6835 lines
		
	
	
	
		
			173 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6835 lines
		
	
	
	
		
			173 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  libata-core.c - helper library for ATA
 | |
|  *
 | |
|  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
 | |
|  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
 | |
|  *		    on emails.
 | |
|  *
 | |
|  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
 | |
|  *  Copyright 2003-2004 Jeff Garzik
 | |
|  *
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2, or (at your option)
 | |
|  *  any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; see the file COPYING.  If not, write to
 | |
|  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  *
 | |
|  *
 | |
|  *  libata documentation is available via 'make {ps|pdf}docs',
 | |
|  *  as Documentation/DocBook/libata.*
 | |
|  *
 | |
|  *  Hardware documentation available from http://www.t13.org/ and
 | |
|  *  http://www.sata-io.org/
 | |
|  *
 | |
|  *  Standards documents from:
 | |
|  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
 | |
|  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
 | |
|  *	http://www.sata-io.org (SATA)
 | |
|  *	http://www.compactflash.org (CF)
 | |
|  *	http://www.qic.org (QIC157 - Tape and DSC)
 | |
|  *	http://www.ce-ata.org (CE-ATA: not supported)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/async.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/slab.h>
 | |
| #include <scsi/scsi.h>
 | |
| #include <scsi/scsi_cmnd.h>
 | |
| #include <scsi/scsi_host.h>
 | |
| #include <linux/libata.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <linux/cdrom.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| 
 | |
| #include "libata.h"
 | |
| #include "libata-transport.h"
 | |
| 
 | |
| /* debounce timing parameters in msecs { interval, duration, timeout } */
 | |
| const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
 | |
| const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
 | |
| const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
 | |
| 
 | |
| const struct ata_port_operations ata_base_port_ops = {
 | |
| 	.prereset		= ata_std_prereset,
 | |
| 	.postreset		= ata_std_postreset,
 | |
| 	.error_handler		= ata_std_error_handler,
 | |
| };
 | |
| 
 | |
| const struct ata_port_operations sata_port_ops = {
 | |
| 	.inherits		= &ata_base_port_ops,
 | |
| 
 | |
| 	.qc_defer		= ata_std_qc_defer,
 | |
| 	.hardreset		= sata_std_hardreset,
 | |
| };
 | |
| 
 | |
| static unsigned int ata_dev_init_params(struct ata_device *dev,
 | |
| 					u16 heads, u16 sectors);
 | |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
 | |
| static void ata_dev_xfermask(struct ata_device *dev);
 | |
| static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 | |
| 
 | |
| unsigned int ata_print_id = 1;
 | |
| 
 | |
| struct ata_force_param {
 | |
| 	const char	*name;
 | |
| 	unsigned int	cbl;
 | |
| 	int		spd_limit;
 | |
| 	unsigned long	xfer_mask;
 | |
| 	unsigned int	horkage_on;
 | |
| 	unsigned int	horkage_off;
 | |
| 	unsigned int	lflags;
 | |
| };
 | |
| 
 | |
| struct ata_force_ent {
 | |
| 	int			port;
 | |
| 	int			device;
 | |
| 	struct ata_force_param	param;
 | |
| };
 | |
| 
 | |
| static struct ata_force_ent *ata_force_tbl;
 | |
| static int ata_force_tbl_size;
 | |
| 
 | |
| static char ata_force_param_buf[PAGE_SIZE] __initdata;
 | |
| /* param_buf is thrown away after initialization, disallow read */
 | |
| module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 | |
| MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 | |
| 
 | |
| static int atapi_enabled = 1;
 | |
| module_param(atapi_enabled, int, 0444);
 | |
| MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 | |
| 
 | |
| static int atapi_dmadir = 0;
 | |
| module_param(atapi_dmadir, int, 0444);
 | |
| MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 | |
| 
 | |
| int atapi_passthru16 = 1;
 | |
| module_param(atapi_passthru16, int, 0444);
 | |
| MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 | |
| 
 | |
| int libata_fua = 0;
 | |
| module_param_named(fua, libata_fua, int, 0444);
 | |
| MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 | |
| 
 | |
| static int ata_ignore_hpa;
 | |
| module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 | |
| MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 | |
| 
 | |
| static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 | |
| module_param_named(dma, libata_dma_mask, int, 0444);
 | |
| MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 | |
| 
 | |
| static int ata_probe_timeout;
 | |
| module_param(ata_probe_timeout, int, 0444);
 | |
| MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 | |
| 
 | |
| int libata_noacpi = 0;
 | |
| module_param_named(noacpi, libata_noacpi, int, 0444);
 | |
| MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 | |
| 
 | |
| int libata_allow_tpm = 0;
 | |
| module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 | |
| MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 | |
| 
 | |
| static int atapi_an;
 | |
| module_param(atapi_an, int, 0444);
 | |
| MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 | |
| 
 | |
| MODULE_AUTHOR("Jeff Garzik");
 | |
| MODULE_DESCRIPTION("Library module for ATA devices");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| 
 | |
| static bool ata_sstatus_online(u32 sstatus)
 | |
| {
 | |
| 	return (sstatus & 0xf) == 0x3;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_link_next - link iteration helper
 | |
|  *	@link: the previous link, NULL to start
 | |
|  *	@ap: ATA port containing links to iterate
 | |
|  *	@mode: iteration mode, one of ATA_LITER_*
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Host lock or EH context.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Pointer to the next link.
 | |
|  */
 | |
| struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 | |
| 			       enum ata_link_iter_mode mode)
 | |
| {
 | |
| 	BUG_ON(mode != ATA_LITER_EDGE &&
 | |
| 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 | |
| 
 | |
| 	/* NULL link indicates start of iteration */
 | |
| 	if (!link)
 | |
| 		switch (mode) {
 | |
| 		case ATA_LITER_EDGE:
 | |
| 		case ATA_LITER_PMP_FIRST:
 | |
| 			if (sata_pmp_attached(ap))
 | |
| 				return ap->pmp_link;
 | |
| 			/* fall through */
 | |
| 		case ATA_LITER_HOST_FIRST:
 | |
| 			return &ap->link;
 | |
| 		}
 | |
| 
 | |
| 	/* we just iterated over the host link, what's next? */
 | |
| 	if (link == &ap->link)
 | |
| 		switch (mode) {
 | |
| 		case ATA_LITER_HOST_FIRST:
 | |
| 			if (sata_pmp_attached(ap))
 | |
| 				return ap->pmp_link;
 | |
| 			/* fall through */
 | |
| 		case ATA_LITER_PMP_FIRST:
 | |
| 			if (unlikely(ap->slave_link))
 | |
| 				return ap->slave_link;
 | |
| 			/* fall through */
 | |
| 		case ATA_LITER_EDGE:
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 	/* slave_link excludes PMP */
 | |
| 	if (unlikely(link == ap->slave_link))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* we were over a PMP link */
 | |
| 	if (++link < ap->pmp_link + ap->nr_pmp_links)
 | |
| 		return link;
 | |
| 
 | |
| 	if (mode == ATA_LITER_PMP_FIRST)
 | |
| 		return &ap->link;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_next - device iteration helper
 | |
|  *	@dev: the previous device, NULL to start
 | |
|  *	@link: ATA link containing devices to iterate
 | |
|  *	@mode: iteration mode, one of ATA_DITER_*
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Host lock or EH context.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Pointer to the next device.
 | |
|  */
 | |
| struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 | |
| 				enum ata_dev_iter_mode mode)
 | |
| {
 | |
| 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 | |
| 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 | |
| 
 | |
| 	/* NULL dev indicates start of iteration */
 | |
| 	if (!dev)
 | |
| 		switch (mode) {
 | |
| 		case ATA_DITER_ENABLED:
 | |
| 		case ATA_DITER_ALL:
 | |
| 			dev = link->device;
 | |
| 			goto check;
 | |
| 		case ATA_DITER_ENABLED_REVERSE:
 | |
| 		case ATA_DITER_ALL_REVERSE:
 | |
| 			dev = link->device + ata_link_max_devices(link) - 1;
 | |
| 			goto check;
 | |
| 		}
 | |
| 
 | |
|  next:
 | |
| 	/* move to the next one */
 | |
| 	switch (mode) {
 | |
| 	case ATA_DITER_ENABLED:
 | |
| 	case ATA_DITER_ALL:
 | |
| 		if (++dev < link->device + ata_link_max_devices(link))
 | |
| 			goto check;
 | |
| 		return NULL;
 | |
| 	case ATA_DITER_ENABLED_REVERSE:
 | |
| 	case ATA_DITER_ALL_REVERSE:
 | |
| 		if (--dev >= link->device)
 | |
| 			goto check;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
|  check:
 | |
| 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 | |
| 	    !ata_dev_enabled(dev))
 | |
| 		goto next;
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_phys_link - find physical link for a device
 | |
|  *	@dev: ATA device to look up physical link for
 | |
|  *
 | |
|  *	Look up physical link which @dev is attached to.  Note that
 | |
|  *	this is different from @dev->link only when @dev is on slave
 | |
|  *	link.  For all other cases, it's the same as @dev->link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Don't care.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Pointer to the found physical link.
 | |
|  */
 | |
| struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 
 | |
| 	if (!ap->slave_link)
 | |
| 		return dev->link;
 | |
| 	if (!dev->devno)
 | |
| 		return &ap->link;
 | |
| 	return ap->slave_link;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_force_cbl - force cable type according to libata.force
 | |
|  *	@ap: ATA port of interest
 | |
|  *
 | |
|  *	Force cable type according to libata.force and whine about it.
 | |
|  *	The last entry which has matching port number is used, so it
 | |
|  *	can be specified as part of device force parameters.  For
 | |
|  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 | |
|  *	same effect.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  */
 | |
| void ata_force_cbl(struct ata_port *ap)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 | |
| 		const struct ata_force_ent *fe = &ata_force_tbl[i];
 | |
| 
 | |
| 		if (fe->port != -1 && fe->port != ap->print_id)
 | |
| 			continue;
 | |
| 
 | |
| 		if (fe->param.cbl == ATA_CBL_NONE)
 | |
| 			continue;
 | |
| 
 | |
| 		ap->cbl = fe->param.cbl;
 | |
| 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_force_link_limits - force link limits according to libata.force
 | |
|  *	@link: ATA link of interest
 | |
|  *
 | |
|  *	Force link flags and SATA spd limit according to libata.force
 | |
|  *	and whine about it.  When only the port part is specified
 | |
|  *	(e.g. 1:), the limit applies to all links connected to both
 | |
|  *	the host link and all fan-out ports connected via PMP.  If the
 | |
|  *	device part is specified as 0 (e.g. 1.00:), it specifies the
 | |
|  *	first fan-out link not the host link.  Device number 15 always
 | |
|  *	points to the host link whether PMP is attached or not.  If the
 | |
|  *	controller has slave link, device number 16 points to it.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  */
 | |
| static void ata_force_link_limits(struct ata_link *link)
 | |
| {
 | |
| 	bool did_spd = false;
 | |
| 	int linkno = link->pmp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (ata_is_host_link(link))
 | |
| 		linkno += 15;
 | |
| 
 | |
| 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 | |
| 		const struct ata_force_ent *fe = &ata_force_tbl[i];
 | |
| 
 | |
| 		if (fe->port != -1 && fe->port != link->ap->print_id)
 | |
| 			continue;
 | |
| 
 | |
| 		if (fe->device != -1 && fe->device != linkno)
 | |
| 			continue;
 | |
| 
 | |
| 		/* only honor the first spd limit */
 | |
| 		if (!did_spd && fe->param.spd_limit) {
 | |
| 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 | |
| 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 | |
| 					fe->param.name);
 | |
| 			did_spd = true;
 | |
| 		}
 | |
| 
 | |
| 		/* let lflags stack */
 | |
| 		if (fe->param.lflags) {
 | |
| 			link->flags |= fe->param.lflags;
 | |
| 			ata_link_notice(link,
 | |
| 					"FORCE: link flag 0x%x forced -> 0x%x\n",
 | |
| 					fe->param.lflags, link->flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_force_xfermask - force xfermask according to libata.force
 | |
|  *	@dev: ATA device of interest
 | |
|  *
 | |
|  *	Force xfer_mask according to libata.force and whine about it.
 | |
|  *	For consistency with link selection, device number 15 selects
 | |
|  *	the first device connected to the host link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  */
 | |
| static void ata_force_xfermask(struct ata_device *dev)
 | |
| {
 | |
| 	int devno = dev->link->pmp + dev->devno;
 | |
| 	int alt_devno = devno;
 | |
| 	int i;
 | |
| 
 | |
| 	/* allow n.15/16 for devices attached to host port */
 | |
| 	if (ata_is_host_link(dev->link))
 | |
| 		alt_devno += 15;
 | |
| 
 | |
| 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 | |
| 		const struct ata_force_ent *fe = &ata_force_tbl[i];
 | |
| 		unsigned long pio_mask, mwdma_mask, udma_mask;
 | |
| 
 | |
| 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 | |
| 			continue;
 | |
| 
 | |
| 		if (fe->device != -1 && fe->device != devno &&
 | |
| 		    fe->device != alt_devno)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!fe->param.xfer_mask)
 | |
| 			continue;
 | |
| 
 | |
| 		ata_unpack_xfermask(fe->param.xfer_mask,
 | |
| 				    &pio_mask, &mwdma_mask, &udma_mask);
 | |
| 		if (udma_mask)
 | |
| 			dev->udma_mask = udma_mask;
 | |
| 		else if (mwdma_mask) {
 | |
| 			dev->udma_mask = 0;
 | |
| 			dev->mwdma_mask = mwdma_mask;
 | |
| 		} else {
 | |
| 			dev->udma_mask = 0;
 | |
| 			dev->mwdma_mask = 0;
 | |
| 			dev->pio_mask = pio_mask;
 | |
| 		}
 | |
| 
 | |
| 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 | |
| 			       fe->param.name);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_force_horkage - force horkage according to libata.force
 | |
|  *	@dev: ATA device of interest
 | |
|  *
 | |
|  *	Force horkage according to libata.force and whine about it.
 | |
|  *	For consistency with link selection, device number 15 selects
 | |
|  *	the first device connected to the host link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  */
 | |
| static void ata_force_horkage(struct ata_device *dev)
 | |
| {
 | |
| 	int devno = dev->link->pmp + dev->devno;
 | |
| 	int alt_devno = devno;
 | |
| 	int i;
 | |
| 
 | |
| 	/* allow n.15/16 for devices attached to host port */
 | |
| 	if (ata_is_host_link(dev->link))
 | |
| 		alt_devno += 15;
 | |
| 
 | |
| 	for (i = 0; i < ata_force_tbl_size; i++) {
 | |
| 		const struct ata_force_ent *fe = &ata_force_tbl[i];
 | |
| 
 | |
| 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 | |
| 			continue;
 | |
| 
 | |
| 		if (fe->device != -1 && fe->device != devno &&
 | |
| 		    fe->device != alt_devno)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!(~dev->horkage & fe->param.horkage_on) &&
 | |
| 		    !(dev->horkage & fe->param.horkage_off))
 | |
| 			continue;
 | |
| 
 | |
| 		dev->horkage |= fe->param.horkage_on;
 | |
| 		dev->horkage &= ~fe->param.horkage_off;
 | |
| 
 | |
| 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 | |
| 			       fe->param.name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 | |
|  *	@opcode: SCSI opcode
 | |
|  *
 | |
|  *	Determine ATAPI command type from @opcode.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 | |
|  */
 | |
| int atapi_cmd_type(u8 opcode)
 | |
| {
 | |
| 	switch (opcode) {
 | |
| 	case GPCMD_READ_10:
 | |
| 	case GPCMD_READ_12:
 | |
| 		return ATAPI_READ;
 | |
| 
 | |
| 	case GPCMD_WRITE_10:
 | |
| 	case GPCMD_WRITE_12:
 | |
| 	case GPCMD_WRITE_AND_VERIFY_10:
 | |
| 		return ATAPI_WRITE;
 | |
| 
 | |
| 	case GPCMD_READ_CD:
 | |
| 	case GPCMD_READ_CD_MSF:
 | |
| 		return ATAPI_READ_CD;
 | |
| 
 | |
| 	case ATA_16:
 | |
| 	case ATA_12:
 | |
| 		if (atapi_passthru16)
 | |
| 			return ATAPI_PASS_THRU;
 | |
| 		/* fall thru */
 | |
| 	default:
 | |
| 		return ATAPI_MISC;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 | |
|  *	@tf: Taskfile to convert
 | |
|  *	@pmp: Port multiplier port
 | |
|  *	@is_cmd: This FIS is for command
 | |
|  *	@fis: Buffer into which data will output
 | |
|  *
 | |
|  *	Converts a standard ATA taskfile to a Serial ATA
 | |
|  *	FIS structure (Register - Host to Device).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 | |
| {
 | |
| 	fis[0] = 0x27;			/* Register - Host to Device FIS */
 | |
| 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 | |
| 	if (is_cmd)
 | |
| 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 | |
| 
 | |
| 	fis[2] = tf->command;
 | |
| 	fis[3] = tf->feature;
 | |
| 
 | |
| 	fis[4] = tf->lbal;
 | |
| 	fis[5] = tf->lbam;
 | |
| 	fis[6] = tf->lbah;
 | |
| 	fis[7] = tf->device;
 | |
| 
 | |
| 	fis[8] = tf->hob_lbal;
 | |
| 	fis[9] = tf->hob_lbam;
 | |
| 	fis[10] = tf->hob_lbah;
 | |
| 	fis[11] = tf->hob_feature;
 | |
| 
 | |
| 	fis[12] = tf->nsect;
 | |
| 	fis[13] = tf->hob_nsect;
 | |
| 	fis[14] = 0;
 | |
| 	fis[15] = tf->ctl;
 | |
| 
 | |
| 	fis[16] = 0;
 | |
| 	fis[17] = 0;
 | |
| 	fis[18] = 0;
 | |
| 	fis[19] = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 | |
|  *	@fis: Buffer from which data will be input
 | |
|  *	@tf: Taskfile to output
 | |
|  *
 | |
|  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| 
 | |
| void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 | |
| {
 | |
| 	tf->command	= fis[2];	/* status */
 | |
| 	tf->feature	= fis[3];	/* error */
 | |
| 
 | |
| 	tf->lbal	= fis[4];
 | |
| 	tf->lbam	= fis[5];
 | |
| 	tf->lbah	= fis[6];
 | |
| 	tf->device	= fis[7];
 | |
| 
 | |
| 	tf->hob_lbal	= fis[8];
 | |
| 	tf->hob_lbam	= fis[9];
 | |
| 	tf->hob_lbah	= fis[10];
 | |
| 
 | |
| 	tf->nsect	= fis[12];
 | |
| 	tf->hob_nsect	= fis[13];
 | |
| }
 | |
| 
 | |
| static const u8 ata_rw_cmds[] = {
 | |
| 	/* pio multi */
 | |
| 	ATA_CMD_READ_MULTI,
 | |
| 	ATA_CMD_WRITE_MULTI,
 | |
| 	ATA_CMD_READ_MULTI_EXT,
 | |
| 	ATA_CMD_WRITE_MULTI_EXT,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	ATA_CMD_WRITE_MULTI_FUA_EXT,
 | |
| 	/* pio */
 | |
| 	ATA_CMD_PIO_READ,
 | |
| 	ATA_CMD_PIO_WRITE,
 | |
| 	ATA_CMD_PIO_READ_EXT,
 | |
| 	ATA_CMD_PIO_WRITE_EXT,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	/* dma */
 | |
| 	ATA_CMD_READ,
 | |
| 	ATA_CMD_WRITE,
 | |
| 	ATA_CMD_READ_EXT,
 | |
| 	ATA_CMD_WRITE_EXT,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	ATA_CMD_WRITE_FUA_EXT
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 | |
|  *	@tf: command to examine and configure
 | |
|  *	@dev: device tf belongs to
 | |
|  *
 | |
|  *	Examine the device configuration and tf->flags to calculate
 | |
|  *	the proper read/write commands and protocol to use.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 | |
| {
 | |
| 	u8 cmd;
 | |
| 
 | |
| 	int index, fua, lba48, write;
 | |
| 
 | |
| 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 | |
| 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 | |
| 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 | |
| 
 | |
| 	if (dev->flags & ATA_DFLAG_PIO) {
 | |
| 		tf->protocol = ATA_PROT_PIO;
 | |
| 		index = dev->multi_count ? 0 : 8;
 | |
| 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 | |
| 		/* Unable to use DMA due to host limitation */
 | |
| 		tf->protocol = ATA_PROT_PIO;
 | |
| 		index = dev->multi_count ? 0 : 8;
 | |
| 	} else {
 | |
| 		tf->protocol = ATA_PROT_DMA;
 | |
| 		index = 16;
 | |
| 	}
 | |
| 
 | |
| 	cmd = ata_rw_cmds[index + fua + lba48 + write];
 | |
| 	if (cmd) {
 | |
| 		tf->command = cmd;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_tf_read_block - Read block address from ATA taskfile
 | |
|  *	@tf: ATA taskfile of interest
 | |
|  *	@dev: ATA device @tf belongs to
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	Read block address from @tf.  This function can handle all
 | |
|  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 | |
|  *	flags select the address format to use.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Block address read from @tf.
