 527087374f
			
		
	
	
	527087374f
	
	
	
		
			
			Rename register_posix_clock() to posix_timers_register_clock(). That's what the function really does. As a side effect this cleans up the posix_clock namespace for the upcoming dynamic posix_clock infrastructure. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Richard Cochran <richard.cochran@omicron.at> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <alpine.LFD.2.00.1102021222240.31804@localhost6.localdomain6>
		
			
				
	
	
		
			859 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			859 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Timer device implementation for SGI SN platforms.
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
 | |
|  *
 | |
|  * This driver exports an API that should be supportable by any HPET or IA-PC
 | |
|  * multimedia timer.  The code below is currently specific to the SGI Altix
 | |
|  * SHub RTC, however.
 | |
|  *
 | |
|  * 11/01/01 - jbarnes - initial revision
 | |
|  * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
 | |
|  * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
 | |
|  * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
 | |
|  *		support via the posix timer interface
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/ioctl.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mmtimer.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/sn/addrs.h>
 | |
| #include <asm/sn/intr.h>
 | |
| #include <asm/sn/shub_mmr.h>
 | |
| #include <asm/sn/nodepda.h>
 | |
| #include <asm/sn/shubio.h>
 | |
| 
 | |
| MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
 | |
| MODULE_DESCRIPTION("SGI Altix RTC Timer");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| /* name of the device, usually in /dev */
 | |
| #define MMTIMER_NAME "mmtimer"
 | |
| #define MMTIMER_DESC "SGI Altix RTC Timer"
 | |
| #define MMTIMER_VERSION "2.1"
 | |
| 
 | |
| #define RTC_BITS 55 /* 55 bits for this implementation */
 | |
| 
 | |
| static struct k_clock sgi_clock;
 | |
| 
 | |
| extern unsigned long sn_rtc_cycles_per_second;
 | |
| 
 | |
| #define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))
 | |
| 
 | |
| #define rtc_time()              (*RTC_COUNTER_ADDR)
 | |
| 
 | |
| static DEFINE_MUTEX(mmtimer_mutex);
 | |
| static long mmtimer_ioctl(struct file *file, unsigned int cmd,
 | |
| 						unsigned long arg);
 | |
| static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
 | |
| 
 | |
| /*
 | |
|  * Period in femtoseconds (10^-15 s)
 | |
|  */
 | |
| static unsigned long mmtimer_femtoperiod = 0;
 | |
| 
 | |
| static const struct file_operations mmtimer_fops = {
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.mmap =	mmtimer_mmap,
 | |
| 	.unlocked_ioctl = mmtimer_ioctl,
 | |
| 	.llseek = noop_llseek,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * We only have comparison registers RTC1-4 currently available per
 | |
|  * node.  RTC0 is used by SAL.
 | |
|  */
 | |
| /* Check for an RTC interrupt pending */
 | |
| static int mmtimer_int_pending(int comparator)
 | |
| {
 | |
| 	if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
 | |
| 			SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /* Clear the RTC interrupt pending bit */
 | |
| static void mmtimer_clr_int_pending(int comparator)
 | |
| {
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
 | |
| 		SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
 | |
| }
 | |
| 
 | |
| /* Setup timer on comparator RTC1 */
 | |
| static void mmtimer_setup_int_0(int cpu, u64 expires)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	/* Disable interrupt */
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
 | |
| 
 | |
| 	/* Initialize comparator value */
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
 | |
| 
 | |
| 	/* Clear pending bit */
 | |
| 	mmtimer_clr_int_pending(0);
 | |
| 
 | |
| 	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
 | |
| 		((u64)cpu_physical_id(cpu) <<
 | |
| 			SH_RTC1_INT_CONFIG_PID_SHFT);
 | |
| 
 | |
| 	/* Set configuration */
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
 | |
| 
 | |
| 	/* Enable RTC interrupts */
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
 | |
| 
 | |
| 	/* Initialize comparator value */
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Setup timer on comparator RTC2 */
 | |
| static void mmtimer_setup_int_1(int cpu, u64 expires)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
 | |
| 
 | |
| 	mmtimer_clr_int_pending(1);
 | |
| 
 | |
| 	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
 | |
| 		((u64)cpu_physical_id(cpu) <<
 | |
| 			SH_RTC2_INT_CONFIG_PID_SHFT);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
 | |
| }
 | |
| 
 | |
| /* Setup timer on comparator RTC3 */
 | |
| static void mmtimer_setup_int_2(int cpu, u64 expires)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
 | |
| 
 | |
| 	mmtimer_clr_int_pending(2);
 | |
| 
 | |
| 	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
 | |
| 		((u64)cpu_physical_id(cpu) <<
 | |
| 			SH_RTC3_INT_CONFIG_PID_SHFT);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
 | |
| 
 | |
| 	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function must be called with interrupts disabled and preemption off
 | |
|  * in order to insure that the setup succeeds in a deterministic time frame.
