 02d929502c
			
		
	
	
	02d929502c
	
	
	
		
			
			* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq: (23 commits) [CPUFREQ] EXYNOS: Removed useless headers and codes [CPUFREQ] EXYNOS: Make EXYNOS common cpufreq driver [CPUFREQ] powernow-k8: Update copyright, maintainer and documentation information [CPUFREQ] powernow-k8: Fix indexing issue [CPUFREQ] powernow-k8: Avoid Pstate MSR accesses on systems supporting CPB [CPUFREQ] update lpj only if frequency has changed [CPUFREQ] cpufreq:userspace: fix cpu_cur_freq updation [CPUFREQ] Remove wall variable from cpufreq_gov_dbs_init() [CPUFREQ] EXYNOS4210: cpufreq code is changed for stable working [CPUFREQ] EXYNOS4210: Update frequency table for cpu divider [CPUFREQ] EXYNOS4210: Remove code about bus on cpufreq [CPUFREQ] s3c64xx: Use pr_fmt() for consistent log messages cpufreq: OMAP: fixup for omap_device changes, include <linux/module.h> cpufreq: OMAP: fix freq_table leak cpufreq: OMAP: put clk if cpu_init failed cpufreq: OMAP: only supports OPP library cpufreq: OMAP: dont support !freq_table cpufreq: OMAP: deny initialization if no mpudev cpufreq: OMAP: move clk name decision to init cpufreq: OMAP: notify even with bad boot frequency ...
		
			
				
	
	
		
			758 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			758 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  drivers/cpufreq/cpufreq_ondemand.c
 | |
|  *
 | |
|  *  Copyright (C)  2001 Russell King
 | |
|  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 | |
|  *                      Jun Nakajima <jun.nakajima@intel.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| /*
 | |
|  * dbs is used in this file as a shortform for demandbased switching
 | |
|  * It helps to keep variable names smaller, simpler
 | |
|  */
 | |
| 
 | |
| #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
 | |
| #define DEF_FREQUENCY_UP_THRESHOLD		(80)
 | |
| #define DEF_SAMPLING_DOWN_FACTOR		(1)
 | |
| #define MAX_SAMPLING_DOWN_FACTOR		(100000)
 | |
| #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
 | |
| #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
 | |
| #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
 | |
| #define MIN_FREQUENCY_UP_THRESHOLD		(11)
 | |
| #define MAX_FREQUENCY_UP_THRESHOLD		(100)
 | |
| 
 | |
| /*
 | |
|  * The polling frequency of this governor depends on the capability of
 | |
|  * the processor. Default polling frequency is 1000 times the transition
 | |
|  * latency of the processor. The governor will work on any processor with
 | |
|  * transition latency <= 10mS, using appropriate sampling
 | |
|  * rate.
 | |
|  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 | |
|  * this governor will not work.
 | |
|  * All times here are in uS.
 | |
|  */
 | |
| #define MIN_SAMPLING_RATE_RATIO			(2)
 | |
| 
 | |
| static unsigned int min_sampling_rate;
 | |
| 
 | |
| #define LATENCY_MULTIPLIER			(1000)
 | |
| #define MIN_LATENCY_MULTIPLIER			(100)
 | |
| #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
 | |
| 
 | |
| static void do_dbs_timer(struct work_struct *work);
 | |
| static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 | |
| 				unsigned int event);
 | |
| 
 | |
| #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
 | |
| static
 | |
| #endif
 | |
| struct cpufreq_governor cpufreq_gov_ondemand = {
 | |
|        .name                   = "ondemand",
 | |
|        .governor               = cpufreq_governor_dbs,
 | |
|        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
 | |
|        .owner                  = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| /* Sampling types */
 | |
| enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
 | |
| 
 | |
| struct cpu_dbs_info_s {
 | |
| 	cputime64_t prev_cpu_idle;
 | |
| 	cputime64_t prev_cpu_iowait;
 | |
| 	cputime64_t prev_cpu_wall;
 | |
| 	cputime64_t prev_cpu_nice;
 | |
| 	struct cpufreq_policy *cur_policy;
 | |
| 	struct delayed_work work;
 | |
| 	struct cpufreq_frequency_table *freq_table;
 | |
| 	unsigned int freq_lo;
 | |
| 	unsigned int freq_lo_jiffies;
 | |
| 	unsigned int freq_hi_jiffies;
 | |
| 	unsigned int rate_mult;
 | |
| 	int cpu;
 | |
| 	unsigned int sample_type:1;
 | |
| 	/*
 | |
| 	 * percpu mutex that serializes governor limit change with
 | |
| 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
 | |
| 	 * when user is changing the governor or limits.
