_tx_status = d40_tx_status;
 | |
| 	dev->device_control = d40_control;
 | |
| 	dev->dev = base->dev;
 | |
| }
 | |
| 
 | |
| static int __init d40_dmaengine_init(struct d40_base *base,
 | |
| 				     int num_reserved_chans)
 | |
| {
 | |
| 	int err ;
 | |
| 
 | |
| 	d40_chan_init(base, &base->dma_slave, base->log_chans,
 | |
| 		      0, base->num_log_chans);
 | |
| 
 | |
| 	dma_cap_zero(base->dma_slave.cap_mask);
 | |
| 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
 | |
| 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
 | |
| 
 | |
| 	d40_ops_init(base, &base->dma_slave);
 | |
| 
 | |
| 	err = dma_async_device_register(&base->dma_slave);
 | |
| 
 | |
| 	if (err) {
 | |
| 		d40_err(base->dev, "Failed to register slave channels\n");
 | |
| 		goto failure1;
 | |
| 	}
 | |
| 
 | |
| 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
 | |
| 		      base->num_log_chans, base->plat_data->memcpy_len);
 | |
| 
 | |
| 	dma_cap_zero(base->dma_memcpy.cap_mask);
 | |
| 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
 | |
| 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
 | |
| 
 | |
| 	d40_ops_init(base, &base->dma_memcpy);
 | |
| 
 | |
| 	err = dma_async_device_register(&base->dma_memcpy);
 | |
| 
 | |
| 	if (err) {
 | |
| 		d40_err(base->dev,
 | |
| 			"Failed to regsiter memcpy only channels\n");
 | |
| 		goto failure2;
 | |
| 	}
 | |
| 
 | |
| 	d40_chan_init(base, &base->dma_both, base->phy_chans,
 | |
| 		      0, num_reserved_chans);
 | |
| 
 | |
| 	dma_cap_zero(base->dma_both.cap_mask);
 | |
| 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
 | |
| 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
 | |
| 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
 | |
| 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
 | |
| 
 | |
| 	d40_ops_init(base, &base->dma_both);
 | |
| 	err = dma_async_device_register(&base->dma_both);
 | |
| 
 | |
| 	if (err) {
 | |
| 		d40_err(base->dev,
 | |
| 			"Failed to register logical and physical capable channels\n");
 | |
| 		goto failure3;
 | |
| 	}
 | |
| 	return 0;
 | |
| failure3:
 | |
| 	dma_async_device_unregister(&base->dma_memcpy);
 | |
| failure2:
 | |
| 	dma_async_device_unregister(&base->dma_slave);
 | |
| failure1:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Suspend resume functionality */
 | |
| #ifdef CONFIG_PM
 | |
| static int dma40_pm_suspend(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct d40_base *base = platform_get_drvdata(pdev);
 | |
| 	int ret = 0;
 | |
| 	if (!pm_runtime_suspended(dev))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (base->lcpa_regulator)
 | |
| 		ret = regulator_disable(base->lcpa_regulator);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dma40_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct d40_base *base = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	d40_save_restore_registers(base, true);
 | |
| 
 | |
| 	/* Don't disable/enable clocks for v1 due to HW bugs */
 | |
| 	if (base->rev != 1)
 | |
| 		writel_relaxed(base->gcc_pwr_off_mask,
 | |
| 			       base->virtbase + D40_DREG_GCC);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dma40_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct d40_base *base = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	if (base->initialized)
 | |
| 		d40_save_restore_registers(base, false);
 | |
| 
 | |
| 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
 | |
| 		       base->virtbase + D40_DREG_GCC);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dma40_resume(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct d40_base *base = platform_get_drvdata(pdev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (base->lcpa_regulator)
 | |
| 		ret = regulator_enable(base->lcpa_regulator);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops dma40_pm_ops = {
 | |
| 	.suspend		= dma40_pm_suspend,
 | |