 | |
|  * It will check if the interrupt setup succeeded.
 | |
|  */
 | |
| static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
 | |
| 	u64 *set_completion_time)
 | |
| {
 | |
| 	switch (comparator) {
 | |
| 	case 0:
 | |
| 		mmtimer_setup_int_0(cpu, expires);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		mmtimer_setup_int_1(cpu, expires);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		mmtimer_setup_int_2(cpu, expires);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* We might've missed our expiration time */
 | |
| 	*set_completion_time = rtc_time();
 | |
| 	if (*set_completion_time <= expires)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If an interrupt is already pending then its okay
 | |
| 	 * if not then we failed
 | |
| 	 */
 | |
| 	return mmtimer_int_pending(comparator);
 | |
| }
 | |
| 
 | |
| static int mmtimer_disable_int(long nasid, int comparator)
 | |
| {
 | |
| 	switch (comparator) {
 | |
| 	case 0:
 | |
| 		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
 | |
| 			0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
 | |
| 			0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
 | |
| 			0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define COMPARATOR	1		/* The comparator to use */
 | |
| 
 | |
| #define TIMER_OFF	0xbadcabLL	/* Timer is not setup */
 | |
| #define TIMER_SET	0		/* Comparator is set for this timer */
 | |
| 
 | |
| #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
 | |
| 
 | |
| /* There is one of these for each timer */
 | |
| struct mmtimer {
 | |
| 	struct rb_node list;
 | |
| 	struct k_itimer *timer;
 | |
| 	int cpu;
 | |
| };
 | |
| 
 | |
| struct mmtimer_node {
 | |
| 	spinlock_t lock ____cacheline_aligned;
 | |
| 	struct rb_root timer_head;
 | |
| 	struct rb_node *next;
 | |
| 	struct tasklet_struct tasklet;
 | |
| };
 | |
| static struct mmtimer_node *timers;
 | |
| 
 | |
| static unsigned mmtimer_interval_retry_increment =
 | |
| 	MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
 | |
| module_param(mmtimer_interval_retry_increment, uint, 0644);
 | |
| MODULE_PARM_DESC(mmtimer_interval_retry_increment,
 | |
| 	"RTC ticks to add to expiration on interval retry (default 40)");
 | |
| 
 | |
| /*
 | |
|  * Add a new mmtimer struct to the node's mmtimer list.
 | |
|  * This function assumes the struct mmtimer_node is locked.
