 c39cc377f9
			
		
	
	
	c39cc377f9
	
	
	
		
			
			When loading aes via the module alias, a padlock module failing to load due to missing hardware is not particularly notable. With v2.6.27-rc1~1107^2~14 (crypto: padlock - Make module loading quieter when hardware isn't available, 2008-07-03), the padlock-aes module suppresses the relevant messages when the "quiet" flag is in use; but better to suppress this particular message completely, since the administrator can already distinguish such errors by the absence of a message indicating initialization failing or succeeding. This avoids occasional messages in syslog of the form padlock_aes: VIA PadLock not detected. Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			562 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			562 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * Cryptographic API.
 | |
|  *
 | |
|  * Support for VIA PadLock hardware crypto engine.
 | |
|  *
 | |
|  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/padlock.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/i387.h>
 | |
| 
 | |
| /*
 | |
|  * Number of data blocks actually fetched for each xcrypt insn.
 | |
|  * Processors with prefetch errata will fetch extra blocks.
 | |
|  */
 | |
| static unsigned int ecb_fetch_blocks = 2;
 | |
| #define MAX_ECB_FETCH_BLOCKS (8)
 | |
| #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 | |
| 
 | |
| static unsigned int cbc_fetch_blocks = 1;
 | |
| #define MAX_CBC_FETCH_BLOCKS (4)
 | |
| #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 | |
| 
 | |
| /* Control word. */
 | |
| struct cword {
 | |
| 	unsigned int __attribute__ ((__packed__))
 | |
| 		rounds:4,
 | |
| 		algo:3,
 | |
| 		keygen:1,
 | |
| 		interm:1,
 | |
| 		encdec:1,
 | |
| 		ksize:2;
 | |
| } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | |
| 
 | |
| /* Whenever making any changes to the following
 | |
|  * structure *make sure* you keep E, d_data
 | |
|  * and cword aligned on 16 Bytes boundaries and
 | |
|  * the Hardware can access 16 * 16 bytes of E and d_data
 | |
|  * (only the first 15 * 16 bytes matter but the HW reads
 | |
|  * more).
 | |
|  */
 | |
| struct aes_ctx {
 | |
| 	u32 E[AES_MAX_KEYLENGTH_U32]
 | |
| 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | |
| 	u32 d_data[AES_MAX_KEYLENGTH_U32]
 | |
| 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | |
| 	struct {
 | |
| 		struct cword encrypt;
 | |
| 		struct cword decrypt;
 | |
| 	} cword;
 | |
| 	u32 *D;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 | |
| 
 | |
| /* Tells whether the ACE is capable to generate
 | |
|    the extended key for a given key_len. */
 | |
| static inline int
 | |
| aes_hw_extkey_available(uint8_t key_len)
 | |
| {
 | |
| 	/* TODO: We should check the actual CPU model/stepping
 | |
| 	         as it's possible that the capability will be
 | |
| 	         added in the next CPU revisions. */
 | |
| 	if (key_len == 16)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct aes_ctx *aes_ctx_common(void *ctx)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)ctx;
 | |
| 	unsigned long align = PADLOCK_ALIGNMENT;
 | |
| 
 | |
| 	if (align <= crypto_tfm_ctx_alignment())
 | |
| 		align = 1;
 | |
| 	return (struct aes_ctx *)ALIGN(addr, align);
 | |
| }
 | |
| 
 | |
| static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return aes_ctx_common(crypto_tfm_ctx(tfm));
 | |
| }
 | |
| 
 | |
| static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
 | |
| }
 | |
| 
 | |
| static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 | |
| 		       unsigned int key_len)
 | |
| {
 | |
| 	struct aes_ctx *ctx = aes_ctx(tfm);
 | |
| 	const __le32 *key = (const __le32 *)in_key;
 | |
| 	u32 *flags = &tfm->crt_flags;
 | |
| 	struct crypto_aes_ctx gen_aes;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (key_len % 8) {
 | |
| 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hardware is capable of generating the extended key
 | |
| 	 * itself we must supply the plain key for both encryption
 | |
| 	 * and decryption.