| 	.runtime_suspend	= dma40_runtime_suspend,
 | |
| 	.runtime_resume		= dma40_runtime_resume,
 | |
| 	.resume			= dma40_resume,
 | |
| };
 | |
| #define DMA40_PM_OPS	(&dma40_pm_ops)
 | |
| #else
 | |
| #define DMA40_PM_OPS	NULL
 | |
| #endif
 | |
| 
 | |
| /* Initialization functions. */
 | |
| 
 | |
| static int __init d40_phy_res_init(struct d40_base *base)
 | |
| {
 | |
| 	int i;
 | |
| 	int num_phy_chans_avail = 0;
 | |
| 	u32 val[2];
 | |
| 	int odd_even_bit = -2;
 | |
| 	int gcc = D40_DREG_GCC_ENA;
 | |
| 
 | |
| 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
 | |
| 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
 | |
| 
 | |
| 	for (i = 0; i < base->num_phy_chans; i++) {
 | |
| 		base->phy_res[i].num = i;
 | |
| 		odd_even_bit += 2 * ((i % 2) == 0);
 | |
| 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
 | |
| 			/* Mark security only channels as occupied */
 | |
| 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
 | |
| 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
 | |
| 			base->phy_res[i].reserved = true;
 | |
| 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
 | |
| 						       D40_DREG_GCC_SRC);
 | |
| 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
 | |
| 						       D40_DREG_GCC_DST);
 | |
| 
 | |
| 
 | |
| 		} else {
 | |
| 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
 | |
| 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
 | |
| 			base->phy_res[i].reserved = false;
 | |
| 			num_phy_chans_avail++;
 | |
| 		}
 | |
| 		spin_lock_init(&base->phy_res[i].lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Mark disabled channels as occupied */
 | |
| 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
 | |
| 		int chan = base->plat_data->disabled_channels[i];
 | |
| 
 | |
| 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
 | |
| 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
 | |
| 		base->phy_res[chan].reserved = true;
 | |
| 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
 | |
| 					       D40_DREG_GCC_SRC);
 | |
| 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
 | |
| 					       D40_DREG_GCC_DST);
 | |
| 		num_phy_chans_avail--;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
 | |
| 		 num_phy_chans_avail, base->num_phy_chans);
 | |
| 
 | |
| 	/* Verify settings extended vs standard */
 | |
| 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
 | |
| 
 | |
| 	for (i = 0; i < base->num_phy_chans; i++) {
 | |
| 
 | |
| 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
 | |
| 		    (val[0] & 0x3) != 1)
 | |
| 			dev_info(base->dev,
 | |
| 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
 | |
| 				 __func__, i, val[0] & 0x3);
 | |
| 
 | |
| 		val[0] = val[0] >> 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * To keep things simple, Enable all clocks initially.
 | |
| 	 * The clocks will get managed later post channel allocation.
 | |
| 	 * The clocks for the event lines on which reserved channels exists
 | |
| 	 * are not managed here.
 | |
| 	 */
 | |
| 	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
 | |
| 	base->gcc_pwr_off_mask = gcc;
 | |
| 
 | |
| 	return num_phy_chans_avail;
 | |
| }
 | |
| 
 | |
| static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
 | |
| {
 | |
| 	struct stedma40_platform_data *plat_data;
 | |
| 	struct clk *clk = NULL;
 | |
| 	void __iomem *virtbase = NULL;
 | |
| 	struct resource *res = NULL;
 | |
| 	struct d40_base *base = NULL;
 | |
| 	int num_log_chans = 0;
 | |
| 	int num_phy_chans;
 | |
| 	int i;
 | |
| 	u32 pid;
 | |
| 	u32 cid;
 | |
| 	u8 rev;
 | |
| 
 | |
| 	clk = clk_get(&pdev->dev, NULL);
 | |
| 
 | |
| 	if (IS_ERR(clk)) {
 | |
| 		d40_err(&pdev->dev, "No matching clock found\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	clk_enable(clk);
 | |
| 
 | |
| 	/* Get IO for DMAC base address */
 | |
| 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
 | |