 | |
|  */
 | |
| static void mmtimer_add_list(struct mmtimer *n)
 | |
| {
 | |
| 	int nodeid = n->timer->it.mmtimer.node;
 | |
| 	unsigned long expires = n->timer->it.mmtimer.expires;
 | |
| 	struct rb_node **link = &timers[nodeid].timer_head.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct mmtimer *x;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		x = rb_entry(parent, struct mmtimer, list);
 | |
| 
 | |
| 		if (expires < x->timer->it.mmtimer.expires)
 | |
| 			link = &(*link)->rb_left;
 | |
| 		else
 | |
| 			link = &(*link)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert the timer to the rbtree and check whether it
 | |
| 	 * replaces the first pending timer
 | |
| 	 */
 | |
| 	rb_link_node(&n->list, parent, link);
 | |
| 	rb_insert_color(&n->list, &timers[nodeid].timer_head);
 | |
| 
 | |
| 	if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
 | |
| 			struct mmtimer, list)->timer->it.mmtimer.expires)
 | |
| 		timers[nodeid].next = &n->list;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the comparator for the next timer.
 | |
|  * This function assumes the struct mmtimer_node is locked.
 | |
|  */
 | |
| static void mmtimer_set_next_timer(int nodeid)
 | |
| {
 | |
| 	struct mmtimer_node *n = &timers[nodeid];
 | |
| 	struct mmtimer *x;
 | |
| 	struct k_itimer *t;
 | |
| 	u64 expires, exp, set_completion_time;
 | |
| 	int i;
 | |
| 
 | |
| restart:
 | |
| 	if (n->next == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	x = rb_entry(n->next, struct mmtimer, list);
 | |
| 	t = x->timer;
 | |
| 	if (!t->it.mmtimer.incr) {
 | |
| 		/* Not an interval timer */
 | |
| 		if (!mmtimer_setup(x->cpu, COMPARATOR,
 | |
| 					t->it.mmtimer.expires,
 | |
| 					&set_completion_time)) {
 | |
| 			/* Late setup, fire now */
 | |
| 			tasklet_schedule(&n->tasklet);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Interval timer */
 | |
| 	i = 0;
 | |
| 	expires = exp = t->it.mmtimer.expires;
 | |
| 	while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
 | |
| 				&set_completion_time)) {
 | |
| 		int to;
 | |
| 
 | |
| 		i++;
 | |
| 		expires = set_completion_time +
 | |
| 				mmtimer_interval_retry_increment + (1 << i);
 | |
| 		/* Calculate overruns as we go. */
 | |
| 		to = ((u64)(expires - exp) / t->it.mmtimer.incr);
 | |
| 		if (to) {
 | |
| 			t->it_overrun += to;
 | |
| 			t->it.mmtimer.expires += t->it.mmtimer.incr * to;
 | |
| 			exp = t->it.mmtimer.expires;
 | |
| 		}
 | |
| 		if (i > 20) {
 | |
| 			printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
 | |
| 			t->it.mmtimer.clock = TIMER_OFF;
 | |
| 			n->next = rb_next(&x->list);
 | |
| 			rb_erase(&x->list, &n->timer_head);
 | |
| 			kfree(x);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmtimer_ioctl - ioctl interface for /dev/mmtimer
 | |
|  * @file: file structure for the device
 | |
|  * @cmd: command to execute
 | |
|  * @arg: optional argument to command
 | |
|  *
 | |
|  * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
 | |
|  * failure.
 | |
|  *
 | |
|  * Valid commands:
 | |
|  *
 | |
|  * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
 | |
|  * of the page where the registers are mapped) for the counter in question.
 | |
|  *
 | |
|  * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
 | |
|  * seconds
 | |
|  *
 | |
|  * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
 | |
|  * specified by @arg
 | |
|  *
 | |
|  * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
 | |
|  *
 | |
|  * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
 | |
|  *
 | |
|  * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
 | |
|  * in the address specified by @arg.