 | |
| 	 */
 | |
| 	struct mutex timer_mutex;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
 | |
| 
 | |
| static unsigned int dbs_enable;	/* number of CPUs using this policy */
 | |
| 
 | |
| /*
 | |
|  * dbs_mutex protects dbs_enable in governor start/stop.
 | |
|  */
 | |
| static DEFINE_MUTEX(dbs_mutex);
 | |
| 
 | |
| static struct dbs_tuners {
 | |
| 	unsigned int sampling_rate;
 | |
| 	unsigned int up_threshold;
 | |
| 	unsigned int down_differential;
 | |
| 	unsigned int ignore_nice;
 | |
| 	unsigned int sampling_down_factor;
 | |
| 	unsigned int powersave_bias;
 | |
| 	unsigned int io_is_busy;
 | |
| } dbs_tuners_ins = {
 | |
| 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
 | |
| 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
 | |
| 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
 | |
| 	.ignore_nice = 0,
 | |
| 	.powersave_bias = 0,
 | |
| };
 | |
| 
 | |
| static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 | |
| {
 | |
| 	u64 idle_time;
 | |
| 	u64 cur_wall_time;
 | |
| 	u64 busy_time;
 | |
| 
 | |
| 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 | |
| 
 | |
| 	busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 | |
| 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 | |
| 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 | |
| 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 | |
| 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 | |
| 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 | |
| 
 | |
| 	idle_time = cur_wall_time - busy_time;
 | |
| 	if (wall)
 | |
| 		*wall = jiffies_to_usecs(cur_wall_time);
 | |
| 
 | |
| 	return jiffies_to_usecs(idle_time);
 | |
| }
 | |
| 
 | |
| static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
 | |
| {
 | |
| 	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
 | |
| 
 | |
| 	if (idle_time == -1ULL)
 | |
| 		return get_cpu_idle_time_jiffy(cpu, wall);
 | |
| 	else
 | |
| 		idle_time += get_cpu_iowait_time_us(cpu, wall);
 | |
| 
 | |
| 	return idle_time;
 | |
| }
 | |
| 
 | |
| static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
 | |
| {
 | |
| 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
 | |
| 
 | |
| 	if (iowait_time == -1ULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	return iowait_time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find right freq to be set now with powersave_bias on.