| 	if (!res)
 | |
| 		goto failure;
 | |
| 
 | |
| 	if (request_mem_region(res->start, resource_size(res),
 | |
| 			       D40_NAME " I/O base") == NULL)
 | |
| 		goto failure;
 | |
| 
 | |
| 	virtbase = ioremap(res->start, resource_size(res));
 | |
| 	if (!virtbase)
 | |
| 		goto failure;
 | |
| 
 | |
| 	/* This is just a regular AMBA PrimeCell ID actually */
 | |
| 	for (pid = 0, i = 0; i < 4; i++)
 | |
| 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
 | |
| 			& 255) << (i * 8);
 | |
| 	for (cid = 0, i = 0; i < 4; i++)
 | |
| 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
 | |
| 			& 255) << (i * 8);
 | |
| 
 | |
| 	if (cid != AMBA_CID) {
 | |
| 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
 | |
| 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
 | |
| 			AMBA_MANF_BITS(pid),
 | |
| 			AMBA_VENDOR_ST);
 | |
| 		goto failure;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * HW revision:
 | |
| 	 * DB8500ed has revision 0
 | |
| 	 * ? has revision 1
 | |
| 	 * DB8500v1 has revision 2
 | |
| 	 * DB8500v2 has revision 3
 | |
| 	 */
 | |
| 	rev = AMBA_REV_BITS(pid);
 | |
| 
 | |
| 	/* The number of physical channels on this HW */
 | |
| 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
 | |
| 
 | |
| 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
 | |
| 		 rev, res->start);
 | |
| 
 | |
| 	plat_data = pdev->dev.platform_data;
 | |
| 
 | |
| 	/* Count the number of logical channels in use */
 | |
| 	for (i = 0; i < plat_data->dev_len; i++)
 | |
| 		if (plat_data->dev_rx[i] != 0)
 | |
| 			num_log_chans++;
 | |
| 
 | |
| 	for (i = 0; i < plat_data->dev_len; i++)
 | |
| 		if (plat_data->dev_tx[i] != 0)
 | |
| 			num_log_chans++;
 | |
| 
 | |
| 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
 | |
| 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
 | |
| 		       sizeof(struct d40_chan), GFP_KERNEL);
 | |
| 
 | |
| 	if (base == NULL) {
 | |
| 		d40_err(&pdev->dev, "Out of memory\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	base->rev = rev;
 | |
| 	base->clk = clk;
 | |
| 	base->num_phy_chans = num_phy_chans;
 | |
| 	base->num_log_chans = num_log_chans;
 | |
| 	base->phy_start = res->start;
 | |
| 	base->phy_size = resource_size(res);
 | |
| 	base->virtbase = virtbase;
 | |
| 	base->plat_data = plat_data;
 | |
| 	base->dev = &pdev->dev;
 | |
| 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
 | |
| 	base->log_chans = &base->phy_chans[num_phy_chans];
 | |
| 
 | |
| 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!base->phy_res)
 | |
| 		goto failure;
 | |
| 
 | |
| 	base->lookup_phy_chans = kzalloc(num_phy_chans *
 | |
| 					 sizeof(struct d40_chan *),
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!base->lookup_phy_chans)
 | |
| 		goto failure;
 | |
| 
 | |
| 	if (num_log_chans + plat_data->memcpy_len) {
 | |
| 		/*
 | |
| 		 * The max number of logical channels are event lines for all
 | |
| 		 * src devices and dst devices
 | |
| 		 */
 | |
| 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
 | |
| 						 sizeof(struct d40_chan *),
 | |
| 						 GFP_KERNEL);
 | |
| 		if (!base->lookup_log_chans)
 | |
| 			goto failure;
 | |
| 	}
 | |
| 
 | |
| 	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
 | |
| 					    sizeof(d40_backup_regs_chan),
 | |
| 					    GFP_KERNEL);
 | |
| 	if (!base->reg_val_backup_chan)
 | |
| 		goto failure;
 | |
| 
 | |
| 	base->lcla_pool.alloc_map =
 | |
| 		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
 | |
| 			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
 | |
| 	if (!base->lcla_pool.alloc_map)
 | |
| 		goto failure;
 | |
| 
 | |
| 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
 | |
| 					    0, SLAB_HWCACHE_ALIGN,
 | |
| 					    NULL);
 | |
| 	if (base->desc_slab == NULL)
 | |
| 		goto failure;
 | |
| 
 | |
| 	return base;
 | |
| 
 | |
| failure:
 | |
| 	if (!IS_ERR(clk)) {
 | |