 | |
|  */
 | |
| static long mmtimer_ioctl(struct file *file, unsigned int cmd,
 | |
| 						unsigned long arg)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&mmtimer_mutex);
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case MMTIMER_GETOFFSET:	/* offset of the counter */
 | |
| 		/*
 | |
| 		 * SN RTC registers are on their own 64k page
 | |
| 		 */
 | |
| 		if(PAGE_SIZE <= (1 << 16))
 | |
| 			ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
 | |
| 		else
 | |
| 			ret = -ENOSYS;
 | |
| 		break;
 | |
| 
 | |
| 	case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
 | |
| 		if(copy_to_user((unsigned long __user *)arg,
 | |
| 				&mmtimer_femtoperiod, sizeof(unsigned long)))
 | |
| 			ret = -EFAULT;
 | |
| 		break;
 | |
| 
 | |
| 	case MMTIMER_GETFREQ: /* frequency in Hz */
 | |
| 		if(copy_to_user((unsigned long __user *)arg,
 | |
| 				&sn_rtc_cycles_per_second,
 | |
| 				sizeof(unsigned long)))
 | |
| 			ret = -EFAULT;
 | |
| 		break;
 | |
| 
 | |
| 	case MMTIMER_GETBITS: /* number of bits in the clock */
 | |
| 		ret = RTC_BITS;
 | |
| 		break;
 | |
| 
 | |
| 	case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
 | |
| 		ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
 | |
| 		break;
 | |
| 
 | |
| 	case MMTIMER_GETCOUNTER:
 | |
| 		if(copy_to_user((unsigned long __user *)arg,
 | |
| 				RTC_COUNTER_ADDR, sizeof(unsigned long)))
 | |
| 			ret = -EFAULT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -ENOTTY;
 | |
| 		break;
 | |
| 	}
 | |
| 	mutex_unlock(&mmtimer_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmtimer_mmap - maps the clock's registers into userspace
 | |
|  * @file: file structure for the device
 | |
|  * @vma: VMA to map the registers into
 | |
|  *
 | |
|  * Calls remap_pfn_range() to map the clock's registers into
 | |
|  * the calling process' address space.
 | |
|  */
 | |
| static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long mmtimer_addr;
 | |
| 
 | |
| 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (PAGE_SIZE > (1 << 16))
 | |
| 		return -ENOSYS;
 | |
| 
 | |
| 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 | |
| 
 | |
| 	mmtimer_addr = __pa(RTC_COUNTER_ADDR);
 | |
| 	mmtimer_addr &= ~(PAGE_SIZE - 1);
 | |
| 	mmtimer_addr &= 0xfffffffffffffffUL;
 | |
| 
 | |
| 	if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
 | |
| 					PAGE_SIZE, vma->vm_page_prot)) {
 | |
| 		printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct miscdevice mmtimer_miscdev = {
 | |
| 	SGI_MMTIMER,
 | |
| 	MMTIMER_NAME,
 | |
| 	&mmtimer_fops
 | |
| };
 | |
| 
 | |
| static struct timespec sgi_clock_offset;
 | |
| static int sgi_clock_period;
 | |
| 
 | |
| /*
 | |
|  * Posix Timer Interface
 | |
|  */
 | |
| 
 | |
| static struct timespec sgi_clock_offset;
 | |
| static int sgi_clock_period;
 | |
| 
 | |
| static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
 | |
| {
 | |
| 	u64 nsec;
 | |
| 
 | |
| 	nsec = rtc_time() * sgi_clock_period
 | |
| 			+ sgi_clock_offset.tv_nsec;
 | |
| 	*tp = ns_to_timespec(nsec);
 | |
| 	tp->tv_sec += sgi_clock_offset.tv_sec;
 | |
| 	return 0;
 | |
| };
 | |
| 
 | |
| static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp)
 | |
| {
 | |
| 
 | |
| 	u64 nsec;
 | |
| 	u32 rem;
 | |
| 
 | |
| 	nsec = rtc_time() * sgi_clock_period;
 | |
| 
 | |
| 	sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 | |
| 
 | |
| 	if (rem <= tp->tv_nsec)
 | |
| 		sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
 | |
| 	else {
 | |
| 		sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
 | |
| 		sgi_clock_offset.tv_sec--;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmtimer_interrupt - timer interrupt handler
 | |
|  * @irq: irq received
 | |
|  * @dev_id: device the irq came from
 | |
|  *
 | |
|  * Called when one of the comarators matches the counter, This
 | |
|  * routine will send signals to processes that have requested
 | |
|  * them.