 | |
|  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 | |
|  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 | |
|  */
 | |
| static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
 | |
| 					  unsigned int freq_next,
 | |
| 					  unsigned int relation)
 | |
| {
 | |
| 	unsigned int freq_req, freq_reduc, freq_avg;
 | |
| 	unsigned int freq_hi, freq_lo;
 | |
| 	unsigned int index = 0;
 | |
| 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
 | |
| 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
 | |
| 						   policy->cpu);
 | |
| 
 | |
| 	if (!dbs_info->freq_table) {
 | |
| 		dbs_info->freq_lo = 0;
 | |
| 		dbs_info->freq_lo_jiffies = 0;
 | |
| 		return freq_next;
 | |
| 	}
 | |
| 
 | |
| 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
 | |
| 			relation, &index);
 | |
| 	freq_req = dbs_info->freq_table[index].frequency;
 | |
| 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
 | |
| 	freq_avg = freq_req - freq_reduc;
 | |
| 
 | |
| 	/* Find freq bounds for freq_avg in freq_table */
 | |
| 	index = 0;
 | |
| 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
 | |
| 			CPUFREQ_RELATION_H, &index);
 | |
| 	freq_lo = dbs_info->freq_table[index].frequency;
 | |
| 	index = 0;
 | |
| 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
 | |
| 			CPUFREQ_RELATION_L, &index);
 | |
| 	freq_hi = dbs_info->freq_table[index].frequency;
 | |
| 
 | |
| 	/* Find out how long we have to be in hi and lo freqs */
 | |
| 	if (freq_hi == freq_lo) {
 | |
| 		dbs_info->freq_lo = 0;
 | |
| 		dbs_info->freq_lo_jiffies = 0;
 | |
| 		return freq_lo;
 | |
| 	}
 | |
| 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 | |
| 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
 | |
| 	jiffies_hi += ((freq_hi - freq_lo) / 2);
 | |
| 	jiffies_hi /= (freq_hi - freq_lo);
 | |
| 	jiffies_lo = jiffies_total - jiffies_hi;
 | |
| 	dbs_info->freq_lo = freq_lo;
 | |
| 	dbs_info->freq_lo_jiffies = jiffies_lo;
 | |
| 	dbs_info->freq_hi_jiffies = jiffies_hi;
 | |
| 	return freq_hi;
 | |
| }
 | |
| 
 | |
| static void ondemand_powersave_bias_init_cpu(int cpu)
 | |
| {
 | |
| 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
 | |
| 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
 | |
| 	dbs_info->freq_lo = 0;
 | |
| }
 | |
| 
 | |
| static void ondemand_powersave_bias_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for_each_online_cpu(i) {
 | |
| 		ondemand_powersave_bias_init_cpu(i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /************************** sysfs interface ************************/
 | |
| 
 | |
| static ssize_t show_sampling_rate_min(struct kobject *kobj,
 | |
| 				      struct attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", min_sampling_rate);
 | |
| }
 | |
| 
 | |
| define_one_global_ro(sampling_rate_min);
 | |
| 
 | |
| /* cpufreq_ondemand Governor Tunables */
 | |
| #define show_one(file_name, object)					\
 | |
| static ssize_t show_##file_name						\
 | |
| (struct kobject *kobj, struct attribute *attr, char *buf)              \
 | |
| {									\
 | |
| 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
 | |
| }
 | |
| show_one(sampling_rate, sampling_rate);
 | |
| show_one(io_is_busy, io_is_busy);
 | |
| show_one(up_threshold, up_threshold);
 | |
| show_one(sampling_down_factor, sampling_down_factor);
 | |
| show_one(ignore_nice_load, ignore_nice);
 | |
| show_one(powersave_bias, powersave_bias);
 | |
| 
 | |
| static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 	dbs_tuners_ins.io_is_busy = !!input;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
 | |
| 				  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
 | |
| 			input < MIN_FREQUENCY_UP_THRESHOLD) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	dbs_tuners_ins.up_threshold = input;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_sampling_down_factor(struct kobject *a,
 | |
| 			struct attribute *b, const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input, j;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
 | |
| 		return -EINVAL;
 | |
| 	dbs_tuners_ins.sampling_down_factor = input;
 | |
| 
 | |
| 	/* Reset down sampling multiplier in case it was active */
 | |
| 	for_each_online_cpu(j) {
 | |
| 		struct cpu_dbs_info_s *dbs_info;
 | |
| 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
 | |
| 		dbs_info->rate_mult = 1;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
 | |
| 				      const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (input > 1)
 | |
| 		input = 1;
 | |
| 
 | |
| 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
 | |
| 		return count;