 | |
| 	 */
 | |
| 	ctx->D = ctx->E;
 | |
| 
 | |
| 	ctx->E[0] = le32_to_cpu(key[0]);
 | |
| 	ctx->E[1] = le32_to_cpu(key[1]);
 | |
| 	ctx->E[2] = le32_to_cpu(key[2]);
 | |
| 	ctx->E[3] = le32_to_cpu(key[3]);
 | |
| 
 | |
| 	/* Prepare control words. */
 | |
| 	memset(&ctx->cword, 0, sizeof(ctx->cword));
 | |
| 
 | |
| 	ctx->cword.decrypt.encdec = 1;
 | |
| 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
 | |
| 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
 | |
| 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
 | |
| 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
 | |
| 
 | |
| 	/* Don't generate extended keys if the hardware can do it. */
 | |
| 	if (aes_hw_extkey_available(key_len))
 | |
| 		goto ok;
 | |
| 
 | |
| 	ctx->D = ctx->d_data;
 | |
| 	ctx->cword.encrypt.keygen = 1;
 | |
| 	ctx->cword.decrypt.keygen = 1;
 | |
| 
 | |
| 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
 | |
| 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
 | |
| 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
 | |
| 
 | |
| ok:
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
 | |
| 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
 | |
| 			per_cpu(paes_last_cword, cpu) = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ====== Encryption/decryption routines ====== */
 | |
| 
 | |
| /* These are the real call to PadLock. */
 | |
| static inline void padlock_reset_key(struct cword *cword)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	if (cword != per_cpu(paes_last_cword, cpu))
 | |
| #ifndef CONFIG_X86_64
 | |
| 		asm volatile ("pushfl; popfl");
 | |
| #else
 | |
| 		asm volatile ("pushfq; popfq");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void padlock_store_cword(struct cword *cword)
 | |
| {
 | |
| 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While the padlock instructions don't use FP/SSE registers, they
 | |
|  * generate a spurious DNA fault when cr0.ts is '1'. These instructions
 | |
|  * should be used only inside the irq_ts_save/restore() context
 | |
|  */
 | |
| 
 | |
| static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
 | |
| 				  struct cword *control_word, int count)
 | |
| {
 | |
| 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
 | |
| 		      : "+S"(input), "+D"(output)
 | |
| 		      : "d"(control_word), "b"(key), "c"(count));
 | |
| }
 | |
| 
 | |
| static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
 | |
| 				 u8 *iv, struct cword *control_word, int count)
 | |
| {
 | |
| 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
 | |
| 		      : "+S" (input), "+D" (output), "+a" (iv)
 | |
| 		      : "d" (control_word), "b" (key), "c" (count));
 | |
| 	return iv;
 | |
| }
 | |
| 
 | |
| static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
 | |
| 			   struct cword *cword, int count)
 | |
| {
 | |
| 	/*
 | |
| 	 * Padlock prefetches extra data so we must provide mapped input buffers.
 | |
| 	 * Assume there are at least 16 bytes of stack already in use.
 | |
| 	 */
 | |
| 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
 | |
| 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
 | |
| 
 | |
| 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
 | |
| 	rep_xcrypt_ecb(tmp, out, key, cword, count);
 | |
| }
 | |
| 
 | |
| static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
 | |
| 			   u8 *iv, struct cword *cword, int count)
 | |
| {
 | |
| 	/*
 | |
| 	 * Padlock prefetches extra data so we must provide mapped input buffers.
 | |
| 	 * Assume there are at least 16 bytes of stack already in use.
 | |
| 	 */
 | |
| 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
 | |
| 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
 | |
| 
 | |
| 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
 | |
| 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
 | |
| }
 | |
| 
 | |
| static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
 | |
| 			     struct cword *cword, int count)
 | |
| {
 | |
| 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
 | |
| 	 * We could avoid some copying here but it's probably not worth it.
 | |
| 	 */
 | |
| 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
 | |
| 		ecb_crypt_copy(in, out, key, cword, count);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rep_xcrypt_ecb(in, out, key, cword, count);
 | |
| }
 | |
| 
 | |
| static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
 | |
| 			    u8 *iv, struct cword *cword, int count)
 | |
| {
 | |
| 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
 | |
| 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
 | |
| 		return cbc_crypt_copy(in, out, key, iv, cword, count);
 | |
| 
 | |
| 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
 | |
| }
 | |
| 
 | |
| static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