 | |
|  *
 | |
|  * This interrupt is run in an interrupt context
 | |
|  * by the SHUB. It is therefore safe to locally access SHub
 | |
|  * registers.
 | |
|  */
 | |
| static irqreturn_t
 | |
| mmtimer_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	unsigned long expires = 0;
 | |
| 	int result = IRQ_NONE;
 | |
| 	unsigned indx = cpu_to_node(smp_processor_id());
 | |
| 	struct mmtimer *base;
 | |
| 
 | |
| 	spin_lock(&timers[indx].lock);
 | |
| 	base = rb_entry(timers[indx].next, struct mmtimer, list);
 | |
| 	if (base == NULL) {
 | |
| 		spin_unlock(&timers[indx].lock);
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	if (base->cpu == smp_processor_id()) {
 | |
| 		if (base->timer)
 | |
| 			expires = base->timer->it.mmtimer.expires;
 | |
| 		/* expires test won't work with shared irqs */
 | |
| 		if ((mmtimer_int_pending(COMPARATOR) > 0) ||
 | |
| 			(expires && (expires <= rtc_time()))) {
 | |
| 			mmtimer_clr_int_pending(COMPARATOR);
 | |
| 			tasklet_schedule(&timers[indx].tasklet);
 | |
| 			result = IRQ_HANDLED;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&timers[indx].lock);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void mmtimer_tasklet(unsigned long data)
 | |
| {
 | |
| 	int nodeid = data;
 | |
| 	struct mmtimer_node *mn = &timers[nodeid];
 | |
| 	struct mmtimer *x;
 | |
| 	struct k_itimer *t;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Send signal and deal with periodic signals */
 | |
| 	spin_lock_irqsave(&mn->lock, flags);
 | |
| 	if (!mn->next)
 | |
| 		goto out;
 | |
| 
 | |
| 	x = rb_entry(mn->next, struct mmtimer, list);
 | |
| 	t = x->timer;
 | |
| 
 | |
| 	if (t->it.mmtimer.clock == TIMER_OFF)
 | |
| 		goto out;
 | |
| 
 | |
| 	t->it_overrun = 0;
 | |
| 
 | |
| 	mn->next = rb_next(&x->list);
 | |
| 	rb_erase(&x->list, &mn->timer_head);
 | |
| 
 | |
| 	if (posix_timer_event(t, 0) != 0)
 | |
| 		t->it_overrun++;
 | |
| 
 | |
| 	if(t->it.mmtimer.incr) {
 | |
| 		t->it.mmtimer.expires += t->it.mmtimer.incr;
 | |
| 		mmtimer_add_list(x);
 | |
| 	} else {
 | |
| 		/* Ensure we don't false trigger in mmtimer_interrupt */
 | |
| 		t->it.mmtimer.clock = TIMER_OFF;
 | |
| 		t->it.mmtimer.expires = 0;
 | |
| 		kfree(x);
 | |
| 	}
 | |
| 	/* Set comparator for next timer, if there is one */
 | |
| 	mmtimer_set_next_timer(nodeid);
 | |
| 
 | |
| 	t->it_overrun_last = t->it_overrun;
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&mn->lock, flags);
 | |
| }
 | |
| 
 | |
| static int sgi_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	/* Insure that a newly created timer is off */
 | |
| 	timer->it.mmtimer.clock = TIMER_OFF;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This does not really delete a timer. It just insures
 | |
|  * that the timer is not active
 | |
|  *
 | |
|  * Assumption: it_lock is already held with irq's disabled
 | |
|  */
 | |