 | |
| 	}
 | |
| 	dbs_tuners_ins.ignore_nice = input;
 | |
| 
 | |
| 	/* we need to re-evaluate prev_cpu_idle */
 | |
| 	for_each_online_cpu(j) {
 | |
| 		struct cpu_dbs_info_s *dbs_info;
 | |
| 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
 | |
| 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
 | |
| 						&dbs_info->prev_cpu_wall);
 | |
| 		if (dbs_tuners_ins.ignore_nice)
 | |
| 			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 | |
| 
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
 | |
| 				    const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (input > 1000)
 | |
| 		input = 1000;
 | |
| 
 | |
| 	dbs_tuners_ins.powersave_bias = input;
 | |
| 	ondemand_powersave_bias_init();
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| define_one_global_rw(sampling_rate);
 | |
| define_one_global_rw(io_is_busy);
 | |
| define_one_global_rw(up_threshold);
 | |
| define_one_global_rw(sampling_down_factor);
 | |
| define_one_global_rw(ignore_nice_load);
 | |
| define_one_global_rw(powersave_bias);
 | |
| 
 | |
| static struct attribute *dbs_attributes[] = {
 | |
| 	&sampling_rate_min.attr,
 | |
| 	&sampling_rate.attr,
 | |
| 	&up_threshold.attr,
 | |
| 	&sampling_down_factor.attr,
 | |
| 	&ignore_nice_load.attr,
 | |
| 	&powersave_bias.attr,
 | |
| 	&io_is_busy.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute_group dbs_attr_group = {
 | |
| 	.attrs = dbs_attributes,
 | |
| 	.name = "ondemand",
 | |
| };
 | |
| 
 | |
| /************************** sysfs end ************************/
 | |
| 
 | |
| static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
 | |
| {
 | |
| 	if (dbs_tuners_ins.powersave_bias)
 | |
| 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
 | |
| 	else if (p->cur == p->max)
 | |
| 		return;
 | |
| 
 | |
| 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
 | |
| 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
 | |
| }
 | |
| 
 | |
| static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
 | |
| {
 | |
| 	unsigned int max_load_freq;
 | |
| 
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	this_dbs_info->freq_lo = 0;
 | |
| 	policy = this_dbs_info->cur_policy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Every sampling_rate, we check, if current idle time is less
 | |
| 	 * than 20% (default), then we try to increase frequency
 | |
| 	 * Every sampling_rate, we look for a the lowest
 | |
| 	 * frequency which can sustain the load while keeping idle time over
 | |
| 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
 | |
| 	 *
 | |
| 	 * Any frequency increase takes it to the maximum frequency.
 | |
| 	 * Frequency reduction happens at minimum steps of
 | |
| 	 * 5% (default) of current frequency
 | |
| 	 */
 | |
| 
 | |
| 	/* Get Absolute Load - in terms of freq */
 | |
| 	max_load_freq = 0;
 | |
| 
 | |
| 	for_each_cpu(j, policy->cpus) {
 | |
| 		struct cpu_dbs_info_s *j_dbs_info;
 | |
| 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
 | |
| 		unsigned int idle_time, wall_time, iowait_time;
 | |
| 		unsigned int load, load_freq;
 | |
| 		int freq_avg;
 | |
| 
 | |
| 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
 | |
| 
 | |
| 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
 | |
| 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
 | |
| 
 | |
| 		wall_time = (unsigned int)
 | |
| 			(cur_wall_time - j_dbs_info->prev_cpu_wall);
 | |
| 		j_dbs_info->prev_cpu_wall = cur_wall_time;
 | |
| 
 | |
| 		idle_time = (unsigned int)
 | |
| 			(cur_idle_time - j_dbs_info->prev_cpu_idle);
 | |
| 		j_dbs_info->prev_cpu_idle = cur_idle_time;
 | |
| 
 | |
| 		iowait_time = (unsigned int)
 | |
| 			(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
 | |
| 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
 | |
| 
 | |
| 		if (dbs_tuners_ins.ignore_nice) {
 | |
| 			u64 cur_nice;
 | |
| 			unsigned long cur_nice_jiffies;
 | |
| 
 | |
| 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
 | |
| 					 j_dbs_info->prev_cpu_nice;
 | |
| 			/*
 | |
| 			 * Assumption: nice time between sampling periods will
 | |
| 			 * be less than 2^32 jiffies for 32 bit sys
 | |
| 			 */
 | |
| 			cur_nice_jiffies = (unsigned long)
 | |
| 					cputime64_to_jiffies64(cur_nice);
 | |
| 
 | |
| 			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 | |
| 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For the purpose of ondemand, waiting for disk IO is an
 | |
| 		 * indication that you're performance critical, and not that
 | |
| 		 * the system is actually idle. So subtract the iowait time
 | |
| 		 * from the cpu idle time.