 | |
| 				      void *control_word, u32 count)
 | |
| {
 | |
| 	u32 initial = count & (ecb_fetch_blocks - 1);
 | |
| 
 | |
| 	if (count < ecb_fetch_blocks) {
 | |
| 		ecb_crypt(input, output, key, control_word, count);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (initial)
 | |
| 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
 | |
| 			      : "+S"(input), "+D"(output)
 | |
| 			      : "d"(control_word), "b"(key), "c"(initial));
 | |
| 
 | |
| 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
 | |
| 		      : "+S"(input), "+D"(output)
 | |
| 		      : "d"(control_word), "b"(key), "c"(count - initial));
 | |
| }
 | |
| 
 | |
| static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
 | |
| 				     u8 *iv, void *control_word, u32 count)
 | |
| {
 | |
| 	u32 initial = count & (cbc_fetch_blocks - 1);
 | |
| 
 | |
| 	if (count < cbc_fetch_blocks)
 | |
| 		return cbc_crypt(input, output, key, iv, control_word, count);
 | |
| 
 | |
| 	if (initial)
 | |
| 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
 | |
| 			      : "+S" (input), "+D" (output), "+a" (iv)
 | |
| 			      : "d" (control_word), "b" (key), "c" (initial));
 | |
| 
 | |
| 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
 | |
| 		      : "+S" (input), "+D" (output), "+a" (iv)
 | |
| 		      : "d" (control_word), "b" (key), "c" (count-initial));
 | |
| 	return iv;
 | |
| }
 | |
| 
 | |
| static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | |
| {
 | |
| 	struct aes_ctx *ctx = aes_ctx(tfm);
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.encrypt);
 | |
| 	ts_state = irq_ts_save();
 | |
| 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
 | |
| 	irq_ts_restore(ts_state);
 | |
| 	padlock_store_cword(&ctx->cword.encrypt);
 | |
| }
 | |
| 
 | |
| static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | |
| {
 | |
| 	struct aes_ctx *ctx = aes_ctx(tfm);
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.encrypt);
 | |
| 	ts_state = irq_ts_save();
 | |
| 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
 | |
| 	irq_ts_restore(ts_state);
 | |
| 	padlock_store_cword(&ctx->cword.encrypt);
 | |
| }
 | |
| 
 | |
| static struct crypto_alg aes_alg = {
 | |
| 	.cra_name		=	"aes",
 | |
| 	.cra_driver_name	=	"aes-padlock",
 | |
| 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | |
| 	.cra_blocksize		=	AES_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | |
| 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
 | |
| 	.cra_u			=	{
 | |
| 		.cipher = {
 | |
| 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
 | |
| 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
 | |
| 			.cia_setkey	   	= 	aes_set_key,
 | |
| 			.cia_encrypt	 	=	aes_encrypt,
 | |
| 			.cia_decrypt	  	=	aes_decrypt,
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static int ecb_aes_encrypt(struct blkcipher_desc *desc,
 | |
| 			   struct scatterlist *dst, struct scatterlist *src,
 | |
| 			   unsigned int nbytes)
 | |
| {
 | |
| 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | |
| 	struct blkcipher_walk walk;
 | |
| 	int err;
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.encrypt);
 | |
| 
 | |
| 	blkcipher_walk_init(&walk, dst, src, nbytes);
 | |
| 	err = blkcipher_walk_virt(desc, &walk);
 | |
| 
 | |
| 	ts_state = irq_ts_save();
 | |
| 	while ((nbytes = walk.nbytes)) {
 | |
| 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 | |
| 				   ctx->E, &ctx->cword.encrypt,
 | |
| 				   nbytes / AES_BLOCK_SIZE);
 | |
| 		nbytes &= AES_BLOCK_SIZE - 1;
 | |
| 		err = blkcipher_walk_done(desc, &walk, nbytes);
 | |
| 	}
 | |
| 	irq_ts_restore(ts_state);
 | |
| 
 | |
| 	padlock_store_cword(&ctx->cword.encrypt);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ecb_aes_decrypt(struct blkcipher_desc *desc,
 | |
| 			   struct scatterlist *dst, struct scatterlist *src,
 | |
| 			   unsigned int nbytes)
 | |
| {
 | |
| 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | |
| 	struct blkcipher_walk walk;
 | |
| 	int err;
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.decrypt);
 | |
| 
 | |
| 	blkcipher_walk_init(&walk, dst, src, nbytes);
 | |
| 	err = blkcipher_walk_virt(desc, &walk);
 | |
| 
 | |
| 	ts_state = irq_ts_save();
 | |
| 	while ((nbytes = walk.nbytes)) {
 | |
| 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 | |
| 				   ctx->D, &ctx->cword.decrypt,
 | |
| 				   nbytes / AES_BLOCK_SIZE);
 | |
| 		nbytes &= AES_BLOCK_SIZE - 1;
 | |
| 		err = blkcipher_walk_done(desc, &walk, nbytes);
 | |
| 	}
 | |
| 	irq_ts_restore(ts_state);
 | |
| 
 | |
| 	padlock_store_cword(&ctx->cword.encrypt);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct crypto_alg ecb_aes_alg = {
 | |
| 	.cra_name		=	"ecb(aes)",
 | |
| 	.cra_driver_name	=	"ecb-aes-padlock",
 | |