| static int sgi_timer_del(struct k_itimer *timr)
 | |
| {
 | |
| 	cnodeid_t nodeid = timr->it.mmtimer.node;
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
 | |
| 	if (timr->it.mmtimer.clock != TIMER_OFF) {
 | |
| 		unsigned long expires = timr->it.mmtimer.expires;
 | |
| 		struct rb_node *n = timers[nodeid].timer_head.rb_node;
 | |
| 		struct mmtimer *uninitialized_var(t);
 | |
| 		int r = 0;
 | |
| 
 | |
| 		timr->it.mmtimer.clock = TIMER_OFF;
 | |
| 		timr->it.mmtimer.expires = 0;
 | |
| 
 | |
| 		while (n) {
 | |
| 			t = rb_entry(n, struct mmtimer, list);
 | |
| 			if (t->timer == timr)
 | |
| 				break;
 | |
| 
 | |
| 			if (expires < t->timer->it.mmtimer.expires)
 | |
| 				n = n->rb_left;
 | |
| 			else
 | |
| 				n = n->rb_right;
 | |
| 		}
 | |
| 
 | |
| 		if (!n) {
 | |
| 			spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (timers[nodeid].next == n) {
 | |
| 			timers[nodeid].next = rb_next(n);
 | |
| 			r = 1;
 | |
| 		}
 | |
| 
 | |
| 		rb_erase(n, &timers[nodeid].timer_head);
 | |
| 		kfree(t);
 | |
| 
 | |
| 		if (r) {
 | |
| 			mmtimer_disable_int(cnodeid_to_nasid(nodeid),
 | |
| 				COMPARATOR);
 | |
| 			mmtimer_set_next_timer(nodeid);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Assumption: it_lock is already held with irq's disabled */
 | |
| static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 | |
| {
 | |
| 
 | |
| 	if (timr->it.mmtimer.clock == TIMER_OFF) {
 | |
| 		cur_setting->it_interval.tv_nsec = 0;
 | |
| 		cur_setting->it_interval.tv_sec = 0;
 | |
| 		cur_setting->it_value.tv_nsec = 0;
 | |
| 		cur_setting->it_value.tv_sec =0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
 | |
| 	cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int sgi_timer_set(struct k_itimer *timr, int flags,
 | |
| 	struct itimerspec * new_setting,
 | |
| 	struct itimerspec * old_setting)
 | |
| {
 | |
| 	unsigned long when, period, irqflags;
 | |
| 	int err = 0;
 | |
| 	cnodeid_t nodeid;
 | |
| 	struct mmtimer *base;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	if (old_setting)
 | |
| 		sgi_timer_get(timr, old_setting);
 | |
| 
 | |
| 	sgi_timer_del(timr);
 | |
| 	when = timespec_to_ns(&new_setting->it_value);
 | |
| 	period = timespec_to_ns(&new_setting->it_interval);
 | |
| 
 | |
| 	if (when == 0)
 | |
| 		/* Clear timer */
 | |
| 		return 0;
 | |
| 
 | |
| 	base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
 | |
| 	if (base == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (flags & TIMER_ABSTIME) {
 | |
| 		struct timespec n;
 | |
| 		unsigned long now;
 | |
| 
 | |
| 		getnstimeofday(&n);
 | |
| 		now = timespec_to_ns(&n);
 | |
| 		if (when > now)
 | |
| 			when -= now;
 | |
| 		else
 | |
| 			/* Fire the timer immediately */
 | |
| 			when = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
 | |
| 	 * to getnstimeofday() in order to be as faithful as possible to the time
 | |
| 	 * specified.