 | |
| 		 */
 | |
| 
 | |
| 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
 | |
| 			idle_time -= iowait_time;
 | |
| 
 | |
| 		if (unlikely(!wall_time || wall_time < idle_time))
 | |
| 			continue;
 | |
| 
 | |
| 		load = 100 * (wall_time - idle_time) / wall_time;
 | |
| 
 | |
| 		freq_avg = __cpufreq_driver_getavg(policy, j);
 | |
| 		if (freq_avg <= 0)
 | |
| 			freq_avg = policy->cur;
 | |
| 
 | |
| 		load_freq = load * freq_avg;
 | |
| 		if (load_freq > max_load_freq)
 | |
| 			max_load_freq = load_freq;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for frequency increase */
 | |
| 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
 | |
| 		/* If switching to max speed, apply sampling_down_factor */
 | |
| 		if (policy->cur < policy->max)
 | |
| 			this_dbs_info->rate_mult =
 | |
| 				dbs_tuners_ins.sampling_down_factor;
 | |
| 		dbs_freq_increase(policy, policy->max);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for frequency decrease */
 | |
| 	/* if we cannot reduce the frequency anymore, break out early */
 | |
| 	if (policy->cur == policy->min)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The optimal frequency is the frequency that is the lowest that
 | |
| 	 * can support the current CPU usage without triggering the up
 | |
| 	 * policy. To be safe, we focus 10 points under the threshold.
 | |
| 	 */
 | |
| 	if (max_load_freq <
 | |
| 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
 | |
| 	     policy->cur) {
 | |
| 		unsigned int freq_next;
 | |
| 		freq_next = max_load_freq /
 | |
| 				(dbs_tuners_ins.up_threshold -
 | |
| 				 dbs_tuners_ins.down_differential);
 | |
| 
 | |
| 		/* No longer fully busy, reset rate_mult */
 | |
| 		this_dbs_info->rate_mult = 1;
 | |
| 
 | |
| 		if (freq_next < policy->min)
 | |
| 			freq_next = policy->min;
 | |
| 
 | |
| 		if (!dbs_tuners_ins.powersave_bias) {
 | |
| 			__cpufreq_driver_target(policy, freq_next,
 | |
| 					CPUFREQ_RELATION_L);
 | |
| 		} else {
 | |
| 			int freq = powersave_bias_target(policy, freq_next,
 | |
| 					CPUFREQ_RELATION_L);
 | |
| 			__cpufreq_driver_target(policy, freq,
 | |
| 				CPUFREQ_RELATION_L);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_dbs_timer(struct work_struct *work)
 | |
| {
 | |
| 	struct cpu_dbs_info_s *dbs_info =
 | |
| 		container_of(work, struct cpu_dbs_info_s, work.work);
 | |
| 	unsigned int cpu = dbs_info->cpu;
 | |
| 	int sample_type = dbs_info->sample_type;
 | |
| 
 | |
| 	int delay;
 | |
| 
 | |
| 	mutex_lock(&dbs_info->timer_mutex);
 | |
| 
 | |
| 	/* Common NORMAL_SAMPLE setup */
 | |
| 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
 | |
| 	if (!dbs_tuners_ins.powersave_bias ||
 | |
| 	    sample_type == DBS_NORMAL_SAMPLE) {
 | |
| 		dbs_check_cpu(dbs_info);
 | |
| 		if (dbs_info->freq_lo) {
 | |
| 			/* Setup timer for SUB_SAMPLE */
 | |
| 			dbs_info->sample_type = DBS_SUB_SAMPLE;
 | |
| 			delay = dbs_info->freq_hi_jiffies;
 | |
| 		} else {
 | |
| 			/* We want all CPUs to do sampling nearly on
 | |
| 			 * same jiffy
 | |
| 			 */
 | |
| 			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
 | |
| 				* dbs_info->rate_mult);
 | |
| 
 | |
| 			if (num_online_cpus() > 1)
 | |