| 		clk_disable(clk);
 | |
| 		clk_put(clk);
 | |
| 	}
 | |
| 	if (virtbase)
 | |
| 		iounmap(virtbase);
 | |
| 	if (res)
 | |
| 		release_mem_region(res->start,
 | |
| 				   resource_size(res));
 | |
| 	if (virtbase)
 | |
| 		iounmap(virtbase);
 | |
| 
 | |
| 	if (base) {
 | |
| 		kfree(base->lcla_pool.alloc_map);
 | |
| 		kfree(base->lookup_log_chans);
 | |
| 		kfree(base->lookup_phy_chans);
 | |
| 		kfree(base->phy_res);
 | |
| 		kfree(base);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __init d40_hw_init(struct d40_base *base)
 | |
| {
 | |
| 
 | |
| 	static struct d40_reg_val dma_init_reg[] = {
 | |
| 		/* Clock every part of the DMA block from start */
 | |
| 		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 | |
| 
 | |
| 		/* Interrupts on all logical channels */
 | |
| 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 | |
| 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 | |
| 	};
 | |
| 	int i;
 | |
| 	u32 prmseo[2] = {0, 0};
 | |
| 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
 | |
| 	u32 pcmis = 0;
 | |
| 	u32 pcicr = 0;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
 | |
| 		writel(dma_init_reg[i].val,
 | |
| 		       base->virtbase + dma_init_reg[i].reg);
 | |
| 
 | |
| 	/* Configure all our dma channels to default settings */
 | |
| 	for (i = 0; i < base->num_phy_chans; i++) {
 | |
| 
 | |
| 		activeo[i % 2] = activeo[i % 2] << 2;
 | |
| 
 | |
| 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
 | |
| 		    == D40_ALLOC_PHY) {
 | |
| 			activeo[i % 2] |= 3;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Enable interrupt # */
 | |
| 		pcmis = (pcmis << 1) | 1;
 | |
| 
 | |
| 		/* Clear interrupt # */
 | |
| 		pcicr = (pcicr << 1) | 1;
 | |
| 
 | |
| 		/* Set channel to physical mode */
 | |
| 		prmseo[i % 2] = prmseo[i % 2] << 2;
 | |
| 		prmseo[i % 2] |= 1;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
 | |
| 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
 | |
| 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
 | |
| 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
 | |
| 
 | |
| 	/* Write which interrupt to enable */
 | |
| 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
 | |
| 
 | |
| 	/* Write which interrupt to clear */
 | |
| 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int __init d40_lcla_allocate(struct d40_base *base)
 | |
| {
 | |
| 	struct d40_lcla_pool *pool = &base->lcla_pool;
 | |
| 	unsigned long *page_list;
 | |
| 	int i, j;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
 | |
| 	 * To full fill this hardware requirement without wasting 256 kb
 | |
| 	 * we allocate pages until we get an aligned one.
 | |
| 	 */
 | |
| 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
 | |
| 			    GFP_KERNEL);
 | |
| 
 | |
| 	if (!page_list) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculating how many pages that are required */
 | |
| 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
 | |
| 
 | |
| 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
 | |
| 		page_list[i] = __get_free_pages(GFP_KERNEL,
 | |
| 						base->lcla_pool.pages);
 | |
| 		if (!page_list[i]) {
 | |
| 
 | |
| 			d40_err(base->dev, "Failed to allocate %d pages.\n",
 | |
| 				base->lcla_pool.pages);
 | |
| 
 | |
| 			for (j = 0; j < i; j++)
 | |
| 				free_pages(page_list[j], base->lcla_pool.pages);
 | |
| 			goto failure;
 | |
| 		}
 | |
| 
 | |
| 		if ((virt_to_phys((void *)page_list[i]) &
 | |
| 		     (LCLA_ALIGNMENT - 1)) == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < i; j++)
 | |
| 		free_pages(page_list[j], base->lcla_pool.pages);
 | |
| 
 | |
| 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
 | |
| 		base->lcla_pool.base = (void *)page_list[i];
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * After many attempts and no succees with finding the correct
 | |
| 		 * alignment, try with allocating a big buffer.