| 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
 | |
| 	.cra_blocksize		=	AES_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | |
| 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | |
| 	.cra_type		=	&crypto_blkcipher_type,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
 | |
| 	.cra_u			=	{
 | |
| 		.blkcipher = {
 | |
| 			.min_keysize		=	AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize		=	AES_MAX_KEY_SIZE,
 | |
| 			.setkey	   		= 	aes_set_key,
 | |
| 			.encrypt		=	ecb_aes_encrypt,
 | |
| 			.decrypt		=	ecb_aes_decrypt,
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static int cbc_aes_encrypt(struct blkcipher_desc *desc,
 | |
| 			   struct scatterlist *dst, struct scatterlist *src,
 | |
| 			   unsigned int nbytes)
 | |
| {
 | |
| 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | |
| 	struct blkcipher_walk walk;
 | |
| 	int err;
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.encrypt);
 | |
| 
 | |
| 	blkcipher_walk_init(&walk, dst, src, nbytes);
 | |
| 	err = blkcipher_walk_virt(desc, &walk);
 | |
| 
 | |
| 	ts_state = irq_ts_save();
 | |
| 	while ((nbytes = walk.nbytes)) {
 | |
| 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
 | |
| 					    walk.dst.virt.addr, ctx->E,
 | |
| 					    walk.iv, &ctx->cword.encrypt,
 | |
| 					    nbytes / AES_BLOCK_SIZE);
 | |
| 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
 | |
| 		nbytes &= AES_BLOCK_SIZE - 1;
 | |
| 		err = blkcipher_walk_done(desc, &walk, nbytes);
 | |
| 	}
 | |
| 	irq_ts_restore(ts_state);
 | |
| 
 | |
| 	padlock_store_cword(&ctx->cword.decrypt);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cbc_aes_decrypt(struct blkcipher_desc *desc,
 | |
| 			   struct scatterlist *dst, struct scatterlist *src,
 | |
| 			   unsigned int nbytes)
 | |
| {
 | |
| 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | |
| 	struct blkcipher_walk walk;
 | |
| 	int err;
 | |
| 	int ts_state;
 | |
| 
 | |
| 	padlock_reset_key(&ctx->cword.encrypt);
 | |
| 
 | |
| 	blkcipher_walk_init(&walk, dst, src, nbytes);
 | |
| 	err = blkcipher_walk_virt(desc, &walk);
 | |
| 
 | |
| 	ts_state = irq_ts_save();
 | |
| 	while ((nbytes = walk.nbytes)) {
 | |
| 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
 | |
| 				   ctx->D, walk.iv, &ctx->cword.decrypt,
 | |
| 				   nbytes / AES_BLOCK_SIZE);
 | |
| 		nbytes &= AES_BLOCK_SIZE - 1;
 | |
| 		err = blkcipher_walk_done(desc, &walk, nbytes);
 | |
| 	}
 | |
| 
 | |
| 	irq_ts_restore(ts_state);
 | |
| 
 | |
| 	padlock_store_cword(&ctx->cword.encrypt);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct crypto_alg cbc_aes_alg = {
 | |
| 	.cra_name		=	"cbc(aes)",
 | |
| 	.cra_driver_name	=	"cbc-aes-padlock",
 | |
| 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
 | |
| 	.cra_blocksize		=	AES_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | |
| 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | |
| 	.cra_type		=	&crypto_blkcipher_type,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
 | |
| 	.cra_u			=	{
 | |
| 		.blkcipher = {
 | |
| 			.min_keysize		=	AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize		=	AES_MAX_KEY_SIZE,
 | |
| 			.ivsize			=	AES_BLOCK_SIZE,
 | |
| 			.setkey	   		= 	aes_set_key,
 | |
| 			.encrypt		=	cbc_aes_encrypt,
 | |
| 			.decrypt		=	cbc_aes_decrypt,
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static int __init padlock_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct cpuinfo_x86 *c = &cpu_data(0);
 | |
| 
 | |
| 	if (!cpu_has_xcrypt)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!cpu_has_xcrypt_enabled) {
 | |
| 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if ((ret = crypto_register_alg(&aes_alg)))
 | |
| 		goto aes_err;
 | |
| 
 | |
| 	if ((ret = crypto_register_alg(&ecb_aes_alg)))
 | |
| 		goto ecb_aes_err;
 | |
| 
 | |
| 	if ((ret = crypto_register_alg(&cbc_aes_alg)))
 | |
| 		goto cbc_aes_err;
 | |
| 
 | |
| 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
 | |
| 
 | |
| 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
 | |
| 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
 | |
| 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
 | |
| 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| cbc_aes_err:
 | |
| 	crypto_unregister_alg(&ecb_aes_alg);
 | |
| ecb_aes_err:
 | |
| 	crypto_unregister_alg(&aes_alg);
 | |
| aes_err:
 | |
| 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static void __exit padlock_fini(void)
 | |
| {
 | |
| 	crypto_unregister_alg(&cbc_aes_alg);
 | |
| 	crypto_unregister_alg(&ecb_aes_alg);
 | |
| 	crypto_unregister_alg(&aes_alg);
 | |
| }
 | |
| 
 | |
| module_init(padlock_init);
 | |
| module_exit(padlock_fini);
 | |
| 
 | |
| MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Michal Ludvig");
 | |
| 
 | |
| MODULE_ALIAS("aes");
 |