| 				delay -= jiffies % delay;
 | |
| 		}
 | |
| 	} else {
 | |
| 		__cpufreq_driver_target(dbs_info->cur_policy,
 | |
| 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
 | |
| 		delay = dbs_info->freq_lo_jiffies;
 | |
| 	}
 | |
| 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
 | |
| 	mutex_unlock(&dbs_info->timer_mutex);
 | |
| }
 | |
| 
 | |
| static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
 | |
| {
 | |
| 	/* We want all CPUs to do sampling nearly on same jiffy */
 | |
| 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 | |
| 
 | |
| 	if (num_online_cpus() > 1)
 | |
| 		delay -= jiffies % delay;
 | |
| 
 | |
| 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
 | |
| 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
 | |
| 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
 | |
| }
 | |
| 
 | |
| static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
 | |
| {
 | |
| 	cancel_delayed_work_sync(&dbs_info->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Not all CPUs want IO time to be accounted as busy; this dependson how
 | |
|  * efficient idling at a higher frequency/voltage is.
 | |
|  * Pavel Machek says this is not so for various generations of AMD and old
 | |
|  * Intel systems.
 | |
|  * Mike Chan (androidlcom) calis this is also not true for ARM.
 | |
|  * Because of this, whitelist specific known (series) of CPUs by default, and
 | |
|  * leave all others up to the user.
 | |
|  */
 | |
| static int should_io_be_busy(void)
 | |
| {
 | |
| #if defined(CONFIG_X86)
 | |
| 	/*
 | |
| 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
 | |
| 	 */
 | |
| 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 | |
| 	    boot_cpu_data.x86 == 6 &&
 | |
| 	    boot_cpu_data.x86_model >= 15)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 | |
| 				   unsigned int event)
 | |
| {
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	struct cpu_dbs_info_s *this_dbs_info;
 | |
| 	unsigned int j;
 | |
| 	int rc;
 | |
| 
 | |
| 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case CPUFREQ_GOV_START:
 | |
| 		if ((!cpu_online(cpu)) || (!policy->cur))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		mutex_lock(&dbs_mutex);
 | |
| 
 | |
| 		dbs_enable++;
 | |
| 		for_each_cpu(j, policy->cpus) {
 | |
| 			struct cpu_dbs_info_s *j_dbs_info;
 | |
| 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
 | |
| 			j_dbs_info->cur_policy = policy;
 | |
| 
 | |
| 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
 | |
| 						&j_dbs_info->prev_cpu_wall);
 | |
| 			if (dbs_tuners_ins.ignore_nice)
 | |
| 				j_dbs_info->prev_cpu_nice =
 | |
| 						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 | |
| 		}
 | |
| 		this_dbs_info->cpu = cpu;
 | |
| 		this_dbs_info->rate_mult = 1;
 | |
| 		ondemand_powersave_bias_init_cpu(cpu);
 | |
| 		/*
 | |
| 		 * Start the timerschedule work, when this governor
 | |
| 		 * is used for first time
 | |
| 		 */
 | |
| 		if (dbs_enable == 1) {
 | |
| 			unsigned int latency;
 | |
| 
 | |
| 			rc = sysfs_create_group(cpufreq_global_kobject,
 | |
| 						&dbs_attr_group);
 | |
| 			if (rc) {
 | |
| 				mutex_unlock(&dbs_mutex);
 | |
| 				return rc;
 | |
| 			}
 | |