 | |
| 		 */
 | |
| 		dev_warn(base->dev,
 | |
| 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
 | |
| 			 __func__, base->lcla_pool.pages);
 | |
| 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
 | |
| 							 base->num_phy_chans +
 | |
| 							 LCLA_ALIGNMENT,
 | |
| 							 GFP_KERNEL);
 | |
| 		if (!base->lcla_pool.base_unaligned) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto failure;
 | |
| 		}
 | |
| 
 | |
| 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
 | |
| 						 LCLA_ALIGNMENT);
 | |
| 	}
 | |
| 
 | |
| 	pool->dma_addr = dma_map_single(base->dev, pool->base,
 | |
| 					SZ_1K * base->num_phy_chans,
 | |
| 					DMA_TO_DEVICE);
 | |
| 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
 | |
| 		pool->dma_addr = 0;
 | |
| 		ret = -ENOMEM;
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	writel(virt_to_phys(base->lcla_pool.base),
 | |
| 	       base->virtbase + D40_DREG_LCLA);
 | |
| failure:
 | |
| 	kfree(page_list);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init d40_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	int err;
 | |
| 	int ret = -ENOENT;
 | |
| 	struct d40_base *base;
 | |
| 	struct resource *res = NULL;
 | |
| 	int num_reserved_chans;
 | |
| 	u32 val;
 | |
| 
 | |
| 	base = d40_hw_detect_init(pdev);
 | |
| 
 | |
| 	if (!base)
 | |
| 		goto failure;
 | |
| 
 | |
| 	num_reserved_chans = d40_phy_res_init(base);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, base);
 | |
| 
 | |
| 	spin_lock_init(&base->interrupt_lock);
 | |
| 	spin_lock_init(&base->execmd_lock);
 | |
| 
 | |
| 	/* Get IO for logical channel parameter address */
 | |
| 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
 | |
| 	if (!res) {
 | |
| 		ret = -ENOENT;
 | |
| 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 	base->lcpa_size = resource_size(res);
 | |
| 	base->phy_lcpa = res->start;
 | |
| 
 | |
| 	if (request_mem_region(res->start, resource_size(res),
 | |
| 			       D40_NAME " I/O lcpa") == NULL) {
 | |
| 		ret = -EBUSY;
 | |
| 		d40_err(&pdev->dev,
 | |
| 			"Failed to request LCPA region 0x%x-0x%x\n",
 | |
| 			res->start, res->end);
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	/* We make use of ESRAM memory for this. */
 | |
| 	val = readl(base->virtbase + D40_DREG_LCPA);
 | |
| 	if (res->start != val && val != 0) {
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
 | |
| 			 __func__, val, res->start);
 | |
| 	} else
 | |
| 		writel(res->start, base->virtbase + D40_DREG_LCPA);
 | |
| 
 | |
| 	base->lcpa_base = ioremap(res->start, resource_size(res));
 | |
| 	if (!base->lcpa_base) {
 | |
| 		ret = -ENOMEM;
 | |
| 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 	/* If lcla has to be located in ESRAM we don't need to allocate */
 | |
| 	if (base->plat_data->use_esram_lcla) {
 | |
| 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 | |
| 							"lcla_esram");
 | |
| 		if (!res) {
 | |
| 			ret = -ENOENT;
 | |
| 			d40_err(&pdev->dev,
 | |
| 				"No \"lcla_esram\" memory resource\n");
 | |
| 			goto failure;
 | |
| 		}
 | |
| 		base->lcla_pool.base = ioremap(res->start,
 | |
| 						resource_size(res));
 | |
| 		if (!base->lcla_pool.base) {
 | |
| 			ret = -ENOMEM;
 | |
| 			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
 | |
| 			goto failure;
 | |
| 		}
 | |
| 		writel(res->start, base->virtbase + D40_DREG_LCLA);
 | |
| 
 | |
| 	} else {
 | |