 | |
|  */
 | |
| u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 | |
| {
 | |
| 	u64 block = 0;
 | |
| 
 | |
| 	if (tf->flags & ATA_TFLAG_LBA) {
 | |
| 		if (tf->flags & ATA_TFLAG_LBA48) {
 | |
| 			block |= (u64)tf->hob_lbah << 40;
 | |
| 			block |= (u64)tf->hob_lbam << 32;
 | |
| 			block |= (u64)tf->hob_lbal << 24;
 | |
| 		} else
 | |
| 			block |= (tf->device & 0xf) << 24;
 | |
| 
 | |
| 		block |= tf->lbah << 16;
 | |
| 		block |= tf->lbam << 8;
 | |
| 		block |= tf->lbal;
 | |
| 	} else {
 | |
| 		u32 cyl, head, sect;
 | |
| 
 | |
| 		cyl = tf->lbam | (tf->lbah << 8);
 | |
| 		head = tf->device & 0xf;
 | |
| 		sect = tf->lbal;
 | |
| 
 | |
| 		if (!sect) {
 | |
| 			ata_dev_warn(dev,
 | |
| 				     "device reported invalid CHS sector 0\n");
 | |
| 			sect = 1; /* oh well */
 | |
| 		}
 | |
| 
 | |
| 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 | |
| 	}
 | |
| 
 | |
| 	return block;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 | |
|  *	@tf: Target ATA taskfile
 | |
|  *	@dev: ATA device @tf belongs to
 | |
|  *	@block: Block address
 | |
|  *	@n_block: Number of blocks
 | |
|  *	@tf_flags: RW/FUA etc...
 | |
|  *	@tag: tag
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	Build ATA taskfile @tf for read/write request described by
 | |
|  *	@block, @n_block, @tf_flags and @tag on @dev.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *
 | |
|  *	0 on success, -ERANGE if the request is too large for @dev,
 | |
|  *	-EINVAL if the request is invalid.
 | |
|  */
 | |
| int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 | |
| 		    u64 block, u32 n_block, unsigned int tf_flags,
 | |
| 		    unsigned int tag)
 | |
| {
 | |
| 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 | |
| 	tf->flags |= tf_flags;
 | |
| 
 | |
| 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 | |
| 		/* yay, NCQ */
 | |
| 		if (!lba_48_ok(block, n_block))
 | |
| 			return -ERANGE;
 | |
| 
 | |
| 		tf->protocol = ATA_PROT_NCQ;
 | |
| 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 | |
| 
 | |
| 		if (tf->flags & ATA_TFLAG_WRITE)
 | |
| 			tf->command = ATA_CMD_FPDMA_WRITE;
 | |
| 		else
 | |
| 			tf->command = ATA_CMD_FPDMA_READ;
 | |
| 
 | |
| 		tf->nsect = tag << 3;
 | |
| 		tf->hob_feature = (n_block >> 8) & 0xff;
 | |
| 		tf->feature = n_block & 0xff;
 | |
| 
 | |
| 		tf->hob_lbah = (block >> 40) & 0xff;
 | |
| 		tf->hob_lbam = (block >> 32) & 0xff;
 | |
| 		tf->hob_lbal = (block >> 24) & 0xff;
 | |
| 		tf->lbah = (block >> 16) & 0xff;
 | |
| 		tf->lbam = (block >> 8) & 0xff;
 | |
| 		tf->lbal = block & 0xff;
 | |
| 
 | |
| 		tf->device = 1 << 6;
 | |
| 		if (tf->flags & ATA_TFLAG_FUA)
 | |
| 			tf->device |= 1 << 7;
 | |
| 	} else if (dev->flags & ATA_DFLAG_LBA) {
 | |
| 		tf->flags |= ATA_TFLAG_LBA;
 | |
| 
 | |
| 		if (lba_28_ok(block, n_block)) {
 | |
| 			/* use LBA28 */
 | |
| 			tf->device |= (block >> 24) & 0xf;
 | |
| 		} else if (lba_48_ok(block, n_block)) {
 | |
| 			if (!(dev->flags & ATA_DFLAG_LBA48))
 | |
| 				return -ERANGE;
 | |
| 
 | |
| 			/* use LBA48 */
 | |
| 			tf->flags |= ATA_TFLAG_LBA48;
 | |
| 
 | |
| 			tf->hob_nsect = (n_block >> 8) & 0xff;
 | |
| 
 | |
| 			tf->hob_lbah = (block >> 40) & 0xff;
 | |
| 			tf->hob_lbam = (block >> 32) & 0xff;
 | |
| 			tf->hob_lbal = (block >> 24) & 0xff;
 | |
| 		} else
 | |
| 			/* request too large even for LBA48 */
 | |
| 			return -ERANGE;
 | |
| 
 | |
| 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		tf->nsect = n_block & 0xff;
 | |
| 
 | |
| 		tf->lbah = (block >> 16) & 0xff;
 | |
| 		tf->lbam = (block >> 8) & 0xff;
 | |
| 		tf->lbal = block & 0xff;
 | |
| 
 | |
| 		tf->device |= ATA_LBA;
 | |
| 	} else {
 | |
| 		/* CHS */
 | |
| 		u32 sect, head, cyl, track;
 | |
| 
 | |
| 		/* The request -may- be too large for CHS addressing. */
 | |
| 		if (!lba_28_ok(block, n_block))
 | |
| 			return -ERANGE;
 | |
| 
 | |
| 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* Convert LBA to CHS */
 | |
| 		track = (u32)block / dev->sectors;
 | |
| 		cyl   = track / dev->heads;
 | |
| 		head  = track % dev->heads;
 | |
| 		sect  = (u32)block % dev->sectors + 1;
 | |
| 
 | |
| 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 | |
| 			(u32)block, track, cyl, head, sect);
 | |
| 
 | |
| 		/* Check whether the converted CHS can fit.
 | |
| 		   Cylinder: 0-65535
 | |
| 		   Head: 0-15
 | |
| 		   Sector: 1-255*/
 | |
| 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 | |
| 			return -ERANGE;
 | |
| 
 | |
| 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 | |
| 		tf->lbal = sect;
 | |
| 		tf->lbam = cyl;
 | |
| 		tf->lbah = cyl >> 8;
 | |
| 		tf->device |= head;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 | |
|  *	@pio_mask: pio_mask
 | |
|  *	@mwdma_mask: mwdma_mask
 | |
|  *	@udma_mask: udma_mask
 | |
|  *
 | |
|  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 | |
|  *	unsigned int xfer_mask.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Packed xfer_mask.
 | |
|  */
 | |
| unsigned long ata_pack_xfermask(unsigned long pio_mask,
 | |
| 				unsigned long mwdma_mask,
 | |
| 				unsigned long udma_mask)
 | |
| {
 | |
| 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 | |
| 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 | |
| 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 | |
|  *	@xfer_mask: xfer_mask to unpack
 | |
|  *	@pio_mask: resulting pio_mask
 | |
|  *	@mwdma_mask: resulting mwdma_mask
 | |
|  *	@udma_mask: resulting udma_mask
 | |
|  *
 | |
|  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 | |
|  *	Any NULL distination masks will be ignored.
 | |
|  */
 | |
| void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 | |
| 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 | |
| {
 | |
| 	if (pio_mask)
 | |
| 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 | |
| 	if (mwdma_mask)
 | |
| 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 | |
| 	if (udma_mask)
 | |
| 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 | |
| }
 | |
| 
 | |
| static const struct ata_xfer_ent {
 | |
| 	int shift, bits;
 | |
| 	u8 base;
 | |
| } ata_xfer_tbl[] = {
 | |
| 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 | |
| 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 | |
| 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 | |
| 	{ -1, },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 | |
|  *	@xfer_mask: xfer_mask of interest
 | |
|  *
 | |
|  *	Return matching XFER_* value for @xfer_mask.  Only the highest
 | |
|  *	bit of @xfer_mask is considered.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Matching XFER_* value, 0xff if no match found.
 | |
|  */
 | |
| u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 | |
| {
 | |
| 	int highbit = fls(xfer_mask) - 1;
 | |
| 	const struct ata_xfer_ent *ent;
 | |
| 
 | |
| 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 | |
| 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 | |
| 			return ent->base + highbit - ent->shift;
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 | |
|  *	@xfer_mode: XFER_* of interest
 | |
|  *
 | |
|  *	Return matching xfer_mask for @xfer_mode.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Matching xfer_mask, 0 if no match found.
 | |
|  */
 | |
| unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 | |
| {
 | |
| 	const struct ata_xfer_ent *ent;
 | |
| 
 | |
| 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 | |
| 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 | |
| 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 | |
| 				& ~((1 << ent->shift) - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 | |
|  *	@xfer_mode: XFER_* of interest
 | |
|  *
 | |
|  *	Return matching xfer_shift for @xfer_mode.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Matching xfer_shift, -1 if no match found.
 | |
|  */
 | |
| int ata_xfer_mode2shift(unsigned long xfer_mode)
 | |
| {
 | |
| 	const struct ata_xfer_ent *ent;
 | |
| 
 | |
| 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 | |
| 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 | |
| 			return ent->shift;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_mode_string - convert xfer_mask to string
 | |
|  *	@xfer_mask: mask of bits supported; only highest bit counts.
 | |
|  *
 | |
|  *	Determine string which represents the highest speed
 | |
|  *	(highest bit in @modemask).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Constant C string representing highest speed listed in
 | |
|  *	@mode_mask, or the constant C string "<n/a>".
 | |
|  */
 | |
| const char *ata_mode_string(unsigned long xfer_mask)
 | |
| {
 | |
| 	static const char * const xfer_mode_str[] = {
 | |
| 		"PIO0",
 | |
| 		"PIO1",
 | |
| 		"PIO2",
 | |
| 		"PIO3",
 | |
| 		"PIO4",
 | |
| 		"PIO5",
 | |
| 		"PIO6",
 | |
| 		"MWDMA0",
 | |
| 		"MWDMA1",
 | |
| 		"MWDMA2",
 | |
| 		"MWDMA3",
 | |
| 		"MWDMA4",
 | |
| 		"UDMA/16",
 | |
| 		"UDMA/25",
 | |
| 		"UDMA/33",
 | |
| 		"UDMA/44",
 | |
| 		"UDMA/66",
 | |
| 		"UDMA/100",
 | |
| 		"UDMA/133",
 | |
| 		"UDMA7",
 | |
| 	};
 | |
| 	int highbit;
 | |
| 
 | |
| 	highbit = fls(xfer_mask) - 1;
 | |
| 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 | |
| 		return xfer_mode_str[highbit];
 | |
| 	return "<n/a>";
 | |
| }
 | |
| 
 | |
| const char *sata_spd_string(unsigned int spd)
 | |
| {
 | |
| 	static const char * const spd_str[] = {
 | |
| 		"1.5 Gbps",
 | |
| 		"3.0 Gbps",
 | |
| 		"6.0 Gbps",
 | |
| 	};
 | |
| 
 | |
| 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 | |
| 		return "<unknown>";
 | |
| 	return spd_str[spd - 1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_classify - determine device type based on ATA-spec signature
 | |
|  *	@tf: ATA taskfile register set for device to be identified
 | |
|  *
 | |
|  *	Determine from taskfile register contents whether a device is
 | |
|  *	ATA or ATAPI, as per "Signature and persistence" section
 | |
|  *	of ATA/PI spec (volume 1, sect 5.14).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
 | |
|  *	%ATA_DEV_UNKNOWN the event of failure.
 | |
|  */
 | |
| unsigned int ata_dev_classify(const struct ata_taskfile *tf)
 | |
| {
 | |
| 	/* Apple's open source Darwin code hints that some devices only
 | |
| 	 * put a proper signature into the LBA mid/high registers,
 | |
| 	 * So, we only check those.  It's sufficient for uniqueness.
 | |
| 	 *
 | |
| 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
 | |
| 	 * signatures for ATA and ATAPI devices attached on SerialATA,
 | |
| 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
 | |
| 	 * spec has never mentioned about using different signatures
 | |
| 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
 | |
| 	 * Multiplier specification began to use 0x69/0x96 to identify
 | |
| 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
 | |
| 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
 | |
| 	 * 0x69/0x96 shortly and described them as reserved for
 | |
| 	 * SerialATA.
 | |
| 	 *
 | |
| 	 * We follow the current spec and consider that 0x69/0x96
 | |
| 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
 | |
| 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
 | |
| 	 * SEMB signature.  This is worked around in
 | |
| 	 * ata_dev_read_id().
 | |
| 	 */
 | |
| 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
 | |
| 		DPRINTK("found ATA device by sig\n");
 | |
| 		return ATA_DEV_ATA;
 | |
| 	}
 | |
| 
 | |
| 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
 | |
| 		DPRINTK("found ATAPI device by sig\n");
 | |
| 		return ATA_DEV_ATAPI;
 | |
| 	}
 | |
| 
 | |
| 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
 | |
| 		DPRINTK("found PMP device by sig\n");
 | |
| 		return ATA_DEV_PMP;
 | |
| 	}
 | |
| 
 | |
| 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
 | |
| 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
 | |
| 		return ATA_DEV_SEMB;
 | |
| 	}
 | |
| 
 | |
| 	DPRINTK("unknown device\n");
 | |
| 	return ATA_DEV_UNKNOWN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_id_string - Convert IDENTIFY DEVICE page into string
 | |
|  *	@id: IDENTIFY DEVICE results we will examine
 | |
|  *	@s: string into which data is output
 | |
|  *	@ofs: offset into identify device page
 | |
|  *	@len: length of string to return. must be an even number.
 | |
|  *
 | |
|  *	The strings in the IDENTIFY DEVICE page are broken up into
 | |
|  *	16-bit chunks.  Run through the string, and output each
 | |
|  *	8-bit chunk linearly, regardless of platform.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| 
 | |
| void ata_id_string(const u16 *id, unsigned char *s,
 | |
| 		   unsigned int ofs, unsigned int len)
 | |
| {
 | |
| 	unsigned int c;
 | |
| 
 | |
| 	BUG_ON(len & 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		c = id[ofs] >> 8;
 | |
| 		*s = c;
 | |
| 		s++;
 | |
| 
 | |
| 		c = id[ofs] & 0xff;
 | |
| 		*s = c;
 | |
| 		s++;
 | |
| 
 | |
| 		ofs++;
 | |
| 		len -= 2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
 | |
|  *	@id: IDENTIFY DEVICE results we will examine
 | |
|  *	@s: string into which data is output
 | |
|  *	@ofs: offset into identify device page
 | |
|  *	@len: length of string to return. must be an odd number.
 | |
|  *
 | |
|  *	This function is identical to ata_id_string except that it
 | |
|  *	trims trailing spaces and terminates the resulting string with
 | |
|  *	null.  @len must be actual maximum length (even number) + 1.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| void ata_id_c_string(const u16 *id, unsigned char *s,
 | |
| 		     unsigned int ofs, unsigned int len)
 | |
| {
 | |
| 	unsigned char *p;
 | |
| 
 | |
| 	ata_id_string(id, s, ofs, len - 1);
 | |
| 
 | |
| 	p = s + strnlen(s, len - 1);
 | |
| 	while (p > s && p[-1] == ' ')
 | |
| 		p--;
 | |
| 	*p = '\0';
 | |
| }
 | |
| 
 | |
| static u64 ata_id_n_sectors(const u16 *id)
 | |
| {
 | |
| 	if (ata_id_has_lba(id)) {
 | |
| 		if (ata_id_has_lba48(id))
 | |
| 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
 | |
| 		else
 | |
| 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
 | |
| 	} else {
 | |
| 		if (ata_id_current_chs_valid(id))
 | |
| 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
 | |
| 			       id[ATA_ID_CUR_SECTORS];
 | |
| 		else
 | |
| 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
 | |
| 			       id[ATA_ID_SECTORS];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
 | |
| {
 | |
| 	u64 sectors = 0;
 | |
| 
 | |
| 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
 | |
| 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
 | |
| 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
 | |
| 	sectors |= (tf->lbah & 0xff) << 16;
 | |
| 	sectors |= (tf->lbam & 0xff) << 8;
 | |
| 	sectors |= (tf->lbal & 0xff);
 | |
| 
 | |
| 	return sectors;
 | |
| }
 | |
| 
 | |
| u64 ata_tf_to_lba(const struct ata_taskfile *tf)
 | |
| {
 | |
| 	u64 sectors = 0;
 | |
| 
 | |
| 	sectors |= (tf->device & 0x0f) << 24;
 | |
| 	sectors |= (tf->lbah & 0xff) << 16;
 | |
| 	sectors |= (tf->lbam & 0xff) << 8;
 | |
| 	sectors |= (tf->lbal & 0xff);
 | |
| 
 | |
| 	return sectors;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_read_native_max_address - Read native max address
 | |
|  *	@dev: target device
 | |
|  *	@max_sectors: out parameter for the result native max address
 | |
|  *
 | |
|  *	Perform an LBA48 or LBA28 native size query upon the device in
 | |
|  *	question.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -EACCES if command is aborted by the drive.
 | |
|  *	-EIO on other errors.
 | |
|  */
 | |
| static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
 | |
| {
 | |
| 	unsigned int err_mask;
 | |
| 	struct ata_taskfile tf;
 | |
| 	int lba48 = ata_id_has_lba48(dev->id);
 | |
| 
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 
 | |
| 	/* always clear all address registers */
 | |
| 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
 | |
| 
 | |
| 	if (lba48) {
 | |
| 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
 | |
| 		tf.flags |= ATA_TFLAG_LBA48;
 | |
| 	} else
 | |
| 		tf.command = ATA_CMD_READ_NATIVE_MAX;
 | |
| 
 | |
| 	tf.protocol |= ATA_PROT_NODATA;
 | |
| 	tf.device |= ATA_LBA;
 | |
| 
 | |
| 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| 	if (err_mask) {
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "failed to read native max address (err_mask=0x%x)\n",
 | |
| 			     err_mask);
 | |
| 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
 | |
| 			return -EACCES;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (lba48)
 | |
| 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
 | |
| 	else
 | |
| 		*max_sectors = ata_tf_to_lba(&tf) + 1;
 | |
| 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
 | |
| 		(*max_sectors)--;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_set_max_sectors - Set max sectors
 | |
|  *	@dev: target device
 | |
|  *	@new_sectors: new max sectors value to set for the device
 | |
|  *
 | |
|  *	Set max sectors of @dev to @new_sectors.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -EACCES if command is aborted or denied (due to
 | |
|  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
 | |
|  *	errors.
 | |
|  */
 | |
| static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
 | |
| {
 | |
| 	unsigned int err_mask;
 | |
| 	struct ata_taskfile tf;
 | |
| 	int lba48 = ata_id_has_lba48(dev->id);
 | |
| 
 | |
| 	new_sectors--;
 | |
| 
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 
 | |
| 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
 | |
| 
 | |
| 	if (lba48) {
 | |
| 		tf.command = ATA_CMD_SET_MAX_EXT;
 | |
| 		tf.flags |= ATA_TFLAG_LBA48;
 | |
| 
 | |
| 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
 | |
| 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
 | |
| 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
 | |
| 	} else {
 | |
| 		tf.command = ATA_CMD_SET_MAX;
 | |
| 
 | |
| 		tf.device |= (new_sectors >> 24) & 0xf;
 | |
| 	}
 | |
| 
 | |
| 	tf.protocol |= ATA_PROT_NODATA;
 | |
| 	tf.device |= ATA_LBA;
 | |
| 
 | |
| 	tf.lbal = (new_sectors >> 0) & 0xff;
 | |
| 	tf.lbam = (new_sectors >> 8) & 0xff;
 | |
| 	tf.lbah = (new_sectors >> 16) & 0xff;
 | |
| 
 | |
| 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| 	if (err_mask) {
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "failed to set max address (err_mask=0x%x)\n",
 | |
| 			     err_mask);
 | |
| 		if (err_mask == AC_ERR_DEV &&
 | |
| 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
 | |
| 			return -EACCES;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_hpa_resize		-	Resize a device with an HPA set
 | |
|  *	@dev: Device to resize
 | |
|  *
 | |
|  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
 | |
|  *	it if required to the full size of the media. The caller must check
 | |
|  *	the drive has the HPA feature set enabled.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno on failure.