| 
 | |
| 			/* policy latency is in nS. Convert it to uS first */
 | |
| 			latency = policy->cpuinfo.transition_latency / 1000;
 | |
| 			if (latency == 0)
 | |
| 				latency = 1;
 | |
| 			/* Bring kernel and HW constraints together */
 | |
| 			min_sampling_rate = max(min_sampling_rate,
 | |
| 					MIN_LATENCY_MULTIPLIER * latency);
 | |
| 			dbs_tuners_ins.sampling_rate =
 | |
| 				max(min_sampling_rate,
 | |
| 				    latency * LATENCY_MULTIPLIER);
 | |
| 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
 | |
| 		}
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 		mutex_init(&this_dbs_info->timer_mutex);
 | |
| 		dbs_timer_init(this_dbs_info);
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_STOP:
 | |
| 		dbs_timer_exit(this_dbs_info);
 | |
| 
 | |
| 		mutex_lock(&dbs_mutex);
 | |
| 		mutex_destroy(&this_dbs_info->timer_mutex);
 | |
| 		dbs_enable--;
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 		if (!dbs_enable)
 | |
| 			sysfs_remove_group(cpufreq_global_kobject,
 | |
| 					   &dbs_attr_group);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_LIMITS:
 | |
| 		mutex_lock(&this_dbs_info->timer_mutex);
 | |
| 		if (policy->max < this_dbs_info->cur_policy->cur)
 | |
| 			__cpufreq_driver_target(this_dbs_info->cur_policy,
 | |
| 				policy->max, CPUFREQ_RELATION_H);
 | |
| 		else if (policy->min > this_dbs_info->cur_policy->cur)
 | |
| 			__cpufreq_driver_target(this_dbs_info->cur_policy,
 | |
| 				policy->min, CPUFREQ_RELATION_L);
 | |
| 		mutex_unlock(&this_dbs_info->timer_mutex);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init cpufreq_gov_dbs_init(void)
 | |
| {
 | |
| 	u64 idle_time;
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	idle_time = get_cpu_idle_time_us(cpu, NULL);
 | |
| 	put_cpu();
 | |
| 	if (idle_time != -1ULL) {
 | |
| 		/* Idle micro accounting is supported. Use finer thresholds */
 | |
| 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
 | |
| 		dbs_tuners_ins.down_differential =
 | |
| 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
 | |
| 		/*
 | |
| 		 * In nohz/micro accounting case we set the minimum frequency
 | |
| 		 * not depending on HZ, but fixed (very low). The deferred
 | |
| 		 * timer might skip some samples if idle/sleeping as needed.
 | |
| 		*/
 | |
| 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
 | |
| 	} else {
 | |
| 		/* For correct statistics, we need 10 ticks for each measure */
 | |
| 		min_sampling_rate =
 | |
| 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
 | |
| 	}
 | |
| 
 | |
| 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
 | |
| }
 | |
| 
 | |
| static void __exit cpufreq_gov_dbs_exit(void)
 | |
| {
 | |
| 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
 | |
| }
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
 | |
| MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
 | |
| MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
 | |
| 	"Low Latency Frequency Transition capable processors");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
 | |
| fs_initcall(cpufreq_gov_dbs_init);
 | |
| #else
 | |
| module_init(cpufreq_gov_dbs_init);
 | |
| #endif
 | |
| module_exit(cpufreq_gov_dbs_exit);
 |