| 		ret = d40_lcla_allocate(base);
 | |
| 		if (ret) {
 | |
| 			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
 | |
| 			goto failure;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&base->lcla_pool.lock);
 | |
| 
 | |
| 	base->irq = platform_get_irq(pdev, 0);
 | |
| 
 | |
| 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
 | |
| 	if (ret) {
 | |
| 		d40_err(&pdev->dev, "No IRQ defined\n");
 | |
| 		goto failure;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_irq_safe(base->dev);
 | |
| 	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
 | |
| 	pm_runtime_use_autosuspend(base->dev);
 | |
| 	pm_runtime_enable(base->dev);
 | |
| 	pm_runtime_resume(base->dev);
 | |
| 
 | |
| 	if (base->plat_data->use_esram_lcla) {
 | |
| 
 | |
| 		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
 | |
| 		if (IS_ERR(base->lcpa_regulator)) {
 | |
| 			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
 | |
| 			base->lcpa_regulator = NULL;
 | |
| 			goto failure;
 | |
| 		}
 | |
| 
 | |
| 		ret = regulator_enable(base->lcpa_regulator);
 | |
| 		if (ret) {
 | |
| 			d40_err(&pdev->dev,
 | |
| 				"Failed to enable lcpa_regulator\n");
 | |
| 			regulator_put(base->lcpa_regulator);
 | |
| 			base->lcpa_regulator = NULL;
 | |
| 			goto failure;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	base->initialized = true;
 | |
| 	err = d40_dmaengine_init(base, num_reserved_chans);
 | |
| 	if (err)
 | |
| 		goto failure;
 | |
| 
 | |
| 	d40_hw_init(base);
 | |
| 
 | |
| 	dev_info(base->dev, "initialized\n");
 | |
| 	return 0;
 | |
| 
 | |
| failure:
 | |
| 	if (base) {
 | |
| 		if (base->desc_slab)
 | |
| 			kmem_cache_destroy(base->desc_slab);
 | |
| 		if (base->virtbase)
 | |
| 			iounmap(base->virtbase);
 | |
| 
 | |
| 		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
 | |
| 			iounmap(base->lcla_pool.base);
 | |
| 			base->lcla_pool.base = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (base->lcla_pool.dma_addr)
 | |
| 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
 | |
| 					 SZ_1K * base->num_phy_chans,
 | |
| 					 DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
 | |
| 			free_pages((unsigned long)base->lcla_pool.base,
 | |
| 				   base->lcla_pool.pages);
 | |
| 
 | |
| 		kfree(base->lcla_pool.base_unaligned);
 | |
| 
 | |
| 		if (base->phy_lcpa)
 | |
| 			release_mem_region(base->phy_lcpa,
 | |
| 					   base->lcpa_size);
 | |
| 		if (base->phy_start)
 | |
| 			release_mem_region(base->phy_start,
 | |
| 					   base->phy_size);
 | |
| 		if (base->clk) {
 | |
| 			clk_disable(base->clk);
 | |
| 			clk_put(base->clk);
 | |
| 		}
 | |
| 
 | |
| 		if (base->lcpa_regulator) {
 | |
| 			regulator_disable(base->lcpa_regulator);
 | |
| 			regulator_put(base->lcpa_regulator);
 | |
| 		}
 | |
| 
 | |
| 		kfree(base->lcla_pool.alloc_map);
 | |
| 		kfree(base->lookup_log_chans);
 | |
| 		kfree(base->lookup_phy_chans);
 | |
| 		kfree(base->phy_res);
 | |
| 		kfree(base);
 | |
| 	}
 | |
| 
 | |
| 	d40_err(&pdev->dev, "probe failed\n");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct platform_driver d40_driver = {
 | |
| 	.driver = {
 | |
| 		.owner = THIS_MODULE,
 | |
| 		.name  = D40_NAME,
 | |
| 		.pm = DMA40_PM_OPS,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init stedma40_init(void)
 | |
| {
 | |
| 	return platform_driver_probe(&d40_driver, d40_probe);
 | |
| }
 | |
| subsys_initcall(stedma40_init);
 |