 | |
|  */
 | |
| static int ata_hpa_resize(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_eh_context *ehc = &dev->link->eh_context;
 | |
| 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
 | |
| 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
 | |
| 	u64 sectors = ata_id_n_sectors(dev->id);
 | |
| 	u64 native_sectors;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* do we need to do it? */
 | |
| 	if (dev->class != ATA_DEV_ATA ||
 | |
| 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
 | |
| 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* read native max address */
 | |
| 	rc = ata_read_native_max_address(dev, &native_sectors);
 | |
| 	if (rc) {
 | |
| 		/* If device aborted the command or HPA isn't going to
 | |
| 		 * be unlocked, skip HPA resizing.
 | |
| 		 */
 | |
| 		if (rc == -EACCES || !unlock_hpa) {
 | |
| 			ata_dev_warn(dev,
 | |
| 				     "HPA support seems broken, skipping HPA handling\n");
 | |
| 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
 | |
| 
 | |
| 			/* we can continue if device aborted the command */
 | |
| 			if (rc == -EACCES)
 | |
| 				rc = 0;
 | |
| 		}
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 	dev->n_native_sectors = native_sectors;
 | |
| 
 | |
| 	/* nothing to do? */
 | |
| 	if (native_sectors <= sectors || !unlock_hpa) {
 | |
| 		if (!print_info || native_sectors == sectors)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (native_sectors > sectors)
 | |
| 			ata_dev_info(dev,
 | |
| 				"HPA detected: current %llu, native %llu\n",
 | |
| 				(unsigned long long)sectors,
 | |
| 				(unsigned long long)native_sectors);
 | |
| 		else if (native_sectors < sectors)
 | |
| 			ata_dev_warn(dev,
 | |
| 				"native sectors (%llu) is smaller than sectors (%llu)\n",
 | |
| 				(unsigned long long)native_sectors,
 | |
| 				(unsigned long long)sectors);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* let's unlock HPA */
 | |
| 	rc = ata_set_max_sectors(dev, native_sectors);
 | |
| 	if (rc == -EACCES) {
 | |
| 		/* if device aborted the command, skip HPA resizing */
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
 | |
| 			     (unsigned long long)sectors,
 | |
| 			     (unsigned long long)native_sectors);
 | |
| 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
 | |
| 		return 0;
 | |
| 	} else if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* re-read IDENTIFY data */
 | |
| 	rc = ata_dev_reread_id(dev, 0);
 | |
| 	if (rc) {
 | |
| 		ata_dev_err(dev,
 | |
| 			    "failed to re-read IDENTIFY data after HPA resizing\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (print_info) {
 | |
| 		u64 new_sectors = ata_id_n_sectors(dev->id);
 | |
| 		ata_dev_info(dev,
 | |
| 			"HPA unlocked: %llu -> %llu, native %llu\n",
 | |
| 			(unsigned long long)sectors,
 | |
| 			(unsigned long long)new_sectors,
 | |
| 			(unsigned long long)native_sectors);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dump_id - IDENTIFY DEVICE info debugging output
 | |
|  *	@id: IDENTIFY DEVICE page to dump
 | |
|  *
 | |
|  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
 | |
|  *	page.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| 
 | |
| static inline void ata_dump_id(const u16 *id)
 | |
| {
 | |
| 	DPRINTK("49==0x%04x  "
 | |
| 		"53==0x%04x  "
 | |
| 		"63==0x%04x  "
 | |
| 		"64==0x%04x  "
 | |
| 		"75==0x%04x  \n",
 | |
| 		id[49],
 | |
| 		id[53],
 | |
| 		id[63],
 | |
| 		id[64],
 | |
| 		id[75]);
 | |
| 	DPRINTK("80==0x%04x  "
 | |
| 		"81==0x%04x  "
 | |
| 		"82==0x%04x  "
 | |
| 		"83==0x%04x  "
 | |
| 		"84==0x%04x  \n",
 | |
| 		id[80],
 | |
| 		id[81],
 | |
| 		id[82],
 | |
| 		id[83],
 | |
| 		id[84]);
 | |
| 	DPRINTK("88==0x%04x  "
 | |
| 		"93==0x%04x\n",
 | |
| 		id[88],
 | |
| 		id[93]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
 | |
|  *	@id: IDENTIFY data to compute xfer mask from
 | |
|  *
 | |
|  *	Compute the xfermask for this device. This is not as trivial
 | |
|  *	as it seems if we must consider early devices correctly.
 | |
|  *
 | |
|  *	FIXME: pre IDE drive timing (do we care ?).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Computed xfermask
 | |
|  */
 | |
| unsigned long ata_id_xfermask(const u16 *id)
 | |
| {
 | |
| 	unsigned long pio_mask, mwdma_mask, udma_mask;
 | |
| 
 | |
| 	/* Usual case. Word 53 indicates word 64 is valid */
 | |
| 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
 | |
| 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
 | |
| 		pio_mask <<= 3;
 | |
| 		pio_mask |= 0x7;
 | |
| 	} else {
 | |
| 		/* If word 64 isn't valid then Word 51 high byte holds
 | |
| 		 * the PIO timing number for the maximum. Turn it into
 | |
| 		 * a mask.
 | |
| 		 */
 | |
| 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
 | |
| 		if (mode < 5)	/* Valid PIO range */
 | |
| 			pio_mask = (2 << mode) - 1;
 | |
| 		else
 | |
| 			pio_mask = 1;
 | |
| 
 | |
| 		/* But wait.. there's more. Design your standards by
 | |
| 		 * committee and you too can get a free iordy field to
 | |
| 		 * process. However its the speeds not the modes that
 | |
| 		 * are supported... Note drivers using the timing API
 | |
| 		 * will get this right anyway
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
 | |
| 
 | |
| 	if (ata_id_is_cfa(id)) {
 | |
| 		/*
 | |
| 		 *	Process compact flash extended modes
 | |
| 		 */
 | |
| 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
 | |
| 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
 | |
| 
 | |
| 		if (pio)
 | |
| 			pio_mask |= (1 << 5);
 | |
| 		if (pio > 1)
 | |
| 			pio_mask |= (1 << 6);
 | |
| 		if (dma)
 | |
| 			mwdma_mask |= (1 << 3);
 | |
| 		if (dma > 1)
 | |
| 			mwdma_mask |= (1 << 4);
 | |
| 	}
 | |
| 
 | |
| 	udma_mask = 0;
 | |
| 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
 | |
| 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
 | |
| 
 | |
| 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
 | |
| }
 | |
| 
 | |
| static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct completion *waiting = qc->private_data;
 | |
| 
 | |
| 	complete(waiting);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_exec_internal_sg - execute libata internal command
 | |
|  *	@dev: Device to which the command is sent
 | |
|  *	@tf: Taskfile registers for the command and the result
 | |
|  *	@cdb: CDB for packet command
 | |
|  *	@dma_dir: Data tranfer direction of the command
 | |
|  *	@sgl: sg list for the data buffer of the command
 | |
|  *	@n_elem: Number of sg entries
 | |
|  *	@timeout: Timeout in msecs (0 for default)
 | |
|  *
 | |
|  *	Executes libata internal command with timeout.  @tf contains
 | |
|  *	command on entry and result on return.  Timeout and error
 | |
|  *	conditions are reported via return value.  No recovery action
 | |
|  *	is taken after a command times out.  It's caller's duty to
 | |
|  *	clean up after timeout.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.  Should be called with kernel context, might sleep.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, AC_ERR_* mask on failure
 | |
|  */
 | |
| unsigned ata_exec_internal_sg(struct ata_device *dev,
 | |
| 			      struct ata_taskfile *tf, const u8 *cdb,
 | |
| 			      int dma_dir, struct scatterlist *sgl,
 | |
| 			      unsigned int n_elem, unsigned long timeout)
 | |
| {
 | |
| 	struct ata_link *link = dev->link;
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	u8 command = tf->command;
 | |
| 	int auto_timeout = 0;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	unsigned int tag, preempted_tag;
 | |
| 	u32 preempted_sactive, preempted_qc_active;
 | |
| 	int preempted_nr_active_links;
 | |
| 	DECLARE_COMPLETION_ONSTACK(wait);
 | |
| 	unsigned long flags;
 | |
| 	unsigned int err_mask;
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 	/* no internal command while frozen */
 | |
| 	if (ap->pflags & ATA_PFLAG_FROZEN) {
 | |
| 		spin_unlock_irqrestore(ap->lock, flags);
 | |
| 		return AC_ERR_SYSTEM;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize internal qc */
 | |
| 
 | |
| 	/* XXX: Tag 0 is used for drivers with legacy EH as some
 | |
| 	 * drivers choke if any other tag is given.  This breaks
 | |
| 	 * ata_tag_internal() test for those drivers.  Don't use new
 | |
| 	 * EH stuff without converting to it.
 | |
| 	 */
 | |
| 	if (ap->ops->error_handler)
 | |
| 		tag = ATA_TAG_INTERNAL;
 | |
| 	else
 | |
| 		tag = 0;
 | |
| 
 | |
| 	if (test_and_set_bit(tag, &ap->qc_allocated))
 | |
| 		BUG();
 | |
| 	qc = __ata_qc_from_tag(ap, tag);
 | |
| 
 | |
| 	qc->tag = tag;
 | |
| 	qc->scsicmd = NULL;
 | |
| 	qc->ap = ap;
 | |
| 	qc->dev = dev;
 | |
| 	ata_qc_reinit(qc);
 | |
| 
 | |
| 	preempted_tag = link->active_tag;
 | |
| 	preempted_sactive = link->sactive;
 | |
| 	preempted_qc_active = ap->qc_active;
 | |
| 	preempted_nr_active_links = ap->nr_active_links;
 | |
| 	link->active_tag = ATA_TAG_POISON;
 | |
| 	link->sactive = 0;
 | |
| 	ap->qc_active = 0;
 | |
| 	ap->nr_active_links = 0;
 | |
| 
 | |
| 	/* prepare & issue qc */
 | |
| 	qc->tf = *tf;
 | |
| 	if (cdb)
 | |
| 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
 | |
| 	qc->flags |= ATA_QCFLAG_RESULT_TF;
 | |
| 	qc->dma_dir = dma_dir;
 | |
| 	if (dma_dir != DMA_NONE) {
 | |
| 		unsigned int i, buflen = 0;
 | |
| 		struct scatterlist *sg;
 | |
| 
 | |
| 		for_each_sg(sgl, sg, n_elem, i)
 | |
| 			buflen += sg->length;
 | |
| 
 | |
| 		ata_sg_init(qc, sgl, n_elem);
 | |
| 		qc->nbytes = buflen;
 | |
| 	}
 | |
| 
 | |
| 	qc->private_data = &wait;
 | |
| 	qc->complete_fn = ata_qc_complete_internal;
 | |
| 
 | |
| 	ata_qc_issue(qc);
 | |
| 
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		if (ata_probe_timeout)
 | |
| 			timeout = ata_probe_timeout * 1000;
 | |
| 		else {
 | |
| 			timeout = ata_internal_cmd_timeout(dev, command);
 | |
| 			auto_timeout = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ap->ops->error_handler)
 | |
| 		ata_eh_release(ap);
 | |
| 
 | |
| 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
 | |
| 
 | |
| 	if (ap->ops->error_handler)
 | |
| 		ata_eh_acquire(ap);
 | |
| 
 | |
| 	ata_sff_flush_pio_task(ap);
 | |
| 
 | |
| 	if (!rc) {
 | |
| 		spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 		/* We're racing with irq here.  If we lose, the
 | |
| 		 * following test prevents us from completing the qc
 | |
| 		 * twice.  If we win, the port is frozen and will be
 | |
| 		 * cleaned up by ->post_internal_cmd().
 | |
| 		 */
 | |
| 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
 | |
| 			qc->err_mask |= AC_ERR_TIMEOUT;
 | |
| 
 | |
| 			if (ap->ops->error_handler)
 | |
| 				ata_port_freeze(ap);
 | |
| 			else
 | |
| 				ata_qc_complete(qc);
 | |
| 
 | |
| 			if (ata_msg_warn(ap))
 | |
| 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
 | |
| 					     command);
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irqrestore(ap->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* do post_internal_cmd */
 | |
| 	if (ap->ops->post_internal_cmd)
 | |
| 		ap->ops->post_internal_cmd(qc);
 | |
| 
 | |
| 	/* perform minimal error analysis */
 | |
| 	if (qc->flags & ATA_QCFLAG_FAILED) {
 | |
| 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
 | |
| 			qc->err_mask |= AC_ERR_DEV;
 | |
| 
 | |
| 		if (!qc->err_mask)
 | |
| 			qc->err_mask |= AC_ERR_OTHER;
 | |
| 
 | |
| 		if (qc->err_mask & ~AC_ERR_OTHER)
 | |
| 			qc->err_mask &= ~AC_ERR_OTHER;
 | |
| 	}
 | |
| 
 | |
| 	/* finish up */
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 	*tf = qc->result_tf;
 | |
| 	err_mask = qc->err_mask;
 | |
| 
 | |
| 	ata_qc_free(qc);
 | |
| 	link->active_tag = preempted_tag;
 | |
| 	link->sactive = preempted_sactive;
 | |
| 	ap->qc_active = preempted_qc_active;
 | |
| 	ap->nr_active_links = preempted_nr_active_links;
 | |
| 
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
 | |
| 		ata_internal_cmd_timed_out(dev, command);
 | |
| 
 | |
| 	return err_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_exec_internal - execute libata internal command
 | |
|  *	@dev: Device to which the command is sent
 | |
|  *	@tf: Taskfile registers for the command and the result
 | |
|  *	@cdb: CDB for packet command
 | |
|  *	@dma_dir: Data tranfer direction of the command
 | |
|  *	@buf: Data buffer of the command
 | |
|  *	@buflen: Length of data buffer
 | |
|  *	@timeout: Timeout in msecs (0 for default)
 | |
|  *
 | |
|  *	Wrapper around ata_exec_internal_sg() which takes simple
 | |
|  *	buffer instead of sg list.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.  Should be called with kernel context, might sleep.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, AC_ERR_* mask on failure
 | |
|  */
 | |
| unsigned ata_exec_internal(struct ata_device *dev,
 | |
| 			   struct ata_taskfile *tf, const u8 *cdb,
 | |
| 			   int dma_dir, void *buf, unsigned int buflen,
 | |
| 			   unsigned long timeout)
 | |
| {
 | |
| 	struct scatterlist *psg = NULL, sg;
 | |
| 	unsigned int n_elem = 0;
 | |
| 
 | |
| 	if (dma_dir != DMA_NONE) {
 | |
| 		WARN_ON(!buf);
 | |
| 		sg_init_one(&sg, buf, buflen);
 | |
| 		psg = &sg;
 | |
| 		n_elem++;
 | |
| 	}
 | |
| 
 | |
| 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
 | |
| 				    timeout);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_do_simple_cmd - execute simple internal command
 | |
|  *	@dev: Device to which the command is sent
 | |
|  *	@cmd: Opcode to execute
 | |
|  *
 | |
|  *	Execute a 'simple' command, that only consists of the opcode
 | |
|  *	'cmd' itself, without filling any other registers
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, AC_ERR_* mask on failure
 | |
|  */
 | |
| unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
 | |
| {
 | |
| 	struct ata_taskfile tf;
 | |
| 
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 
 | |
| 	tf.command = cmd;
 | |
| 	tf.flags |= ATA_TFLAG_DEVICE;
 | |
| 	tf.protocol = ATA_PROT_NODATA;
 | |
| 
 | |
| 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pio_need_iordy	-	check if iordy needed
 | |
|  *	@adev: ATA device
 | |
|  *
 | |
|  *	Check if the current speed of the device requires IORDY. Used
 | |
|  *	by various controllers for chip configuration.
 | |
|  */
 | |
| unsigned int ata_pio_need_iordy(const struct ata_device *adev)
 | |
| {
 | |
| 	/* Don't set IORDY if we're preparing for reset.  IORDY may
 | |
| 	 * lead to controller lock up on certain controllers if the
 | |
| 	 * port is not occupied.  See bko#11703 for details.
 | |
| 	 */
 | |
| 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
 | |
| 		return 0;
 | |
| 	/* Controller doesn't support IORDY.  Probably a pointless
 | |
| 	 * check as the caller should know this.
 | |
| 	 */
 | |
| 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
 | |
| 		return 0;
 | |
| 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
 | |
| 	if (ata_id_is_cfa(adev->id)
 | |
| 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
 | |
| 		return 0;
 | |
| 	/* PIO3 and higher it is mandatory */
 | |
| 	if (adev->pio_mode > XFER_PIO_2)
 | |
| 		return 1;
 | |
| 	/* We turn it on when possible */
 | |
| 	if (ata_id_has_iordy(adev->id))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
 | |
|  *	@adev: ATA device
 | |
|  *
 | |
|  *	Compute the highest mode possible if we are not using iordy. Return
 | |
|  *	-1 if no iordy mode is available.
 | |
|  */
 | |
| static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
 | |
| {
 | |
| 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
 | |
| 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
 | |
| 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
 | |
| 		/* Is the speed faster than the drive allows non IORDY ? */
 | |
| 		if (pio) {
 | |
| 			/* This is cycle times not frequency - watch the logic! */
 | |
| 			if (pio > 240)	/* PIO2 is 240nS per cycle */
 | |
| 				return 3 << ATA_SHIFT_PIO;
 | |
| 			return 7 << ATA_SHIFT_PIO;
 | |
| 		}
 | |
| 	}
 | |
| 	return 3 << ATA_SHIFT_PIO;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_do_dev_read_id		-	default ID read method
 | |
|  *	@dev: device
 | |
|  *	@tf: proposed taskfile
 | |
|  *	@id: data buffer
 | |
|  *
 | |
|  *	Issue the identify taskfile and hand back the buffer containing
 | |
|  *	identify data. For some RAID controllers and for pre ATA devices
 | |
|  *	this function is wrapped or replaced by the driver
 | |
|  */
 | |
| unsigned int ata_do_dev_read_id(struct ata_device *dev,
 | |
| 					struct ata_taskfile *tf, u16 *id)
 | |
| {
 | |
| 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
 | |
| 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_read_id - Read ID data from the specified device
 | |
|  *	@dev: target device
 | |
|  *	@p_class: pointer to class of the target device (may be changed)
 | |
|  *	@flags: ATA_READID_* flags
 | |
|  *	@id: buffer to read IDENTIFY data into
 | |
|  *
 | |
|  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
 | |
|  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
 | |
|  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
 | |
|  *	for pre-ATA4 drives.
 | |
|  *
 | |
|  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
 | |
|  *	now we abort if we hit that case.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
 | |
| 		    unsigned int flags, u16 *id)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	unsigned int class = *p_class;
 | |
| 	struct ata_taskfile tf;
 | |
| 	unsigned int err_mask = 0;
 | |
| 	const char *reason;
 | |
| 	bool is_semb = class == ATA_DEV_SEMB;
 | |
| 	int may_fallback = 1, tried_spinup = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (ata_msg_ctl(ap))
 | |
| 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
 | |
| 
 | |
| retry:
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 
 | |
| 	switch (class) {
 | |
| 	case ATA_DEV_SEMB:
 | |
| 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
 | |
| 	case ATA_DEV_ATA:
 | |
| 		tf.command = ATA_CMD_ID_ATA;
 | |
| 		break;
 | |
| 	case ATA_DEV_ATAPI:
 | |
| 		tf.command = ATA_CMD_ID_ATAPI;
 | |
| 		break;
 | |
| 	default:
 | |
| 		rc = -ENODEV;
 | |
| 		reason = "unsupported class";
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	tf.protocol = ATA_PROT_PIO;
 | |
| 
 | |
| 	/* Some devices choke if TF registers contain garbage.  Make
 | |
| 	 * sure those are properly initialized.