 | |
| 	 */
 | |
| 	when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
 | |
| 	period = (period + sgi_clock_period - 1)  / sgi_clock_period;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are allocating a local SHub comparator. If we would be moved to another
 | |
| 	 * cpu then another SHub may be local to us. Prohibit that by switching off
 | |
| 	 * preemption.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	nodeid =  cpu_to_node(smp_processor_id());
 | |
| 
 | |
| 	/* Lock the node timer structure */
 | |
| 	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
 | |
| 
 | |
| 	base->timer = timr;
 | |
| 	base->cpu = smp_processor_id();
 | |
| 
 | |
| 	timr->it.mmtimer.clock = TIMER_SET;
 | |
| 	timr->it.mmtimer.node = nodeid;
 | |
| 	timr->it.mmtimer.incr = period;
 | |
| 	timr->it.mmtimer.expires = when;
 | |
| 
 | |
| 	n = timers[nodeid].next;
 | |
| 
 | |
| 	/* Add the new struct mmtimer to node's timer list */
 | |
| 	mmtimer_add_list(base);
 | |
| 
 | |
| 	if (timers[nodeid].next == n) {
 | |
| 		/* No need to reprogram comparator for now */
 | |
| 		spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 | |
| 		preempt_enable();
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* We need to reprogram the comparator */
 | |
| 	if (n)
 | |
| 		mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
 | |
| 
 | |
| 	mmtimer_set_next_timer(nodeid);
 | |
| 
 | |
| 	/* Unlock the node timer structure */
 | |
| 	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	tp->tv_sec = 0;
 | |
| 	tp->tv_nsec = sgi_clock_period;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct k_clock sgi_clock = {
 | |
| 	.clock_set	= sgi_clock_set,
 | |
| 	.clock_get	= sgi_clock_get,
 | |
| 	.clock_getres	= sgi_clock_getres,
 | |
| 	.timer_create	= sgi_timer_create,
 | |
| 	.timer_set	= sgi_timer_set,
 | |
| 	.timer_del	= sgi_timer_del,
 | |
| 	.timer_get	= sgi_timer_get
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * mmtimer_init - device initialization routine
 | |
|  *
 | |
|  * Does initial setup for the mmtimer device.
 | |
|  */
 | |
| static int __init mmtimer_init(void)
 | |
| {
 | |
| 	cnodeid_t node, maxn = -1;
 | |
| 
 | |
| 	if (!ia64_platform_is("sn2"))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check the cycles/sec variable
 | |
| 	 */
 | |
| 	if (sn_rtc_cycles_per_second < 100000) {
 | |
| 		printk(KERN_ERR "%s: unable to determine clock frequency\n",
 | |
| 		       MMTIMER_NAME);
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
 | |
| 			       2) / sn_rtc_cycles_per_second;
 | |
| 
 | |
| 	if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
 | |
| 		printk(KERN_WARNING "%s: unable to allocate interrupt.",
 | |
| 			MMTIMER_NAME);
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	if (misc_register(&mmtimer_miscdev)) {
 | |
| 		printk(KERN_ERR "%s: failed to register device\n",
 | |
| 		       MMTIMER_NAME);
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/* Get max numbered node, calculate slots needed */
 | |
| 	for_each_online_node(node) {
 | |
| 		maxn = node;
 | |
| 	}
 | |
| 	maxn++;
 | |
| 
 | |
| 	/* Allocate list of node ptrs to mmtimer_t's */
 | |
| 	timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
 | |
| 	if (timers == NULL) {
 | |
| 		printk(KERN_ERR "%s: failed to allocate memory for device\n",
 | |
| 				MMTIMER_NAME);
 | |
| 		goto out3;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize struct mmtimer's for each online node */
 | |
| 	for_each_online_node(node) {
 | |
| 		spin_lock_init(&timers[node].lock);
 | |
| 		tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
 | |
| 			(unsigned long) node);
 | |
| 	}
 | |
| 
 | |
| 	sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
 | |
| 	posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock);
 | |
| 
 | |
| 	printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
 | |
| 	       sn_rtc_cycles_per_second/(unsigned long)1E6);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out3:
 | |
| 	kfree(timers);
 | |
| 	misc_deregister(&mmtimer_miscdev);
 | |
| out2:
 | |
| 	free_irq(SGI_MMTIMER_VECTOR, NULL);
 | |
| out1:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| module_init(mmtimer_init);
 |