 | |
| 	 */
 | |
| 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 | |
| 
 | |
| 	/* Device presence detection is unreliable on some
 | |
| 	 * controllers.  Always poll IDENTIFY if available.
 | |
| 	 */
 | |
| 	tf.flags |= ATA_TFLAG_POLLING;
 | |
| 
 | |
| 	if (ap->ops->read_id)
 | |
| 		err_mask = ap->ops->read_id(dev, &tf, id);
 | |
| 	else
 | |
| 		err_mask = ata_do_dev_read_id(dev, &tf, id);
 | |
| 
 | |
| 	if (err_mask) {
 | |
| 		if (err_mask & AC_ERR_NODEV_HINT) {
 | |
| 			ata_dev_dbg(dev, "NODEV after polling detection\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		if (is_semb) {
 | |
| 			ata_dev_info(dev,
 | |
| 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
 | |
| 			/* SEMB is not supported yet */
 | |
| 			*p_class = ATA_DEV_SEMB_UNSUP;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
 | |
| 			/* Device or controller might have reported
 | |
| 			 * the wrong device class.  Give a shot at the
 | |
| 			 * other IDENTIFY if the current one is
 | |
| 			 * aborted by the device.
 | |
| 			 */
 | |
| 			if (may_fallback) {
 | |
| 				may_fallback = 0;
 | |
| 
 | |
| 				if (class == ATA_DEV_ATA)
 | |
| 					class = ATA_DEV_ATAPI;
 | |
| 				else
 | |
| 					class = ATA_DEV_ATA;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			/* Control reaches here iff the device aborted
 | |
| 			 * both flavors of IDENTIFYs which happens
 | |
| 			 * sometimes with phantom devices.
 | |
| 			 */
 | |
| 			ata_dev_dbg(dev,
 | |
| 				    "both IDENTIFYs aborted, assuming NODEV\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		rc = -EIO;
 | |
| 		reason = "I/O error";
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
 | |
| 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
 | |
| 			    "class=%d may_fallback=%d tried_spinup=%d\n",
 | |
| 			    class, may_fallback, tried_spinup);
 | |
| 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
 | |
| 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
 | |
| 	}
 | |
| 
 | |
| 	/* Falling back doesn't make sense if ID data was read
 | |
| 	 * successfully at least once.
 | |
| 	 */
 | |
| 	may_fallback = 0;
 | |
| 
 | |
| 	swap_buf_le16(id, ATA_ID_WORDS);
 | |
| 
 | |
| 	/* sanity check */
 | |
| 	rc = -EINVAL;
 | |
| 	reason = "device reports invalid type";
 | |
| 
 | |
| 	if (class == ATA_DEV_ATA) {
 | |
| 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
 | |
| 			goto err_out;
 | |
| 	} else {
 | |
| 		if (ata_id_is_ata(id))
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
 | |
| 		tried_spinup = 1;
 | |
| 		/*
 | |
| 		 * Drive powered-up in standby mode, and requires a specific
 | |
| 		 * SET_FEATURES spin-up subcommand before it will accept
 | |
| 		 * anything other than the original IDENTIFY command.
 | |
| 		 */
 | |
| 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
 | |
| 		if (err_mask && id[2] != 0x738c) {
 | |
| 			rc = -EIO;
 | |
| 			reason = "SPINUP failed";
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If the drive initially returned incomplete IDENTIFY info,
 | |
| 		 * we now must reissue the IDENTIFY command.
 | |
| 		 */
 | |
| 		if (id[2] == 0x37c8)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
 | |
| 		/*
 | |
| 		 * The exact sequence expected by certain pre-ATA4 drives is:
 | |
| 		 * SRST RESET
 | |
| 		 * IDENTIFY (optional in early ATA)
 | |
| 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
 | |
| 		 * anything else..
 | |
| 		 * Some drives were very specific about that exact sequence.
 | |
| 		 *
 | |
| 		 * Note that ATA4 says lba is mandatory so the second check
 | |
| 		 * should never trigger.
 | |
| 		 */
 | |
| 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
 | |
| 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
 | |
| 			if (err_mask) {
 | |
| 				rc = -EIO;
 | |
| 				reason = "INIT_DEV_PARAMS failed";
 | |
| 				goto err_out;
 | |
| 			}
 | |
| 
 | |
| 			/* current CHS translation info (id[53-58]) might be
 | |
| 			 * changed. reread the identify device info.
 | |
| 			 */
 | |
| 			flags &= ~ATA_READID_POSTRESET;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*p_class = class;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_out:
 | |
| 	if (ata_msg_warn(ap))
 | |
| 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
 | |
| 			     reason, err_mask);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ata_do_link_spd_horkage(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_link *plink = ata_dev_phys_link(dev);
 | |
| 	u32 target, target_limit;
 | |
| 
 | |
| 	if (!sata_scr_valid(plink))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
 | |
| 		target = 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	target_limit = (1 << target) - 1;
 | |
| 
 | |
| 	/* if already on stricter limit, no need to push further */
 | |
| 	if (plink->sata_spd_limit <= target_limit)
 | |
| 		return 0;
 | |
| 
 | |
| 	plink->sata_spd_limit = target_limit;
 | |
| 
 | |
| 	/* Request another EH round by returning -EAGAIN if link is
 | |
| 	 * going faster than the target speed.  Forward progress is
 | |
| 	 * guaranteed by setting sata_spd_limit to target_limit above.
 | |
| 	 */
 | |
| 	if (plink->sata_spd > target) {
 | |
| 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
 | |
| 			     sata_spd_string(target));
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u8 ata_dev_knobble(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 
 | |
| 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
 | |
| }
 | |
| 
 | |
| static int ata_dev_config_ncq(struct ata_device *dev,
 | |
| 			       char *desc, size_t desc_sz)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
 | |
| 	unsigned int err_mask;
 | |
| 	char *aa_desc = "";
 | |
| 
 | |
| 	if (!ata_id_has_ncq(dev->id)) {
 | |
| 		desc[0] = '\0';
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
 | |
| 		snprintf(desc, desc_sz, "NCQ (not used)");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ap->flags & ATA_FLAG_NCQ) {
 | |
| 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
 | |
| 		dev->flags |= ATA_DFLAG_NCQ;
 | |
| 	}
 | |
| 
 | |
| 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
 | |
| 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
 | |
| 		ata_id_has_fpdma_aa(dev->id)) {
 | |
| 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
 | |
| 			SATA_FPDMA_AA);
 | |
| 		if (err_mask) {
 | |
| 			ata_dev_err(dev,
 | |
| 				    "failed to enable AA (error_mask=0x%x)\n",
 | |
| 				    err_mask);
 | |
| 			if (err_mask != AC_ERR_DEV) {
 | |
| 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		} else
 | |
| 			aa_desc = ", AA";
 | |
| 	}
 | |
| 
 | |
| 	if (hdepth >= ddepth)
 | |
| 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
 | |
| 	else
 | |
| 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
 | |
| 			ddepth, aa_desc);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_configure - Configure the specified ATA/ATAPI device
 | |
|  *	@dev: Target device to configure
 | |
|  *
 | |
|  *	Configure @dev according to @dev->id.  Generic and low-level
 | |
|  *	driver specific fixups are also applied.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise
 | |
|  */
 | |
| int ata_dev_configure(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	struct ata_eh_context *ehc = &dev->link->eh_context;
 | |
| 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
 | |
| 	const u16 *id = dev->id;
 | |
| 	unsigned long xfer_mask;
 | |
| 	char revbuf[7];		/* XYZ-99\0 */
 | |
| 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
 | |
| 	char modelbuf[ATA_ID_PROD_LEN+1];
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
 | |
| 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ata_msg_probe(ap))
 | |
| 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
 | |
| 
 | |
| 	/* set horkage */
 | |
| 	dev->horkage |= ata_dev_blacklisted(dev);
 | |
| 	ata_force_horkage(dev);
 | |
| 
 | |
| 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
 | |
| 		ata_dev_info(dev, "unsupported device, disabling\n");
 | |
| 		ata_dev_disable(dev);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
 | |
| 	    dev->class == ATA_DEV_ATAPI) {
 | |
| 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
 | |
| 			     atapi_enabled ? "not supported with this driver"
 | |
| 			     : "disabled");
 | |
| 		ata_dev_disable(dev);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	rc = ata_do_link_spd_horkage(dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* let ACPI work its magic */
 | |
| 	rc = ata_acpi_on_devcfg(dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* massage HPA, do it early as it might change IDENTIFY data */
 | |
| 	rc = ata_hpa_resize(dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* print device capabilities */
 | |
| 	if (ata_msg_probe(ap))
 | |
| 		ata_dev_dbg(dev,
 | |
| 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
 | |
| 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
 | |
| 			    __func__,
 | |
| 			    id[49], id[82], id[83], id[84],
 | |
| 			    id[85], id[86], id[87], id[88]);
 | |
| 
 | |
| 	/* initialize to-be-configured parameters */
 | |
| 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
 | |
| 	dev->max_sectors = 0;
 | |
| 	dev->cdb_len = 0;
 | |
| 	dev->n_sectors = 0;
 | |
| 	dev->cylinders = 0;
 | |
| 	dev->heads = 0;
 | |
| 	dev->sectors = 0;
 | |
| 	dev->multi_count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * common ATA, ATAPI feature tests
 | |
| 	 */
 | |
| 
 | |
| 	/* find max transfer mode; for printk only */
 | |
| 	xfer_mask = ata_id_xfermask(id);
 | |
| 
 | |
| 	if (ata_msg_probe(ap))
 | |
| 		ata_dump_id(id);
 | |
| 
 | |
| 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
 | |
| 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
 | |
| 			sizeof(fwrevbuf));
 | |
| 
 | |
| 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
 | |
| 			sizeof(modelbuf));
 | |
| 
 | |
| 	/* ATA-specific feature tests */
 | |
| 	if (dev->class == ATA_DEV_ATA) {
 | |
| 		if (ata_id_is_cfa(id)) {
 | |
| 			/* CPRM may make this media unusable */
 | |
| 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
 | |
| 				ata_dev_warn(dev,
 | |
| 	"supports DRM functions and may not be fully accessible\n");
 | |
| 			snprintf(revbuf, 7, "CFA");
 | |
| 		} else {
 | |
| 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
 | |
| 			/* Warn the user if the device has TPM extensions */
 | |
| 			if (ata_id_has_tpm(id))
 | |
| 				ata_dev_warn(dev,
 | |
| 	"supports DRM functions and may not be fully accessible\n");
 | |
| 		}
 | |
| 
 | |
| 		dev->n_sectors = ata_id_n_sectors(id);
 | |
| 
 | |
| 		/* get current R/W Multiple count setting */
 | |
| 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
 | |
| 			unsigned int max = dev->id[47] & 0xff;
 | |
| 			unsigned int cnt = dev->id[59] & 0xff;
 | |
| 			/* only recognize/allow powers of two here */
 | |
| 			if (is_power_of_2(max) && is_power_of_2(cnt))
 | |
| 				if (cnt <= max)
 | |
| 					dev->multi_count = cnt;
 | |
| 		}
 | |
| 
 | |
| 		if (ata_id_has_lba(id)) {
 | |
| 			const char *lba_desc;
 | |
| 			char ncq_desc[24];
 | |
| 
 | |
| 			lba_desc = "LBA";
 | |
| 			dev->flags |= ATA_DFLAG_LBA;
 | |
| 			if (ata_id_has_lba48(id)) {
 | |
| 				dev->flags |= ATA_DFLAG_LBA48;
 | |
| 				lba_desc = "LBA48";
 | |
| 
 | |
| 				if (dev->n_sectors >= (1UL << 28) &&
 | |
| 				    ata_id_has_flush_ext(id))
 | |
| 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
 | |
| 			}
 | |
| 
 | |
| 			/* config NCQ */
 | |
| 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
 | |
| 			if (rc)
 | |
| 				return rc;
 | |
| 
 | |
| 			/* print device info to dmesg */
 | |
| 			if (ata_msg_drv(ap) && print_info) {
 | |
| 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
 | |
| 					     revbuf, modelbuf, fwrevbuf,
 | |
| 					     ata_mode_string(xfer_mask));
 | |
| 				ata_dev_info(dev,
 | |
| 					     "%llu sectors, multi %u: %s %s\n",
 | |
| 					(unsigned long long)dev->n_sectors,
 | |
| 					dev->multi_count, lba_desc, ncq_desc);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* CHS */
 | |
| 
 | |
| 			/* Default translation */
 | |
| 			dev->cylinders	= id[1];
 | |
| 			dev->heads	= id[3];
 | |
| 			dev->sectors	= id[6];
 | |
| 
 | |
| 			if (ata_id_current_chs_valid(id)) {
 | |
| 				/* Current CHS translation is valid. */
 | |
| 				dev->cylinders = id[54];
 | |
| 				dev->heads     = id[55];
 | |
| 				dev->sectors   = id[56];
 | |
| 			}
 | |
| 
 | |
| 			/* print device info to dmesg */
 | |
| 			if (ata_msg_drv(ap) && print_info) {
 | |
| 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
 | |
| 					     revbuf,	modelbuf, fwrevbuf,
 | |
| 					     ata_mode_string(xfer_mask));
 | |
| 				ata_dev_info(dev,
 | |
| 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
 | |
| 					     (unsigned long long)dev->n_sectors,
 | |
| 					     dev->multi_count, dev->cylinders,
 | |
| 					     dev->heads, dev->sectors);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dev->cdb_len = 16;
 | |
| 	}
 | |
| 
 | |
| 	/* ATAPI-specific feature tests */
 | |
| 	else if (dev->class == ATA_DEV_ATAPI) {
 | |
| 		const char *cdb_intr_string = "";
 | |
| 		const char *atapi_an_string = "";
 | |
| 		const char *dma_dir_string = "";
 | |
| 		u32 sntf;
 | |
| 
 | |
| 		rc = atapi_cdb_len(id);
 | |
| 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
 | |
| 			if (ata_msg_warn(ap))
 | |
| 				ata_dev_warn(dev, "unsupported CDB len\n");
 | |
| 			rc = -EINVAL;
 | |
| 			goto err_out_nosup;
 | |
| 		}
 | |
| 		dev->cdb_len = (unsigned int) rc;
 | |
| 
 | |
| 		/* Enable ATAPI AN if both the host and device have
 | |
| 		 * the support.  If PMP is attached, SNTF is required
 | |
| 		 * to enable ATAPI AN to discern between PHY status
 | |
| 		 * changed notifications and ATAPI ANs.
 | |
| 		 */
 | |
| 		if (atapi_an &&
 | |
| 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
 | |
| 		    (!sata_pmp_attached(ap) ||
 | |
| 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
 | |
| 			unsigned int err_mask;
 | |
| 
 | |
| 			/* issue SET feature command to turn this on */
 | |
| 			err_mask = ata_dev_set_feature(dev,
 | |
| 					SETFEATURES_SATA_ENABLE, SATA_AN);
 | |
| 			if (err_mask)
 | |
| 				ata_dev_err(dev,
 | |
| 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
 | |
| 					    err_mask);
 | |
| 			else {
 | |
| 				dev->flags |= ATA_DFLAG_AN;
 | |
| 				atapi_an_string = ", ATAPI AN";
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ata_id_cdb_intr(dev->id)) {
 | |
| 			dev->flags |= ATA_DFLAG_CDB_INTR;
 | |
| 			cdb_intr_string = ", CDB intr";
 | |
| 		}
 | |
| 
 | |
| 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
 | |
| 			dev->flags |= ATA_DFLAG_DMADIR;
 | |
| 			dma_dir_string = ", DMADIR";
 | |
| 		}
 | |
| 
 | |
| 		/* print device info to dmesg */
 | |
| 		if (ata_msg_drv(ap) && print_info)
 | |
| 			ata_dev_info(dev,
 | |
| 				     "ATAPI: %s, %s, max %s%s%s%s\n",
 | |
| 				     modelbuf, fwrevbuf,
 | |
| 				     ata_mode_string(xfer_mask),
 | |
| 				     cdb_intr_string, atapi_an_string,
 | |
| 				     dma_dir_string);
 | |
| 	}
 | |
| 
 | |
| 	/* determine max_sectors */
 | |
| 	dev->max_sectors = ATA_MAX_SECTORS;
 | |
| 	if (dev->flags & ATA_DFLAG_LBA48)
 | |
| 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
 | |
| 
 | |
| 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
 | |
| 	   200 sectors */
 | |
| 	if (ata_dev_knobble(dev)) {
 | |
| 		if (ata_msg_drv(ap) && print_info)
 | |
| 			ata_dev_info(dev, "applying bridge limits\n");
 | |
| 		dev->udma_mask &= ATA_UDMA5;
 | |
| 		dev->max_sectors = ATA_MAX_SECTORS;
 | |
| 	}
 | |
| 
 | |
| 	if ((dev->class == ATA_DEV_ATAPI) &&
 | |
| 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
 | |
| 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
 | |
| 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
 | |
| 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
 | |
| 					 dev->max_sectors);
 | |
| 
 | |
| 	if (ap->ops->dev_config)
 | |
| 		ap->ops->dev_config(dev);
 | |
| 
 | |
| 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
 | |
| 		/* Let the user know. We don't want to disallow opens for
 | |
| 		   rescue purposes, or in case the vendor is just a blithering
 | |
| 		   idiot. Do this after the dev_config call as some controllers
 | |
| 		   with buggy firmware may want to avoid reporting false device
 | |
| 		   bugs */
 | |
| 
 | |
| 		if (print_info) {
 | |
| 			ata_dev_warn(dev,
 | |
| "Drive reports diagnostics failure. This may indicate a drive\n");
 | |
| 			ata_dev_warn(dev,
 | |
| "fault or invalid emulation. Contact drive vendor for information.\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
 | |
| 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
 | |
| 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_nosup:
 | |
| 	if (ata_msg_probe(ap))
 | |
| 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_cable_40wire	-	return 40 wire cable type
 | |
|  *	@ap: port
 | |
|  *
 | |
|  *	Helper method for drivers which want to hardwire 40 wire cable
 | |
|  *	detection.
 | |
|  */
 | |
| 
 | |
| int ata_cable_40wire(struct ata_port *ap)
 | |
| {
 | |
| 	return ATA_CBL_PATA40;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_cable_80wire	-	return 80 wire cable type
 | |
|  *	@ap: port
 | |
|  *
 | |
|  *	Helper method for drivers which want to hardwire 80 wire cable
 | |
|  *	detection.
 | |
|  */
 | |
| 
 | |
| int ata_cable_80wire(struct ata_port *ap)
 | |
| {
 | |
| 	return ATA_CBL_PATA80;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_cable_unknown	-	return unknown PATA cable.
 | |
|  *	@ap: port
 | |
|  *
 | |
|  *	Helper method for drivers which have no PATA cable detection.
 | |
|  */
 | |
| 
 | |
| int ata_cable_unknown(struct ata_port *ap)
 | |
| {
 | |
| 	return ATA_CBL_PATA_UNK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_cable_ignore	-	return ignored PATA cable.
 | |
|  *	@ap: port
 | |
|  *
 | |
|  *	Helper method for drivers which don't use cable type to limit
 | |
|  *	transfer mode.
 | |
|  */
 | |
| int ata_cable_ignore(struct ata_port *ap)
 | |
| {
 | |
| 	return ATA_CBL_PATA_IGN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_cable_sata	-	return SATA cable type
 | |
|  *	@ap: port
 | |
|  *
 | |
|  *	Helper method for drivers which have SATA cables
 | |
|  */
 | |
| 
 | |
| int ata_cable_sata(struct ata_port *ap)
 | |
| {
 | |
| 	return ATA_CBL_SATA;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_bus_probe - Reset and probe ATA bus
 | |
|  *	@ap: Bus to probe
 | |
|  *
 | |
|  *	Master ATA bus probing function.  Initiates a hardware-dependent
 | |
|  *	bus reset, then attempts to identify any devices found on
 | |
|  *	the bus.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	PCI/etc. bus probe sem.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, negative errno otherwise.
 | |
|  */
 | |
| 
 | |
| int ata_bus_probe(struct ata_port *ap)
 | |
| {
 | |
| 	unsigned int classes[ATA_MAX_DEVICES];
 | |
| 	int tries[ATA_MAX_DEVICES];
 | |
| 	int rc;
 | |
| 	struct ata_device *dev;
 | |
| 
 | |
| 	ata_for_each_dev(dev, &ap->link, ALL)
 | |
| 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
 | |
| 
 | |
|  retry:
 | |
| 	ata_for_each_dev(dev, &ap->link, ALL) {
 | |
| 		/* If we issue an SRST then an ATA drive (not ATAPI)
 | |
| 		 * may change configuration and be in PIO0 timing. If
 | |
| 		 * we do a hard reset (or are coming from power on)
 | |
| 		 * this is true for ATA or ATAPI. Until we've set a
 | |
| 		 * suitable controller mode we should not touch the
 | |
| 		 * bus as we may be talking too fast.
 | |
| 		 */
 | |
| 		dev->pio_mode = XFER_PIO_0;
 | |
| 
 | |
| 		/* If the controller has a pio mode setup function
 | |
| 		 * then use it to set the chipset to rights. Don't
 | |
| 		 * touch the DMA setup as that will be dealt with when
 | |
| 		 * configuring devices.
 | |
| 		 */
 | |
| 		if (ap->ops->set_piomode)
 | |
| 			ap->ops->set_piomode(ap, dev);
 | |
| 	}
 | |
| 
 | |
| 	/* reset and determine device classes */
 | |
| 	ap->ops->phy_reset(ap);
 | |
| 
 | |
| 	ata_for_each_dev(dev, &ap->link, ALL) {
 | |
| 		if (dev->class != ATA_DEV_UNKNOWN)
 | |
| 			classes[dev->devno] = dev->class;
 | |
| 		else
 | |
| 			classes[dev->devno] = ATA_DEV_NONE;
 | |
| 
 | |
| 		dev->class = ATA_DEV_UNKNOWN;
 | |
| 	}
 | |
| 
 | |
| 	/* read IDENTIFY page and configure devices. We have to do the identify
 | |
| 	   specific sequence bass-ackwards so that PDIAG- is released by
 | |
| 	   the slave device */
 | |
| 
 | |
| 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
 | |
| 		if (tries[dev->devno])
 | |
| 			dev->class = classes[dev->devno];
 | |
| 
 | |
| 		if (!ata_dev_enabled(dev))
 | |
| 			continue;
 | |
| 
 | |
| 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
 | |
| 				     dev->id);
 | |
| 		if (rc)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Now ask for the cable type as PDIAG- should have been released */
 | |
| 	if (ap->ops->cable_detect)
 | |
| 		ap->cbl = ap->ops->cable_detect(ap);
 | |
| 
 | |
| 	/* We may have SATA bridge glue hiding here irrespective of
 | |
| 	 * the reported cable types and sensed types.  When SATA
 | |
| 	 * drives indicate we have a bridge, we don't know which end
 | |
| 	 * of the link the bridge is which is a problem.
 | |
| 	 */
 | |
| 	ata_for_each_dev(dev, &ap->link, ENABLED)
 | |
| 		if (ata_id_is_sata(dev->id))
 | |
| 			ap->cbl = ATA_CBL_SATA;
 | |
| 
 | |
| 	/* After the identify sequence we can now set up the devices. We do
 | |
| 	   this in the normal order so that the user doesn't get confused */
 | |
| 
 | |
| 	ata_for_each_dev(dev, &ap->link, ENABLED) {
 | |
| 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
 | |
| 		rc = ata_dev_configure(dev);
 | |
| 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
 | |
| 		if (rc)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* configure transfer mode */
 | |
| 	rc = ata_set_mode(&ap->link, &dev);
 | |
| 	if (rc)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ata_for_each_dev(dev, &ap->link, ENABLED)
 | |
| 		return 0;
 | |
| 
 | |
| 	return -ENODEV;
 | |
| 
 | |
|  fail:
 | |
| 	tries[dev->devno]--;
 | |
| 
 | |
| 	switch (rc) {
 | |
| 	case -EINVAL:
 | |
| 		/* eeek, something went very wrong, give up */
 | |
| 		tries[dev->devno] = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case -ENODEV:
 | |
| 		/* give it just one more chance */
 | |
| 		tries[dev->devno] = min(tries[dev->devno], 1);
 | |
| 	case -EIO:
 | |
| 		if (tries[dev->devno] == 1) {
 | |
| 			/* This is the last chance, better to slow
 | |
| 			 * down than lose it.
 | |
| 			 */
 | |
| 			sata_down_spd_limit(&ap->link, 0);
 | |
| 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!tries[dev->devno])
 | |
| 		ata_dev_disable(dev);
 | |
| 
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_print_link_status - Print SATA link status
 | |
|  *	@link: SATA link to printk link status about
 | |
|  *
 | |
|  *	This function prints link speed and status of a SATA link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| static void sata_print_link_status(struct ata_link *link)
 | |
| {
 | |
| 	u32 sstatus, scontrol, tmp;
 | |
| 
 | |
| 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
 | |
| 		return;
 | |
| 	sata_scr_read(link, SCR_CONTROL, &scontrol);
 | |
| 
 | |
| 	if (ata_phys_link_online(link)) {
 | |
| 		tmp = (sstatus >> 4) & 0xf;
 | |
| 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
 | |
| 			      sata_spd_string(tmp), sstatus, scontrol);
 | |
| 	} else {
 | |
| 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
 | |
| 			      sstatus, scontrol);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_pair		-	return other device on cable
 | |
|  *	@adev: device
 | |
|  *
 | |
|  *	Obtain the other device on the same cable, or if none is
 | |
|  *	present NULL is returned
 | |
|  */
 | |
| 
 | |
| struct ata_device *ata_dev_pair(struct ata_device *adev)
 | |
| {
 | |
| 	struct ata_link *link = adev->link;
 | |
| 	struct ata_device *pair = &link->device[1 - adev->devno];
 | |
| 	if (!ata_dev_enabled(pair))
 | |
| 		return NULL;
 | |
| 	return pair;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_down_spd_limit - adjust SATA spd limit downward
 | |
|  *	@link: Link to adjust SATA spd limit for
 | |
|  *	@spd_limit: Additional limit
 | |
|  *
 | |
|  *	Adjust SATA spd limit of @link downward.  Note that this
 | |
|  *	function only adjusts the limit.  The change must be applied
 | |
|  *	using sata_set_spd().
 | |
|  *
 | |
|  *	If @spd_limit is non-zero, the speed is limited to equal to or
 | |
|  *	lower than @spd_limit if such speed is supported.  If
 | |
|  *	@spd_limit is slower than any supported speed, only the lowest
 | |
|  *	supported speed is allowed.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno on failure
 | |
|  */
 | |
| int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
 | |
| {
 | |
| 	u32 sstatus, spd, mask;
 | |
| 	int rc, bit;
 | |
| 
 | |
| 	if (!sata_scr_valid(link))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/* If SCR can be read, use it to determine the current SPD.
 | |
| 	 * If not, use cached value in link->sata_spd.
 | |
| 	 */
 | |
| 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
 | |
| 	if (rc == 0 && ata_sstatus_online(sstatus))
 | |
| 		spd = (sstatus >> 4) & 0xf;
 | |
| 	else
 | |
| 		spd = link->sata_spd;
 | |
| 
 | |
| 	mask = link->sata_spd_limit;
 | |
| 	if (mask <= 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* unconditionally mask off the highest bit */
 | |
| 	bit = fls(mask) - 1;
 | |
| 	mask &= ~(1 << bit);
 | |
| 
 | |
| 	/* Mask off all speeds higher than or equal to the current
 | |
| 	 * one.  Force 1.5Gbps if current SPD is not available.
 | |
| 	 */
 | |
| 	if (spd > 1)
 | |
| 		mask &= (1 << (spd - 1)) - 1;
 | |
| 	else
 | |
| 		mask &= 1;
 | |
| 
 | |
| 	/* were we already at the bottom? */
 | |
| 	if (!mask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (spd_limit) {
 | |
| 		if (mask & ((1 << spd_limit) - 1))
 | |
| 			mask &= (1 << spd_limit) - 1;
 | |
| 		else {
 | |
| 			bit = ffs(mask) - 1;
 | |
| 			mask = 1 << bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	link->sata_spd_limit = mask;
 | |
| 
 | |
| 	ata_link_warn(link, "limiting SATA link speed to %s\n",
 | |
| 		      sata_spd_string(fls(mask)));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
 | |
| {
 | |
| 	struct ata_link *host_link = &link->ap->link;
 | |
| 	u32 limit, target, spd;
 | |
| 
 | |
| 	limit = link->sata_spd_limit;
 | |
| 
 | |
| 	/* Don't configure downstream link faster than upstream link.
 | |
| 	 * It doesn't speed up anything and some PMPs choke on such
 | |
| 	 * configuration.
 | |
| 	 */
 | |
| 	if (!ata_is_host_link(link) && host_link->sata_spd)
 | |
| 		limit &= (1 << host_link->sata_spd) - 1;
 | |
| 
 | |
| 	if (limit == UINT_MAX)
 | |
| 		target = 0;
 | |
| 	else
 | |
| 		target = fls(limit);
 | |
| 
 | |
| 	spd = (*scontrol >> 4) & 0xf;
 | |
| 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
 | |
| 
 | |
| 	return spd != target;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_set_spd_needed - is SATA spd configuration needed
 | |
|  *	@link: Link in question
 | |
|  *
 | |
|  *	Test whether the spd limit in SControl matches
 | |
|  *	@link->sata_spd_limit.  This function is used to determine
 | |
|  *	whether hardreset is necessary to apply SATA spd
 | |
|  *	configuration.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	1 if SATA spd configuration is needed, 0 otherwise.
 | |
|  */
 | |
| static int sata_set_spd_needed(struct ata_link *link)
 | |
| {
 | |
| 	u32 scontrol;
 | |
| 
 | |
| 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
 | |
| 		return 1;
 | |
| 
 | |
| 	return __sata_set_spd_needed(link, &scontrol);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_set_spd - set SATA spd according to spd limit
 | |
|  *	@link: Link to set SATA spd for
 | |
|  *
 | |
|  *	Set SATA spd of @link according to sata_spd_limit.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if spd doesn't need to be changed, 1 if spd has been
 | |
|  *	changed.  Negative errno if SCR registers are inaccessible.
 | |
|  */
 | |
| int sata_set_spd(struct ata_link *link)
 | |
| {
 | |
| 	u32 scontrol;
 | |
| 	int rc;
 | |
| 
 | |
| 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
 | |
| 		return rc;
 | |
| 
 | |
| 	if (!__sata_set_spd_needed(link, &scontrol))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
 | |
| 		return rc;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This mode timing computation functionality is ported over from
 | |
|  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
 | |
|  */
 | |
| /*
 | |
|  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
 | |
|  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
 | |
|  * for UDMA6, which is currently supported only by Maxtor drives.
 | |
|  *
 | |
|  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
 | |
|  */
 | |
| 
 | |
| static const struct ata_timing ata_timing[] = {
 | |
| /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
 | |
| 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
 | |
| 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
 | |
| 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
 | |
| 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
 | |
| 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
 | |
| 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
 | |
| 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
 | |
| 
 | |
| 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
 | |
| 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
 | |
| 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
 | |
| 
 | |
| 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
 | |
| 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
 | |
| 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
 | |
| 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
 | |
| 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
 | |
| 
 | |
| /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
 | |
| 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
 | |
| 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
 | |
| 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
 | |
| 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
 | |
| 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
 | |
| 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
 | |
| 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
 | |
| 
 | |
| 	{ 0xFF }
 | |
| };
 | |
| 
 | |
| #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
 | |
| #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
 | |
| 
 | |
| static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
 | |
| {
 | |
| 	q->setup	= EZ(t->setup      * 1000,  T);
 | |
| 	q->act8b	= EZ(t->act8b      * 1000,  T);
 | |
| 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
 | |
| 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
 | |
| 	q->active	= EZ(t->active     * 1000,  T);
 | |
| 	q->recover	= EZ(t->recover    * 1000,  T);
 | |
| 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
 | |
| 	q->cycle	= EZ(t->cycle      * 1000,  T);
 | |
| 	q->udma		= EZ(t->udma       * 1000, UT);
 | |
| }
 | |
| 
 | |
| void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
 | |
| 		      struct ata_timing *m, unsigned int what)
 | |
| {
 | |
| 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
 | |
| 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
 | |
| 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
 | |
| 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
 | |
| 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
 | |
| 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
 | |
| 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
 | |
| 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
 | |
| 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
 | |
| }
 | |
| 
 | |
| const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
 | |
| {
 | |
| 	const struct ata_timing *t = ata_timing;
 | |
| 
 | |
| 	while (xfer_mode > t->mode)
 | |
| 		t++;
 | |
| 
 | |
| 	if (xfer_mode == t->mode)
 | |
| 		return t;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int ata_timing_compute(struct ata_device *adev, unsigned short speed,
 | |
| 		       struct ata_timing *t, int T, int UT)
 | |
| {
 | |
| 	const u16 *id = adev->id;
 | |
| 	const struct ata_timing *s;
 | |
| 	struct ata_timing p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the mode.
 | |
| 	 */
 | |
| 
 | |
| 	if (!(s = ata_timing_find_mode(speed)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(t, s, sizeof(*s));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the drive is an EIDE drive, it can tell us it needs extended
 | |
| 	 * PIO/MW_DMA cycle timing.
 | |
| 	 */
 | |
| 
 | |
| 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
 | |
| 		memset(&p, 0, sizeof(p));
 | |
| 
 | |
| 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
 | |
| 			if (speed <= XFER_PIO_2)
 | |
| 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
 | |
| 			else if ((speed <= XFER_PIO_4) ||
 | |
| 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
 | |
| 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
 | |
| 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
 | |
| 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
 | |
| 
 | |
| 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the timing to bus clock counts.
 | |
| 	 */
 | |
| 
 | |
| 	ata_timing_quantize(t, t, T, UT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
 | |
| 	 * S.M.A.R.T * and some other commands. We have to ensure that the
 | |
| 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
 | |
| 	 */
 | |
| 
 | |
| 	if (speed > XFER_PIO_6) {
 | |
| 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
 | |
| 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lengthen active & recovery time so that cycle time is correct.
 | |
| 	 */
 | |
| 
 | |
| 	if (t->act8b + t->rec8b < t->cyc8b) {
 | |
| 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
 | |
| 		t->rec8b = t->cyc8b - t->act8b;
 | |
| 	}
 | |
| 
 | |
| 	if (t->active + t->recover < t->cycle) {
 | |
| 		t->active += (t->cycle - (t->active + t->recover)) / 2;
 | |
| 		t->recover = t->cycle - t->active;
 | |
| 	}
 | |
| 
 | |
| 	/* In a few cases quantisation may produce enough errors to
 | |
| 	   leave t->cycle too low for the sum of active and recovery
 | |
| 	   if so we must correct this */
 | |
| 	if (t->active + t->recover > t->cycle)
 | |
| 		t->cycle = t->active + t->recover;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
 | |
|  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
 | |
|  *	@cycle: cycle duration in ns
 | |
|  *
 | |
|  *	Return matching xfer mode for @cycle.  The returned mode is of
 | |
|  *	the transfer type specified by @xfer_shift.  If @cycle is too
 | |
|  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
 | |
|  *	than the fastest known mode, the fasted mode is returned.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Matching xfer_mode, 0xff if no match found.
 | |
|  */
 | |
| u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
 | |
| {
 | |
| 	u8 base_mode = 0xff, last_mode = 0xff;
 | |
| 	const struct ata_xfer_ent *ent;
 | |
| 	const struct ata_timing *t;
 | |
| 
 | |
| 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 | |
| 		if (ent->shift == xfer_shift)
 | |
| 			base_mode = ent->base;
 | |
| 
 | |
| 	for (t = ata_timing_find_mode(base_mode);
 | |
| 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
 | |
| 		unsigned short this_cycle;
 | |
| 
 | |
| 		switch (xfer_shift) {
 | |
| 		case ATA_SHIFT_PIO:
 | |
| 		case ATA_SHIFT_MWDMA:
 | |
| 			this_cycle = t->cycle;
 | |
| 			break;
 | |
| 		case ATA_SHIFT_UDMA:
 | |
| 			this_cycle = t->udma;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return 0xff;
 | |
| 		}
 | |
| 
 | |
| 		if (cycle > this_cycle)
 | |
| 			break;
 | |
| 
 | |
| 		last_mode = t->mode;
 | |
| 	}
 | |
| 
 | |
| 	return last_mode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_down_xfermask_limit - adjust dev xfer masks downward
 | |
|  *	@dev: Device to adjust xfer masks
 | |
|  *	@sel: ATA_DNXFER_* selector
 | |
|  *
 | |
|  *	Adjust xfer masks of @dev downward.  Note that this function
 | |
|  *	does not apply the change.  Invoking ata_set_mode() afterwards
 | |
|  *	will apply the limit.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno on failure
 | |
|  */
 | |
| int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
 | |
| {
 | |
| 	char buf[32];
 | |
| 	unsigned long orig_mask, xfer_mask;
 | |
| 	unsigned long pio_mask, mwdma_mask, udma_mask;
 | |
| 	int quiet, highbit;
 | |
| 
 | |
| 	quiet = !!(sel & ATA_DNXFER_QUIET);
 | |
| 	sel &= ~ATA_DNXFER_QUIET;
 | |
| 
 | |
| 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
 | |
| 						  dev->mwdma_mask,
 | |
| 						  dev->udma_mask);
 | |
| 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
 | |
| 
 | |
| 	switch (sel) {
 | |
| 	case ATA_DNXFER_PIO:
 | |
| 		highbit = fls(pio_mask) - 1;
 | |
| 		pio_mask &= ~(1 << highbit);
 | |
| 		break;
 | |
| 
 | |
| 	case ATA_DNXFER_DMA:
 | |
| 		if (udma_mask) {
 | |
| 			highbit = fls(udma_mask) - 1;
 | |
| 			udma_mask &= ~(1 << highbit);
 | |
| 			if (!udma_mask)
 | |
| 				return -ENOENT;
 | |
| 		} else if (mwdma_mask) {
 | |
| 			highbit = fls(mwdma_mask) - 1;
 | |
| 			mwdma_mask &= ~(1 << highbit);
 | |
| 			if (!mwdma_mask)
 | |
| 				return -ENOENT;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case ATA_DNXFER_40C:
 | |
| 		udma_mask &= ATA_UDMA_MASK_40C;
 | |
| 		break;
 | |
| 
 | |
| 	case ATA_DNXFER_FORCE_PIO0:
 | |
| 		pio_mask &= 1;
 | |
| 	case ATA_DNXFER_FORCE_PIO:
 | |
| 		mwdma_mask = 0;
 | |
| 		udma_mask = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
 | |
| 
 | |
| 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!quiet) {
 | |
| 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
 | |
| 			snprintf(buf, sizeof(buf), "%s:%s",
 | |
| 				 ata_mode_string(xfer_mask),
 | |
| 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
 | |
| 		else
 | |
| 			snprintf(buf, sizeof(buf), "%s",
 | |
| 				 ata_mode_string(xfer_mask));
 | |
| 
 | |
| 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
 | |
| 	}
 | |
| 
 | |
| 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
 | |
| 			    &dev->udma_mask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ata_dev_set_mode(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	struct ata_eh_context *ehc = &dev->link->eh_context;
 | |
| 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
 | |
| 	const char *dev_err_whine = "";
 | |
| 	int ign_dev_err = 0;
 | |
| 	unsigned int err_mask = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	dev->flags &= ~ATA_DFLAG_PIO;
 | |
| 	if (dev->xfer_shift == ATA_SHIFT_PIO)
 | |
| 		dev->flags |= ATA_DFLAG_PIO;
 | |
| 
 | |
| 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
 | |
| 		dev_err_whine = " (SET_XFERMODE skipped)";
 | |
| 	else {
 | |
| 		if (nosetxfer)
 | |
| 			ata_dev_warn(dev,
 | |
| 				     "NOSETXFER but PATA detected - can't "
 | |
| 				     "skip SETXFER, might malfunction\n");
 | |
| 		err_mask = ata_dev_set_xfermode(dev);
 | |
| 	}
 | |
| 
 | |
| 	if (err_mask & ~AC_ERR_DEV)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* revalidate */
 | |
| 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
 | |
| 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
 | |
| 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
 | |
| 		/* Old CFA may refuse this command, which is just fine */
 | |
| 		if (ata_id_is_cfa(dev->id))
 | |
| 			ign_dev_err = 1;
 | |
| 		/* Catch several broken garbage emulations plus some pre
 | |
| 		   ATA devices */
 | |
| 		if (ata_id_major_version(dev->id) == 0 &&
 | |
| 					dev->pio_mode <= XFER_PIO_2)
 | |
| 			ign_dev_err = 1;
 | |
| 		/* Some very old devices and some bad newer ones fail
 | |
| 		   any kind of SET_XFERMODE request but support PIO0-2
 | |
| 		   timings and no IORDY */
 | |
| 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
 | |
| 			ign_dev_err = 1;
 | |
| 	}
 | |
| 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
 | |
| 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
 | |
| 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
 | |
| 	    dev->dma_mode == XFER_MW_DMA_0 &&
 | |
| 	    (dev->id[63] >> 8) & 1)
 | |
| 		ign_dev_err = 1;
 | |
| 
 | |
| 	/* if the device is actually configured correctly, ignore dev err */
 | |
| 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
 | |
| 		ign_dev_err = 1;
 | |
| 
 | |
| 	if (err_mask & AC_ERR_DEV) {
 | |
| 		if (!ign_dev_err)
 | |
| 			goto fail;
 | |
| 		else
 | |
| 			dev_err_whine = " (device error ignored)";
 | |
| 	}
 | |
| 
 | |
| 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
 | |
| 		dev->xfer_shift, (int)dev->xfer_mode);
 | |
| 
 | |
| 	ata_dev_info(dev, "configured for %s%s\n",
 | |
| 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
 | |
| 		     dev_err_whine);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail:
 | |
| 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
 | |
|  *	@link: link on which timings will be programmed
 | |
|  *	@r_failed_dev: out parameter for failed device
 | |
|  *
 | |
|  *	Standard implementation of the function used to tune and set
 | |
|  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
 | |
|  *	ata_dev_set_mode() fails, pointer to the failing device is
 | |
|  *	returned in @r_failed_dev.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	PCI/etc. bus probe sem.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno otherwise
 | |
|  */
 | |
| 
 | |
| int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct ata_device *dev;
 | |
| 	int rc = 0, used_dma = 0, found = 0;
 | |
| 
 | |
| 	/* step 1: calculate xfer_mask */
 | |
| 	ata_for_each_dev(dev, link, ENABLED) {
 | |
| 		unsigned long pio_mask, dma_mask;
 | |
| 		unsigned int mode_mask;
 | |
| 
 | |
| 		mode_mask = ATA_DMA_MASK_ATA;
 | |
| 		if (dev->class == ATA_DEV_ATAPI)
 | |
| 			mode_mask = ATA_DMA_MASK_ATAPI;
 | |
| 		else if (ata_id_is_cfa(dev->id))
 | |
| 			mode_mask = ATA_DMA_MASK_CFA;
 | |
| 
 | |
| 		ata_dev_xfermask(dev);
 | |
| 		ata_force_xfermask(dev);
 | |
| 
 | |
| 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
 | |
| 
 | |
| 		if (libata_dma_mask & mode_mask)
 | |
| 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
 | |
| 						     dev->udma_mask);
 | |
| 		else
 | |
| 			dma_mask = 0;
 | |
| 
 | |
| 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
 | |
| 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
 | |
| 
 | |
| 		found = 1;
 | |
| 		if (ata_dma_enabled(dev))
 | |
| 			used_dma = 1;
 | |
| 	}
 | |
| 	if (!found)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* step 2: always set host PIO timings */
 | |
| 	ata_for_each_dev(dev, link, ENABLED) {
 | |
| 		if (dev->pio_mode == 0xff) {
 | |
| 			ata_dev_warn(dev, "no PIO support\n");
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		dev->xfer_mode = dev->pio_mode;
 | |
| 		dev->xfer_shift = ATA_SHIFT_PIO;
 | |
| 		if (ap->ops->set_piomode)
 | |
| 			ap->ops->set_piomode(ap, dev);
 | |
| 	}
 | |
| 
 | |
| 	/* step 3: set host DMA timings */
 | |
| 	ata_for_each_dev(dev, link, ENABLED) {
 | |
| 		if (!ata_dma_enabled(dev))
 | |
| 			continue;
 | |
| 
 | |
| 		dev->xfer_mode = dev->dma_mode;
 | |
| 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
 | |
| 		if (ap->ops->set_dmamode)
 | |
| 			ap->ops->set_dmamode(ap, dev);
 | |
| 	}
 | |
| 
 | |
| 	/* step 4: update devices' xfer mode */
 | |
| 	ata_for_each_dev(dev, link, ENABLED) {
 | |
| 		rc = ata_dev_set_mode(dev);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Record simplex status. If we selected DMA then the other
 | |
| 	 * host channels are not permitted to do so.
 | |
| 	 */
 | |
| 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
 | |
| 		ap->host->simplex_claimed = ap;
 | |
| 
 | |
|  out:
 | |
| 	if (rc)
 | |
| 		*r_failed_dev = dev;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_wait_ready - wait for link to become ready
 | |
|  *	@link: link to be waited on
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *	@check_ready: callback to check link readiness
 | |
|  *
 | |
|  *	Wait for @link to become ready.  @check_ready should return
 | |
|  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
 | |
|  *	link doesn't seem to be occupied, other errno for other error
 | |
|  *	conditions.
 | |
|  *
 | |
|  *	Transient -ENODEV conditions are allowed for
 | |
|  *	ATA_TMOUT_FF_WAIT.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if @linke is ready before @deadline; otherwise, -errno.
 | |
|  */
 | |
| int ata_wait_ready(struct ata_link *link, unsigned long deadline,
 | |
| 		   int (*check_ready)(struct ata_link *link))
 | |
| {
 | |
| 	unsigned long start = jiffies;
 | |
| 	unsigned long nodev_deadline;
 | |
| 	int warned = 0;
 | |
| 
 | |
| 	/* choose which 0xff timeout to use, read comment in libata.h */
 | |
| 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
 | |
| 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
 | |
| 	else
 | |
| 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
 | |
| 
 | |
| 	/* Slave readiness can't be tested separately from master.  On
 | |
| 	 * M/S emulation configuration, this function should be called
 | |
| 	 * only on the master and it will handle both master and slave.
 | |
| 	 */
 | |
| 	WARN_ON(link == link->ap->slave_link);
 | |
| 
 | |
| 	if (time_after(nodev_deadline, deadline))
 | |
| 		nodev_deadline = deadline;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned long now = jiffies;
 | |
| 		int ready, tmp;
 | |
| 
 | |
| 		ready = tmp = check_ready(link);
 | |
| 		if (ready > 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * -ENODEV could be transient.  Ignore -ENODEV if link
 | |
| 		 * is online.  Also, some SATA devices take a long
 | |
| 		 * time to clear 0xff after reset.  Wait for
 | |
| 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
 | |
| 		 * offline.
 | |
| 		 *
 | |
| 		 * Note that some PATA controllers (pata_ali) explode
 | |
| 		 * if status register is read more than once when
 | |
| 		 * there's no device attached.
 | |
| 		 */
 | |
| 		if (ready == -ENODEV) {
 | |
| 			if (ata_link_online(link))
 | |
| 				ready = 0;
 | |
| 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
 | |
| 				 !ata_link_offline(link) &&
 | |
| 				 time_before(now, nodev_deadline))
 | |
| 				ready = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (ready)
 | |
| 			return ready;
 | |
| 		if (time_after(now, deadline))
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		if (!warned && time_after(now, start + 5 * HZ) &&
 | |
| 		    (deadline - now > 3 * HZ)) {
 | |
| 			ata_link_warn(link,
 | |
| 				"link is slow to respond, please be patient "
 | |
| 				"(ready=%d)\n", tmp);
 | |
| 			warned = 1;
 | |
| 		}
 | |
| 
 | |
| 		ata_msleep(link->ap, 50);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_wait_after_reset - wait for link to become ready after reset
 | |
|  *	@link: link to be waited on
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *	@check_ready: callback to check link readiness
 | |
|  *
 | |
|  *	Wait for @link to become ready after reset.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if @linke is ready before @deadline; otherwise, -errno.
 | |
|  */
 | |
| int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
 | |
| 				int (*check_ready)(struct ata_link *link))
 | |
| {
 | |
| 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
 | |
| 
 | |
| 	return ata_wait_ready(link, deadline, check_ready);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_link_debounce - debounce SATA phy status
 | |
|  *	@link: ATA link to debounce SATA phy status for
 | |
|  *	@params: timing parameters { interval, duratinon, timeout } in msec
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Make sure SStatus of @link reaches stable state, determined by
 | |
|  *	holding the same value where DET is not 1 for @duration polled
 | |
|  *	every @interval, before @timeout.  Timeout constraints the
 | |
|  *	beginning of the stable state.  Because DET gets stuck at 1 on
 | |
|  *	some controllers after hot unplugging, this functions waits
 | |
|  *	until timeout then returns 0 if DET is stable at 1.
 | |
|  *
 | |
|  *	@timeout is further limited by @deadline.  The sooner of the
 | |
|  *	two is used.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno on failure.
 | |
|  */
 | |
| int sata_link_debounce(struct ata_link *link, const unsigned long *params,
 | |
| 		       unsigned long deadline)
 | |
| {
 | |
| 	unsigned long interval = params[0];
 | |
| 	unsigned long duration = params[1];
 | |
| 	unsigned long last_jiffies, t;
 | |
| 	u32 last, cur;
 | |
| 	int rc;
 | |
| 
 | |
| 	t = ata_deadline(jiffies, params[2]);
 | |
| 	if (time_before(t, deadline))
 | |
| 		deadline = t;
 | |
| 
 | |
| 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
 | |
| 		return rc;
 | |
| 	cur &= 0xf;
 | |
| 
 | |
| 	last = cur;
 | |
| 	last_jiffies = jiffies;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ata_msleep(link->ap, interval);
 | |
| 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
 | |
| 			return rc;
 | |
| 		cur &= 0xf;
 | |
| 
 | |
| 		/* DET stable? */
 | |
| 		if (cur == last) {
 | |
| 			if (cur == 1 && time_before(jiffies, deadline))
 | |
| 				continue;
 | |
| 			if (time_after(jiffies,
 | |
| 				       ata_deadline(last_jiffies, duration)))
 | |
| 				return 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* unstable, start over */
 | |
| 		last = cur;
 | |
| 		last_jiffies = jiffies;
 | |
| 
 | |
| 		/* Check deadline.  If debouncing failed, return
 | |
| 		 * -EPIPE to tell upper layer to lower link speed.
 | |
| 		 */
 | |
| 		if (time_after(jiffies, deadline))
 | |
| 			return -EPIPE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_link_resume - resume SATA link
 | |
|  *	@link: ATA link to resume SATA
 | |
|  *	@params: timing parameters { interval, duratinon, timeout } in msec
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Resume SATA phy @link and debounce it.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno on failure.
 | |
|  */
 | |
| int sata_link_resume(struct ata_link *link, const unsigned long *params,
 | |
| 		     unsigned long deadline)
 | |
| {
 | |
| 	int tries = ATA_LINK_RESUME_TRIES;
 | |
| 	u32 scontrol, serror;
 | |
| 	int rc;
 | |
| 
 | |
| 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writes to SControl sometimes get ignored under certain
 | |
| 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
 | |
| 	 * cleared.
 | |
| 	 */
 | |
| 	do {
 | |
| 		scontrol = (scontrol & 0x0f0) | 0x300;
 | |
| 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
 | |
| 			return rc;
 | |
| 		/*
 | |
| 		 * Some PHYs react badly if SStatus is pounded
 | |
| 		 * immediately after resuming.  Delay 200ms before
 | |
| 		 * debouncing.
 | |
| 		 */
 | |
| 		ata_msleep(link->ap, 200);
 | |
| 
 | |
| 		/* is SControl restored correctly? */
 | |
| 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
 | |
| 			return rc;
 | |
| 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
 | |
| 
 | |
| 	if ((scontrol & 0xf0f) != 0x300) {
 | |
| 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
 | |
| 			     scontrol);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tries < ATA_LINK_RESUME_TRIES)
 | |
| 		ata_link_warn(link, "link resume succeeded after %d retries\n",
 | |
| 			      ATA_LINK_RESUME_TRIES - tries);
 | |
| 
 | |
| 	if ((rc = sata_link_debounce(link, params, deadline)))
 | |
| 		return rc;
 | |
| 
 | |
| 	/* clear SError, some PHYs require this even for SRST to work */
 | |
| 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
 | |
| 		rc = sata_scr_write(link, SCR_ERROR, serror);
 | |
| 
 | |
| 	return rc != -EINVAL ? rc : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
 | |
|  *	@link: ATA link to manipulate SControl for
 | |
|  *	@policy: LPM policy to configure
 | |
|  *	@spm_wakeup: initiate LPM transition to active state
 | |
|  *
 | |
|  *	Manipulate the IPM field of the SControl register of @link
 | |
|  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
 | |
|  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
 | |
|  *	the link.  This function also clears PHYRDY_CHG before
 | |
|  *	returning.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	EH context.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on succes, -errno otherwise.
 | |
|  */
 | |
| int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
 | |
| 		      bool spm_wakeup)
 | |
| {
 | |
| 	struct ata_eh_context *ehc = &link->eh_context;
 | |
| 	bool woken_up = false;
 | |
| 	u32 scontrol;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case ATA_LPM_MAX_POWER:
 | |
| 		/* disable all LPM transitions */
 | |
| 		scontrol |= (0x3 << 8);
 | |
| 		/* initiate transition to active state */
 | |
| 		if (spm_wakeup) {
 | |
| 			scontrol |= (0x4 << 12);
 | |
| 			woken_up = true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case ATA_LPM_MED_POWER:
 | |
| 		/* allow LPM to PARTIAL */
 | |
| 		scontrol &= ~(0x1 << 8);
 | |
| 		scontrol |= (0x2 << 8);
 | |
| 		break;
 | |
| 	case ATA_LPM_MIN_POWER:
 | |
| 		if (ata_link_nr_enabled(link) > 0)
 | |
| 			/* no restrictions on LPM transitions */
 | |
| 			scontrol &= ~(0x3 << 8);
 | |
| 		else {
 | |
| 			/* empty port, power off */
 | |
| 			scontrol &= ~0xf;
 | |
| 			scontrol |= (0x1 << 2);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* give the link time to transit out of LPM state */
 | |
| 	if (woken_up)
 | |
| 		msleep(10);
 | |
| 
 | |
| 	/* clear PHYRDY_CHG from SError */
 | |
| 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
 | |
| 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_std_prereset - prepare for reset
 | |
|  *	@link: ATA link to be reset
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	@link is about to be reset.  Initialize it.  Failure from
 | |
|  *	prereset makes libata abort whole reset sequence and give up
 | |
|  *	that port, so prereset should be best-effort.  It does its
 | |
|  *	best to prepare for reset sequence but if things go wrong, it
 | |
|  *	should just whine, not fail.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_std_prereset(struct ata_link *link, unsigned long deadline)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct ata_eh_context *ehc = &link->eh_context;
 | |
| 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
 | |
| 	int rc;
 | |
| 
 | |
| 	/* if we're about to do hardreset, nothing more to do */
 | |
| 	if (ehc->i.action & ATA_EH_HARDRESET)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* if SATA, resume link */
 | |
| 	if (ap->flags & ATA_FLAG_SATA) {
 | |
| 		rc = sata_link_resume(link, timing, deadline);
 | |
| 		/* whine about phy resume failure but proceed */
 | |
| 		if (rc && rc != -EOPNOTSUPP)
 | |
| 			ata_link_warn(link,
 | |
| 				      "failed to resume link for reset (errno=%d)\n",
 | |
| 				      rc);
 | |
| 	}
 | |
| 
 | |
| 	/* no point in trying softreset on offline link */
 | |
| 	if (ata_phys_link_offline(link))
 | |
| 		ehc->i.action &= ~ATA_EH_SOFTRESET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_link_hardreset - reset link via SATA phy reset
 | |
|  *	@link: link to reset
 | |
|  *	@timing: timing parameters { interval, duratinon, timeout } in msec
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *	@online: optional out parameter indicating link onlineness
 | |
|  *	@check_ready: optional callback to check link readiness
 | |
|  *
 | |
|  *	SATA phy-reset @link using DET bits of SControl register.
 | |
|  *	After hardreset, link readiness is waited upon using
 | |
|  *	ata_wait_ready() if @check_ready is specified.  LLDs are
 | |
|  *	allowed to not specify @check_ready and wait itself after this
 | |
|  *	function returns.  Device classification is LLD's
 | |
|  *	responsibility.
 | |
|  *
 | |
|  *	*@online is set to one iff reset succeeded and @link is online
 | |
|  *	after reset.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
 | |
| 			unsigned long deadline,
 | |
| 			bool *online, int (*check_ready)(struct ata_link *))
 | |
| {
 | |
| 	u32 scontrol;
 | |
| 	int rc;
 | |
| 
 | |
| 	DPRINTK("ENTER\n");
 | |
| 
 | |
| 	if (online)
 | |
| 		*online = false;
 | |
| 
 | |
| 	if (sata_set_spd_needed(link)) {
 | |
| 		/* SATA spec says nothing about how to reconfigure
 | |
| 		 * spd.  To be on the safe side, turn off phy during
 | |
| 		 * reconfiguration.  This works for at least ICH7 AHCI
 | |
| 		 * and Sil3124.
 | |
| 		 */
 | |
| 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
 | |
| 			goto out;
 | |
| 
 | |
| 		scontrol = (scontrol & 0x0f0) | 0x304;
 | |
| 
 | |
| 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
 | |
| 			goto out;
 | |
| 
 | |
| 		sata_set_spd(link);
 | |
| 	}
 | |
| 
 | |
| 	/* issue phy wake/reset */
 | |
| 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
 | |
| 		goto out;
 | |
| 
 | |
| 	scontrol = (scontrol & 0x0f0) | 0x301;
 | |
| 
 | |
| 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
 | |
| 	 * 10.4.2 says at least 1 ms.
 | |
| 	 */
 | |
| 	ata_msleep(link->ap, 1);
 | |
| 
 | |
| 	/* bring link back */
 | |
| 	rc = sata_link_resume(link, timing, deadline);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	/* if link is offline nothing more to do */
 | |
| 	if (ata_phys_link_offline(link))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Link is online.  From this point, -ENODEV too is an error. */
 | |
| 	if (online)
 | |
| 		*online = true;
 | |
| 
 | |
| 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
 | |
| 		/* If PMP is supported, we have to do follow-up SRST.
 | |
| 		 * Some PMPs don't send D2H Reg FIS after hardreset if
 | |
| 		 * the first port is empty.  Wait only for
 | |
| 		 * ATA_TMOUT_PMP_SRST_WAIT.
 | |
| 		 */
 | |
| 		if (check_ready) {
 | |
| 			unsigned long pmp_deadline;
 | |
| 
 | |
| 			pmp_deadline = ata_deadline(jiffies,
 | |
| 						    ATA_TMOUT_PMP_SRST_WAIT);
 | |
| 			if (time_after(pmp_deadline, deadline))
 | |
| 				pmp_deadline = deadline;
 | |
| 			ata_wait_ready(link, pmp_deadline, check_ready);
 | |
| 		}
 | |
| 		rc = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = 0;
 | |
| 	if (check_ready)
 | |
| 		rc = ata_wait_ready(link, deadline, check_ready);
 | |
|  out:
 | |
| 	if (rc && rc != -EAGAIN) {
 | |
| 		/* online is set iff link is online && reset succeeded */
 | |
| 		if (online)
 | |
| 			*online = false;
 | |
| 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
 | |
| 	}
 | |
| 	DPRINTK("EXIT, rc=%d\n", rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_std_hardreset - COMRESET w/o waiting or classification
 | |
|  *	@link: link to reset
 | |
|  *	@class: resulting class of attached device
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Standard SATA COMRESET w/o waiting or classification.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if link offline, -EAGAIN if link online, -errno on errors.
 | |
|  */
 | |
| int sata_std_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 		       unsigned long deadline)
 | |
| {
 | |
| 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
 | |
| 	bool online;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* do hardreset */
 | |
| 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
 | |
| 	return online ? -EAGAIN : rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_std_postreset - standard postreset callback
 | |
|  *	@link: the target ata_link
 | |
|  *	@classes: classes of attached devices
 | |
|  *
 | |
|  *	This function is invoked after a successful reset.  Note that
 | |
|  *	the device might have been reset more than once using
 | |
|  *	different reset methods before postreset is invoked.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_std_postreset(struct ata_link *link, unsigned int *classes)
 | |
| {
 | |
| 	u32 serror;
 | |
| 
 | |
| 	DPRINTK("ENTER\n");
 | |
| 
 | |
| 	/* reset complete, clear SError */
 | |
| 	if (!sata_scr_read(link, SCR_ERROR, &serror))
 | |
| 		sata_scr_write(link, SCR_ERROR, serror);
 | |
| 
 | |
| 	/* print link status */
 | |
| 	sata_print_link_status(link);
 | |
| 
 | |
| 	DPRINTK("EXIT\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_same_device - Determine whether new ID matches configured device
 | |
|  *	@dev: device to compare against
 | |
|  *	@new_class: class of the new device
 | |
|  *	@new_id: IDENTIFY page of the new device
 | |
|  *
 | |
|  *	Compare @new_class and @new_id against @dev and determine
 | |
|  *	whether @dev is the device indicated by @new_class and
 | |
|  *	@new_id.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
 | |
|  */
 | |
| static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
 | |
| 			       const u16 *new_id)
 | |
| {
 | |
| 	const u16 *old_id = dev->id;
 | |
| 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
 | |
| 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
 | |
| 
 | |
| 	if (dev->class != new_class) {
 | |
| 		ata_dev_info(dev, "class mismatch %d != %d\n",
 | |
| 			     dev->class, new_class);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
 | |
| 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
 | |
| 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
 | |
| 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
 | |
| 
 | |
| 	if (strcmp(model[0], model[1])) {
 | |
| 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
 | |
| 			     model[0], model[1]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (strcmp(serial[0], serial[1])) {
 | |
| 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
 | |
| 			     serial[0], serial[1]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_reread_id - Re-read IDENTIFY data
 | |
|  *	@dev: target ATA device
 | |
|  *	@readid_flags: read ID flags
 | |
|  *
 | |
|  *	Re-read IDENTIFY page and make sure @dev is still attached to
 | |
|  *	the port.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno otherwise
 | |
|  */
 | |
| int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
 | |
| {
 | |
| 	unsigned int class = dev->class;
 | |
| 	u16 *id = (void *)dev->link->ap->sector_buf;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* read ID data */
 | |
| 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* is the device still there? */
 | |
| 	if (!ata_dev_same_device(dev, class, id))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_revalidate - Revalidate ATA device
 | |
|  *	@dev: device to revalidate
 | |
|  *	@new_class: new class code
 | |
|  *	@readid_flags: read ID flags
 | |
|  *
 | |
|  *	Re-read IDENTIFY page, make sure @dev is still attached to the
 | |
|  *	port and reconfigure it according to the new IDENTIFY page.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno otherwise
 | |
|  */
 | |
| int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
 | |
| 		       unsigned int readid_flags)
 | |
| {
 | |
| 	u64 n_sectors = dev->n_sectors;
 | |
| 	u64 n_native_sectors = dev->n_native_sectors;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!ata_dev_enabled(dev))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
 | |
| 	if (ata_class_enabled(new_class) &&
 | |
| 	    new_class != ATA_DEV_ATA &&
 | |
| 	    new_class != ATA_DEV_ATAPI &&
 | |
| 	    new_class != ATA_DEV_SEMB) {
 | |
| 		ata_dev_info(dev, "class mismatch %u != %u\n",
 | |
| 			     dev->class, new_class);
 | |
| 		rc = -ENODEV;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* re-read ID */
 | |
| 	rc = ata_dev_reread_id(dev, readid_flags);
 | |
| 	if (rc)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* configure device according to the new ID */
 | |
| 	rc = ata_dev_configure(dev);
 | |
| 	if (rc)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* verify n_sectors hasn't changed */
 | |
| 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
 | |
| 	    dev->n_sectors == n_sectors)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* n_sectors has changed */
 | |
| 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
 | |
| 		     (unsigned long long)n_sectors,
 | |
| 		     (unsigned long long)dev->n_sectors);
 | |
| 
 | |
| 	/*
 | |
| 	 * Something could have caused HPA to be unlocked
 | |
| 	 * involuntarily.  If n_native_sectors hasn't changed and the
 | |
| 	 * new size matches it, keep the device.
 | |
| 	 */
 | |
| 	if (dev->n_native_sectors == n_native_sectors &&
 | |
| 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "new n_sectors matches native, probably "
 | |
| 			     "late HPA unlock, n_sectors updated\n");
 | |
| 		/* use the larger n_sectors */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
 | |
| 	 * unlocking HPA in those cases.
 | |
| 	 *
 | |
| 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
 | |
| 	 */
 | |
| 	if (dev->n_native_sectors == n_native_sectors &&
 | |
| 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
 | |
| 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "old n_sectors matches native, probably "
 | |
| 			     "late HPA lock, will try to unlock HPA\n");
 | |
| 		/* try unlocking HPA */
 | |
| 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
 | |
| 		rc = -EIO;
 | |
| 	} else
 | |
| 		rc = -ENODEV;
 | |
| 
 | |
| 	/* restore original n_[native_]sectors and fail */
 | |
| 	dev->n_native_sectors = n_native_sectors;
 | |
| 	dev->n_sectors = n_sectors;
 | |
|  fail:
 | |
| 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| struct ata_blacklist_entry {
 | |
| 	const char *model_num;
 | |
| 	const char *model_rev;
 | |
| 	unsigned long horkage;
 | |
| };
 | |
| 
 | |
| static const struct ata_blacklist_entry ata_device_blacklist [] = {
 | |
| 	/* Devices with DMA related problems under Linux */
 | |
| 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
 | |
| 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
 | |
| 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
 | |
| 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
 | |
| 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
 | |
| 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
 | |
| 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
 | |
| 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
 | |
| 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
 | |
| 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
 | |
| 	/* Odd clown on sil3726/4726 PMPs */
 | |
| 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
 | |
| 
 | |
| 	/* Weird ATAPI devices */
 | |
| 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
 | |
| 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
 | |
| 
 | |
| 	/* Devices we expect to fail diagnostics */
 | |
| 
 | |
| 	/* Devices where NCQ should be avoided */
 | |
| 	/* NCQ is slow */
 | |
| 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
 | |
| 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
 | |
| 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
 | |
| 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
 | |
| 	/* NCQ is broken */
 | |
| 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
 | |
| 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
 | |
| 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
 | |
| 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
 | |
| 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
 | |
| 
 | |
| 	/* Seagate NCQ + FLUSH CACHE firmware bug */
 | |
| 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
 | |
| 						ATA_HORKAGE_FIRMWARE_WARN },
 | |
| 
 | |
| 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
 | |
| 						ATA_HORKAGE_FIRMWARE_WARN },
 | |
| 
 | |
| 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
 | |
| 						ATA_HORKAGE_FIRMWARE_WARN },
 | |
| 
 | |
| 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
 | |
| 						ATA_HORKAGE_FIRMWARE_WARN },
 | |
| 
 | |
| 	/* Blacklist entries taken from Silicon Image 3124/3132
 | |
| 	   Windows driver .inf file - also several Linux problem reports */
 | |
| 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
 | |
| 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
 | |
| 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
 | |
| 
 | |
| 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
 | |
| 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
 | |
| 
 | |
| 	/* devices which puke on READ_NATIVE_MAX */
 | |
| 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
 | |
| 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
 | |
| 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
 | |
| 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
 | |
| 
 | |
| 	/* this one allows HPA unlocking but fails IOs on the area */
 | |
| 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
 | |
| 
 | |
| 	/* Devices which report 1 sector over size HPA */
 | |
| 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
 | |
| 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
 | |
| 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
 | |
| 
 | |
| 	/* Devices which get the IVB wrong */
 | |
| 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
 | |
| 	/* Maybe we should just blacklist TSSTcorp... */
 | |
| 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
 | |
| 
 | |
| 	/* Devices that do not need bridging limits applied */
 | |
| 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
 | |
| 
 | |
| 	/* Devices which aren't very happy with higher link speeds */
 | |
| 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
 | |
| 
 | |
| 	/*
 | |
| 	 * Devices which choke on SETXFER.  Applies only if both the
 | |
| 	 * device and controller are SATA.
 | |
| 	 */
 | |
| 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
 | |
| 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
 | |
| 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
 | |
| 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
 | |
| 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
 | |
| 
 | |
| 	/* End Marker */
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	glob_match - match a text string against a glob-style pattern
 | |
|  *	@text: the string to be examined
 | |
|  *	@pattern: the glob-style pattern to be matched against
 | |
|  *
 | |
|  *	Either/both of text and pattern can be empty strings.
 | |
|  *
 | |
|  *	Match text against a glob-style pattern, with wildcards and simple sets:
 | |
|  *
 | |
|  *		?	matches any single character.
 | |
|  *		*	matches any run of characters.
 | |
|  *		[xyz]	matches a single character from the set: x, y, or z.
 | |
|  *		[a-d]	matches a single character from the range: a, b, c, or d.
 | |
|  *		[a-d0-9] matches a single character from either range.
 | |
|  *
 | |
|  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
 | |
|  *	Behaviour with malformed patterns is undefined, though generally reasonable.
 | |
|  *
 | |
|  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
 | |
|  *
 | |
|  *	This function uses one level of recursion per '*' in pattern.
 | |
|  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
 | |
|  *	this will not cause stack problems for any reasonable use here.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on match, 1 otherwise.
 | |
|  */
 | |
| static int glob_match (const char *text, const char *pattern)
 | |
| {
 | |
| 	do {
 | |
| 		/* Match single character or a '?' wildcard */
 | |
| 		if (*text == *pattern || *pattern == '?') {
 | |
| 			if (!*pattern++)
 | |
| 				return 0;  /* End of both strings: match */
 | |
| 		} else {
 | |
| 			/* Match single char against a '[' bracketed ']' pattern set */
 | |
| 			if (!*text || *pattern != '[')
 | |
| 				break;  /* Not a pattern set */
 | |
| 			while (*++pattern && *pattern != ']' && *text != *pattern) {
 | |
| 				if (*pattern == '-' && *(pattern - 1) != '[')
 | |
| 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
 | |
| 						++pattern;
 | |
| 						break;
 | |
| 					}
 | |
| 			}
 | |
| 			if (!*pattern || *pattern == ']')
 | |
| 				return 1;  /* No match */
 | |
| 			while (*pattern && *pattern++ != ']');
 | |
| 		}
 | |
| 	} while (*++text && *pattern);
 | |
| 
 | |
| 	/* Match any run of chars against a '*' wildcard */
 | |
| 	if (*pattern == '*') {
 | |
| 		if (!*++pattern)
 | |
| 			return 0;  /* Match: avoid recursion at end of pattern */
 | |
| 		/* Loop to handle additional pattern chars after the wildcard */
 | |
| 		while (*text) {
 | |
| 			if (glob_match(text, pattern) == 0)
 | |
| 				return 0;  /* Remainder matched */
 | |
| 			++text;  /* Absorb (match) this char and try again */
 | |
| 		}
 | |
| 	}
 | |
| 	if (!*text && !*pattern)
 | |
| 		return 0;  /* End of both strings: match */
 | |
| 	return 1;  /* No match */
 | |
| }
 | |
| 
 | |
| static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
 | |
| {
 | |
| 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
 | |
| 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
 | |
| 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
 | |
| 
 | |
| 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
 | |
| 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
 | |
| 
 | |
| 	while (ad->model_num) {
 | |
| 		if (!glob_match(model_num, ad->model_num)) {
 | |
| 			if (ad->model_rev == NULL)
 | |
| 				return ad->horkage;
 | |
| 			if (!glob_match(model_rev, ad->model_rev))
 | |
| 				return ad->horkage;
 | |
| 		}
 | |
| 		ad++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ata_dma_blacklisted(const struct ata_device *dev)
 | |
| {
 | |
| 	/* We don't support polling DMA.
 | |
| 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
 | |
| 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
 | |
| 	 */
 | |
| 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
 | |
| 	    (dev->flags & ATA_DFLAG_CDB_INTR))
 | |
| 		return 1;
 | |
| 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_is_40wire		-	check drive side detection
 | |
|  *	@dev: device
 | |
|  *
 | |
|  *	Perform drive side detection decoding, allowing for device vendors
 | |
|  *	who can't follow the documentation.
 | |
|  */
 | |
| 
 | |
| static int ata_is_40wire(struct ata_device *dev)
 | |
| {
 | |
| 	if (dev->horkage & ATA_HORKAGE_IVB)
 | |
| 		return ata_drive_40wire_relaxed(dev->id);
 | |
| 	return ata_drive_40wire(dev->id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cable_is_40wire		-	40/80/SATA decider
 | |
|  *	@ap: port to consider
 | |
|  *
 | |
|  *	This function encapsulates the policy for speed management
 | |
|  *	in one place. At the moment we don't cache the result but
 | |
|  *	there is a good case for setting ap->cbl to the result when
 | |
|  *	we are called with unknown cables (and figuring out if it
 | |
|  *	impacts hotplug at all).
 | |
|  *
 | |
|  *	Return 1 if the cable appears to be 40 wire.
 | |
|  */
 | |
| 
 | |
| static int cable_is_40wire(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_link *link;
 | |
| 	struct ata_device *dev;
 | |
| 
 | |
| 	/* If the controller thinks we are 40 wire, we are. */
 | |
| 	if (ap->cbl == ATA_CBL_PATA40)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If the controller thinks we are 80 wire, we are. */
 | |
| 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the system is known to be 40 wire short cable (eg
 | |
| 	 * laptop), then we allow 80 wire modes even if the drive
 | |
| 	 * isn't sure.
 | |
| 	 */
 | |
| 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the controller doesn't know, we scan.
 | |
| 	 *
 | |
| 	 * Note: We look for all 40 wire detects at this point.  Any
 | |
| 	 *       80 wire detect is taken to be 80 wire cable because
 | |
| 	 * - in many setups only the one drive (slave if present) will
 | |
| 	 *   give a valid detect
 | |
| 	 * - if you have a non detect capable drive you don't want it
 | |
| 	 *   to colour the choice
 | |
| 	 */
 | |
| 	ata_for_each_link(link, ap, EDGE) {
 | |
| 		ata_for_each_dev(dev, link, ENABLED) {
 | |
| 			if (!ata_is_40wire(dev))
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_xfermask - Compute supported xfermask of the given device
 | |
|  *	@dev: Device to compute xfermask for
 | |
|  *
 | |
|  *	Compute supported xfermask of @dev and store it in
 | |
|  *	dev->*_mask.  This function is responsible for applying all
 | |
|  *	known limits including host controller limits, device
 | |
|  *	blacklist, etc...
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| static void ata_dev_xfermask(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_link *link = dev->link;
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct ata_host *host = ap->host;
 | |
| 	unsigned long xfer_mask;
 | |
| 
 | |
| 	/* controller modes available */
 | |
| 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
 | |
| 				      ap->mwdma_mask, ap->udma_mask);
 | |
| 
 | |
| 	/* drive modes available */
 | |
| 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
 | |
| 				       dev->mwdma_mask, dev->udma_mask);
 | |
| 	xfer_mask &= ata_id_xfermask(dev->id);
 | |
| 
 | |
| 	/*
 | |
| 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
 | |
| 	 *	cable
 | |
| 	 */
 | |
| 	if (ata_dev_pair(dev)) {
 | |
| 		/* No PIO5 or PIO6 */
 | |
| 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
 | |
| 		/* No MWDMA3 or MWDMA 4 */
 | |
| 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
 | |
| 	}
 | |
| 
 | |
| 	if (ata_dma_blacklisted(dev)) {
 | |
| 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "device is on DMA blacklist, disabling DMA\n");
 | |
| 	}
 | |
| 
 | |
| 	if ((host->flags & ATA_HOST_SIMPLEX) &&
 | |
| 	    host->simplex_claimed && host->simplex_claimed != ap) {
 | |
| 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
 | |
| 		ata_dev_warn(dev,
 | |
| 			     "simplex DMA is claimed by other device, disabling DMA\n");
 | |
| 	}
 | |
| 
 | |
| 	if (ap->flags & ATA_FLAG_NO_IORDY)
 | |
| 		xfer_mask &= ata_pio_mask_no_iordy(dev);
 | |
| 
 | |
| 	if (ap->ops->mode_filter)
 | |
| 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
 | |
| 
 | |
| 	/* Apply cable rule here.  Don't apply it early because when
 | |
| 	 * we handle hot plug the cable type can itself change.
 | |
| 	 * Check this last so that we know if the transfer rate was
 | |
| 	 * solely limited by the cable.
 | |
| 	 * Unknown or 80 wire cables reported host side are checked
 | |
| 	 * drive side as well. Cases where we know a 40wire cable
 | |
| 	 * is used safely for 80 are not checked here.
 | |
| 	 */
 | |
| 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
 | |
| 		/* UDMA/44 or higher would be available */
 | |
| 		if (cable_is_40wire(ap)) {
 | |
| 			ata_dev_warn(dev,
 | |
| 				     "limited to UDMA/33 due to 40-wire cable\n");
 | |
| 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
 | |
| 		}
 | |
| 
 | |
| 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
 | |
| 			    &dev->mwdma_mask, &dev->udma_mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
 | |
|  *	@dev: Device to which command will be sent
 | |
|  *
 | |
|  *	Issue SET FEATURES - XFER MODE command to device @dev
 | |
|  *	on port @ap.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	PCI/etc. bus probe sem.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, AC_ERR_* mask otherwise.
 | |
|  */
 | |
| 
 | |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_taskfile tf;
 | |
| 	unsigned int err_mask;
 | |
| 
 | |
| 	/* set up set-features taskfile */
 | |
| 	DPRINTK("set features - xfer mode\n");
 | |
| 
 | |
| 	/* Some controllers and ATAPI devices show flaky interrupt
 | |
| 	 * behavior after setting xfer mode.  Use polling instead.
 | |
| 	 */
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 	tf.command = ATA_CMD_SET_FEATURES;
 | |
| 	tf.feature = SETFEATURES_XFER;
 | |
| 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
 | |
| 	tf.protocol = ATA_PROT_NODATA;
 | |
| 	/* If we are using IORDY we must send the mode setting command */
 | |
| 	if (ata_pio_need_iordy(dev))
 | |
| 		tf.nsect = dev->xfer_mode;
 | |
| 	/* If the device has IORDY and the controller does not - turn it off */
 | |
|  	else if (ata_id_has_iordy(dev->id))
 | |
| 		tf.nsect = 0x01;
 | |
| 	else /* In the ancient relic department - skip all of this */
 | |
| 		return 0;
 | |
| 
 | |
| 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| 
 | |
| 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
 | |
| 	return err_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
 | |
|  *	@dev: Device to which command will be sent
 | |
|  *	@enable: Whether to enable or disable the feature
 | |
|  *	@feature: The sector count represents the feature to set
 | |
|  *
 | |
|  *	Issue SET FEATURES - SATA FEATURES command to device @dev
 | |
|  *	on port @ap with sector count
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	PCI/etc. bus probe sem.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, AC_ERR_* mask otherwise.
 | |
|  */
 | |
| unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
 | |
| {
 | |
| 	struct ata_taskfile tf;
 | |
| 	unsigned int err_mask;
 | |
| 
 | |
| 	/* set up set-features taskfile */
 | |
| 	DPRINTK("set features - SATA features\n");
 | |
| 
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 	tf.command = ATA_CMD_SET_FEATURES;
 | |
| 	tf.feature = enable;
 | |
| 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 | |
| 	tf.protocol = ATA_PROT_NODATA;
 | |
| 	tf.nsect = feature;
 | |
| 
 | |
| 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| 
 | |
| 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
 | |
| 	return err_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_init_params - Issue INIT DEV PARAMS command
 | |
|  *	@dev: Device to which command will be sent
 | |
|  *	@heads: Number of heads (taskfile parameter)
 | |
|  *	@sectors: Number of sectors (taskfile parameter)
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, AC_ERR_* mask otherwise.
 | |
|  */
 | |
| static unsigned int ata_dev_init_params(struct ata_device *dev,
 | |
| 					u16 heads, u16 sectors)
 | |
| {
 | |
| 	struct ata_taskfile tf;
 | |
| 	unsigned int err_mask;
 | |
| 
 | |
| 	/* Number of sectors per track 1-255. Number of heads 1-16 */
 | |
| 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
 | |
| 		return AC_ERR_INVALID;
 | |
| 
 | |
| 	/* set up init dev params taskfile */
 | |
| 	DPRINTK("init dev params \n");
 | |
| 
 | |
| 	ata_tf_init(dev, &tf);
 | |
| 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
 | |
| 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 | |
| 	tf.protocol = ATA_PROT_NODATA;
 | |
| 	tf.nsect = sectors;
 | |
| 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
 | |
| 
 | |
| 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 | |
| 	/* A clean abort indicates an original or just out of spec drive
 | |
| 	   and we should continue as we issue the setup based on the
 | |
| 	   drive reported working geometry */
 | |
| 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
 | |
| 		err_mask = 0;
 | |
| 
 | |
| 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
 | |
| 	return err_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sg_clean - Unmap DMA memory associated with command
 | |
|  *	@qc: Command containing DMA memory to be released
 | |
|  *
 | |
|  *	Unmap all mapped DMA memory associated with this command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_sg_clean(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct scatterlist *sg = qc->sg;
 | |
| 	int dir = qc->dma_dir;
 | |
| 
 | |
| 	WARN_ON_ONCE(sg == NULL);
 | |
| 
 | |
| 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
 | |
| 
 | |
| 	if (qc->n_elem)
 | |
| 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
 | |
| 
 | |
| 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
 | |
| 	qc->sg = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	atapi_check_dma - Check whether ATAPI DMA can be supported
 | |
|  *	@qc: Metadata associated with taskfile to check
 | |
|  *
 | |
|  *	Allow low-level driver to filter ATA PACKET commands, returning
 | |
|  *	a status indicating whether or not it is OK to use DMA for the
 | |
|  *	supplied PACKET command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS: 0 when ATAPI DMA can be used
 | |
|  *               nonzero otherwise
 | |
|  */
 | |
| int atapi_check_dma(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 
 | |
| 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
 | |
| 	 * few ATAPI devices choke on such DMA requests.
 | |
| 	 */
 | |
| 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
 | |
| 	    unlikely(qc->nbytes & 15))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (ap->ops->check_atapi_dma)
 | |
| 		return ap->ops->check_atapi_dma(qc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_std_qc_defer - Check whether a qc needs to be deferred
 | |
|  *	@qc: ATA command in question
 | |
|  *
 | |
|  *	Non-NCQ commands cannot run with any other command, NCQ or
 | |
|  *	not.  As upper layer only knows the queue depth, we are
 | |
|  *	responsible for maintaining exclusion.  This function checks
 | |
|  *	whether a new command @qc can be issued.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
 | |
|  */
 | |
| int ata_std_qc_defer(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 
 | |
| 	if (qc->tf.protocol == ATA_PROT_NCQ) {
 | |
| 		if (!ata_tag_valid(link->active_tag))
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ATA_DEFER_LINK;
 | |
| }
 | |
| 
 | |
| void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
 | |
| 
 | |
| /**
 | |
|  *	ata_sg_init - Associate command with scatter-gather table.
 | |
|  *	@qc: Command to be associated
 | |
|  *	@sg: Scatter-gather table.
 | |
|  *	@n_elem: Number of elements in s/g table.
 | |
|  *
 | |
|  *	Initialize the data-related elements of queued_cmd @qc
 | |
|  *	to point to a scatter-gather table @sg, containing @n_elem
 | |
|  *	elements.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
 | |
| 		 unsigned int n_elem)
 | |
| {
 | |
| 	qc->sg = sg;
 | |
| 	qc->n_elem = n_elem;
 | |
| 	qc->cursg = qc->sg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
 | |
|  *	@qc: Command with scatter-gather table to be mapped.
 | |
|  *
 | |
|  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, negative on error.
 | |
|  *
 | |
|  */
 | |
| static int ata_sg_setup(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	unsigned int n_elem;
 | |
| 
 | |
| 	VPRINTK("ENTER, ata%u\n", ap->print_id);
 | |
| 
 | |
| 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
 | |
| 	if (n_elem < 1)
 | |
| 		return -1;
 | |
| 
 | |
| 	DPRINTK("%d sg elements mapped\n", n_elem);
 | |
| 	qc->orig_n_elem = qc->n_elem;
 | |
| 	qc->n_elem = n_elem;
 | |
| 	qc->flags |= ATA_QCFLAG_DMAMAP;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	swap_buf_le16 - swap halves of 16-bit words in place
 | |
|  *	@buf:  Buffer to swap
 | |
|  *	@buf_words:  Number of 16-bit words in buffer.
 | |
|  *
 | |
|  *	Swap halves of 16-bit words if needed to convert from
 | |
|  *	little-endian byte order to native cpu byte order, or
 | |
|  *	vice-versa.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void swap_buf_le16(u16 *buf, unsigned int buf_words)
 | |
| {
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < buf_words; i++)
 | |
| 		buf[i] = le16_to_cpu(buf[i]);
 | |
| #endif /* __BIG_ENDIAN */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_new - Request an available ATA command, for queueing
 | |
|  *	@ap: target port
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| 
 | |
| static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_queued_cmd *qc = NULL;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* no command while frozen */
 | |
| 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* the last tag is reserved for internal command. */
 | |
| 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
 | |
| 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
 | |
| 			qc = __ata_qc_from_tag(ap, i);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (qc)
 | |
| 		qc->tag = i;
 | |
| 
 | |
| 	return qc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_new_init - Request an available ATA command, and initialize it
 | |
|  *	@dev: Device from whom we request an available command structure
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| 
 | |
| struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 
 | |
| 	qc = ata_qc_new(ap);
 | |
| 	if (qc) {
 | |
| 		qc->scsicmd = NULL;
 | |
| 		qc->ap = ap;
 | |
| 		qc->dev = dev;
 | |
| 
 | |
| 		ata_qc_reinit(qc);
 | |
| 	}
 | |
| 
 | |
| 	return qc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_free - free unused ata_queued_cmd
 | |
|  *	@qc: Command to complete
 | |
|  *
 | |
|  *	Designed to free unused ata_queued_cmd object
 | |
|  *	in case something prevents using it.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_qc_free(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap;
 | |
| 	unsigned int tag;
 | |
| 
 | |
| 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
 | |
| 	ap = qc->ap;
 | |
| 
 | |
| 	qc->flags = 0;
 | |
| 	tag = qc->tag;
 | |
| 	if (likely(ata_tag_valid(tag))) {
 | |
| 		qc->tag = ATA_TAG_POISON;
 | |
| 		clear_bit(tag, &ap->qc_allocated);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __ata_qc_complete(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap;
 | |
| 	struct ata_link *link;
 | |
| 
 | |
| 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
 | |
| 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
 | |
| 	ap = qc->ap;
 | |
| 	link = qc->dev->link;
 | |
| 
 | |
| 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
 | |
| 		ata_sg_clean(qc);
 | |
| 
 | |
| 	/* command should be marked inactive atomically with qc completion */
 | |
| 	if (qc->tf.protocol == ATA_PROT_NCQ) {
 | |
| 		link->sactive &= ~(1 << qc->tag);
 | |
| 		if (!link->sactive)
 | |
| 			ap->nr_active_links--;
 | |
| 	} else {
 | |
| 		link->active_tag = ATA_TAG_POISON;
 | |
| 		ap->nr_active_links--;
 | |
| 	}
 | |
| 
 | |
| 	/* clear exclusive status */
 | |
| 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
 | |
| 		     ap->excl_link == link))
 | |
| 		ap->excl_link = NULL;
 | |
| 
 | |
| 	/* atapi: mark qc as inactive to prevent the interrupt handler
 | |
| 	 * from completing the command twice later, before the error handler
 | |
| 	 * is called. (when rc != 0 and atapi request sense is needed)
 | |
| 	 */
 | |
| 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
 | |
| 	ap->qc_active &= ~(1 << qc->tag);
 | |
| 
 | |
| 	/* call completion callback */
 | |
| 	qc->complete_fn(qc);
 | |
| }
 | |
| 
 | |
| static void fill_result_tf(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 
 | |
| 	qc->result_tf.flags = qc->tf.flags;
 | |
| 	ap->ops->qc_fill_rtf(qc);
 | |
| }
 | |
| 
 | |
| static void ata_verify_xfer(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_device *dev = qc->dev;
 | |
| 
 | |
| 	if (ata_is_nodata(qc->tf.protocol))
 | |
| 		return;
 | |
| 
 | |
| 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
 | |
| 		return;
 | |
| 
 | |
| 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_complete - Complete an active ATA command
 | |
|  *	@qc: Command to complete
 | |
|  *
 | |
|  *	Indicate to the mid and upper layers that an ATA command has
 | |
|  *	completed, with either an ok or not-ok status.
 | |
|  *
 | |
|  *	Refrain from calling this function multiple times when
 | |
|  *	successfully completing multiple NCQ commands.
 | |
|  *	ata_qc_complete_multiple() should be used instead, which will
 | |
|  *	properly update IRQ expect state.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_qc_complete(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 
 | |
| 	/* XXX: New EH and old EH use different mechanisms to
 | |
| 	 * synchronize EH with regular execution path.
 | |
| 	 *
 | |
| 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
 | |
| 	 * Normal execution path is responsible for not accessing a
 | |
| 	 * failed qc.  libata core enforces the rule by returning NULL
 | |
| 	 * from ata_qc_from_tag() for failed qcs.
 | |
| 	 *
 | |
| 	 * Old EH depends on ata_qc_complete() nullifying completion
 | |
| 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
 | |
| 	 * not synchronize with interrupt handler.  Only PIO task is
 | |
| 	 * taken care of.
 | |
| 	 */
 | |
| 	if (ap->ops->error_handler) {
 | |
| 		struct ata_device *dev = qc->dev;
 | |
| 		struct ata_eh_info *ehi = &dev->link->eh_info;
 | |
| 
 | |
| 		if (unlikely(qc->err_mask))
 | |
| 			qc->flags |= ATA_QCFLAG_FAILED;
 | |
| 
 | |
| 		/*
 | |
| 		 * Finish internal commands without any further processing
 | |
| 		 * and always with the result TF filled.
 | |
| 		 */
 | |
| 		if (unlikely(ata_tag_internal(qc->tag))) {
 | |
| 			fill_result_tf(qc);
 | |
| 			__ata_qc_complete(qc);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Non-internal qc has failed.  Fill the result TF and
 | |
| 		 * summon EH.
 | |
| 		 */
 | |
| 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
 | |
| 			fill_result_tf(qc);
 | |
| 			ata_qc_schedule_eh(qc);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
 | |
| 
 | |
| 		/* read result TF if requested */
 | |
| 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
 | |
| 			fill_result_tf(qc);
 | |
| 
 | |
| 		/* Some commands need post-processing after successful
 | |
| 		 * completion.
 | |
| 		 */
 | |
| 		switch (qc->tf.command) {
 | |
| 		case ATA_CMD_SET_FEATURES:
 | |
| 			if (qc->tf.feature != SETFEATURES_WC_ON &&
 | |
| 			    qc->tf.feature != SETFEATURES_WC_OFF)
 | |
| 				break;
 | |
| 			/* fall through */
 | |
| 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
 | |
| 		case ATA_CMD_SET_MULTI: /* multi_count changed */
 | |
| 			/* revalidate device */
 | |
| 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
 | |
| 			ata_port_schedule_eh(ap);
 | |
| 			break;
 | |
| 
 | |
| 		case ATA_CMD_SLEEP:
 | |
| 			dev->flags |= ATA_DFLAG_SLEEPING;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
 | |
| 			ata_verify_xfer(qc);
 | |
| 
 | |
| 		__ata_qc_complete(qc);
 | |
| 	} else {
 | |
| 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
 | |
| 			return;
 | |
| 
 | |
| 		/* read result TF if failed or requested */
 | |
| 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
 | |
| 			fill_result_tf(qc);
 | |
| 
 | |
| 		__ata_qc_complete(qc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_complete_multiple - Complete multiple qcs successfully
 | |
|  *	@ap: port in question
 | |
|  *	@qc_active: new qc_active mask
 | |
|  *
 | |
|  *	Complete in-flight commands.  This functions is meant to be
 | |
|  *	called from low-level driver's interrupt routine to complete
 | |
|  *	requests normally.  ap->qc_active and @qc_active is compared
 | |
|  *	and commands are completed accordingly.
 | |
|  *
 | |
|  *	Always use this function when completing multiple NCQ commands
 | |
|  *	from IRQ handlers instead of calling ata_qc_complete()
 | |
|  *	multiple times to keep IRQ expect status properly in sync.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Number of completed commands on success, -errno otherwise.
 | |
|  */
 | |
| int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
 | |
| {
 | |
| 	int nr_done = 0;
 | |
| 	u32 done_mask;
 | |
| 
 | |
| 	done_mask = ap->qc_active ^ qc_active;
 | |
| 
 | |
| 	if (unlikely(done_mask & qc_active)) {
 | |
| 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
 | |
| 			     ap->qc_active, qc_active);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	while (done_mask) {
 | |
| 		struct ata_queued_cmd *qc;
 | |
| 		unsigned int tag = __ffs(done_mask);
 | |
| 
 | |
| 		qc = ata_qc_from_tag(ap, tag);
 | |
| 		if (qc) {
 | |
| 			ata_qc_complete(qc);
 | |
| 			nr_done++;
 | |
| 		}
 | |
| 		done_mask &= ~(1 << tag);
 | |
| 	}
 | |
| 
 | |
| 	return nr_done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_qc_issue - issue taskfile to device
 | |
|  *	@qc: command to issue to device
 | |
|  *
 | |
|  *	Prepare an ATA command to submission to device.
 | |
|  *	This includes mapping the data into a DMA-able
 | |
|  *	area, filling in the S/G table, and finally
 | |
|  *	writing the taskfile to hardware, starting the command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_qc_issue(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 	u8 prot = qc->tf.protocol;
 | |
| 
 | |
| 	/* Make sure only one non-NCQ command is outstanding.  The
 | |
| 	 * check is skipped for old EH because it reuses active qc to
 | |
| 	 * request ATAPI sense.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
 | |
| 
 | |
| 	if (ata_is_ncq(prot)) {
 | |
| 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
 | |
| 
 | |
| 		if (!link->sactive)
 | |
| 			ap->nr_active_links++;
 | |
| 		link->sactive |= 1 << qc->tag;
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(link->sactive);
 | |
| 
 | |
| 		ap->nr_active_links++;
 | |
| 		link->active_tag = qc->tag;
 | |
| 	}
 | |
| 
 | |
| 	qc->flags |= ATA_QCFLAG_ACTIVE;
 | |
| 	ap->qc_active |= 1 << qc->tag;
 | |
| 
 | |
| 	/*
 | |
| 	 * We guarantee to LLDs that they will have at least one
 | |
| 	 * non-zero sg if the command is a data command.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(ata_is_data(prot) &&
 | |
| 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
 | |
| 		goto sys_err;
 | |
| 
 | |
| 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
 | |
| 				 (ap->flags & ATA_FLAG_PIO_DMA)))
 | |
| 		if (ata_sg_setup(qc))
 | |
| 			goto sys_err;
 | |
| 
 | |
| 	/* if device is sleeping, schedule reset and abort the link */
 | |
| 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
 | |
| 		link->eh_info.action |= ATA_EH_RESET;
 | |
| 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
 | |
| 		ata_link_abort(link);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ap->ops->qc_prep(qc);
 | |
| 
 | |
| 	qc->err_mask |= ap->ops->qc_issue(qc);
 | |
| 	if (unlikely(qc->err_mask))
 | |
| 		goto err;
 | |
| 	return;
 | |
| 
 | |
| sys_err:
 | |
| 	qc->err_mask |= AC_ERR_SYSTEM;
 | |
| err:
 | |
| 	ata_qc_complete(qc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_scr_valid - test whether SCRs are accessible
 | |
|  *	@link: ATA link to test SCR accessibility for
 | |
|  *
 | |
|  *	Test whether SCRs are accessible for @link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	1 if SCRs are accessible, 0 otherwise.
 | |
|  */
 | |
| int sata_scr_valid(struct ata_link *link)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 
 | |
| 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_scr_read - read SCR register of the specified port
 | |
|  *	@link: ATA link to read SCR for
 | |
|  *	@reg: SCR to read
 | |
|  *	@val: Place to store read value
 | |
|  *
 | |
|  *	Read SCR register @reg of @link into *@val.  This function is
 | |
|  *	guaranteed to succeed if @link is ap->link, the cable type of
 | |
|  *	the port is SATA and the port implements ->scr_read.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None if @link is ap->link.  Kernel thread context otherwise.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno on failure.
 | |
|  */
 | |
| int sata_scr_read(struct ata_link *link, int reg, u32 *val)
 | |
| {
 | |
| 	if (ata_is_host_link(link)) {
 | |
| 		if (sata_scr_valid(link))
 | |
| 			return link->ap->ops->scr_read(link, reg, val);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return sata_pmp_scr_read(link, reg, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_scr_write - write SCR register of the specified port
 | |
|  *	@link: ATA link to write SCR for
 | |
|  *	@reg: SCR to write
 | |
|  *	@val: value to write
 | |
|  *
 | |
|  *	Write @val to SCR register @reg of @link.  This function is
 | |
|  *	guaranteed to succeed if @link is ap->link, the cable type of
 | |
|  *	the port is SATA and the port implements ->scr_read.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None if @link is ap->link.  Kernel thread context otherwise.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno on failure.
 | |
|  */
 | |
| int sata_scr_write(struct ata_link *link, int reg, u32 val)
 | |
| {
 | |
| 	if (ata_is_host_link(link)) {
 | |
| 		if (sata_scr_valid(link))
 | |
| 			return link->ap->ops->scr_write(link, reg, val);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return sata_pmp_scr_write(link, reg, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_scr_write_flush - write SCR register of the specified port and flush
 | |
|  *	@link: ATA link to write SCR for
 | |
|  *	@reg: SCR to write
 | |
|  *	@val: value to write
 | |
|  *
 | |
|  *	This function is identical to sata_scr_write() except that this
 | |
|  *	function performs flush after writing to the register.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None if @link is ap->link.  Kernel thread context otherwise.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, negative errno on failure.
 | |
|  */
 | |
| int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
 | |
| {
 | |
| 	if (ata_is_host_link(link)) {
 | |
| 		int rc;
 | |
| 
 | |
| 		if (sata_scr_valid(link)) {
 | |
| 			rc = link->ap->ops->scr_write(link, reg, val);
 | |
| 			if (rc == 0)
 | |
| 				rc = link->ap->ops->scr_read(link, reg, &val);
 | |
| 			return rc;
 | |
| 		}
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return sata_pmp_scr_write(link, reg, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_phys_link_online - test whether the given link is online
 | |
|  *	@link: ATA link to test
 | |
|  *
 | |
|  *	Test whether @link is online.  Note that this function returns
 | |
|  *	0 if online status of @link cannot be obtained, so
 | |
|  *	ata_link_online(link) != !ata_link_offline(link).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	True if the port online status is available and online.
 | |
|  */
 | |
| bool ata_phys_link_online(struct ata_link *link)
 | |
| {
 | |
| 	u32 sstatus;
 | |
| 
 | |
| 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
 | |
| 	    ata_sstatus_online(sstatus))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_phys_link_offline - test whether the given link is offline
 | |
|  *	@link: ATA link to test
 | |
|  *
 | |
|  *	Test whether @link is offline.  Note that this function
 | |
|  *	returns 0 if offline status of @link cannot be obtained, so
 | |
|  *	ata_link_online(link) != !ata_link_offline(link).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	True if the port offline status is available and offline.
 | |
|  */
 | |
| bool ata_phys_link_offline(struct ata_link *link)
 | |
| {
 | |
| 	u32 sstatus;
 | |
| 
 | |
| 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
 | |
| 	    !ata_sstatus_online(sstatus))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_link_online - test whether the given link is online
 | |
|  *	@link: ATA link to test
 | |
|  *
 | |
|  *	Test whether @link is online.  This is identical to
 | |
|  *	ata_phys_link_online() when there's no slave link.  When
 | |
|  *	there's a slave link, this function should only be called on
 | |
|  *	the master link and will return true if any of M/S links is
 | |
|  *	online.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	True if the port online status is available and online.
 | |
|  */
 | |
| bool ata_link_online(struct ata_link *link)
 | |
| {
 | |
| 	struct ata_link *slave = link->ap->slave_link;
 | |
| 
 | |
| 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
 | |
| 
 | |
| 	return ata_phys_link_online(link) ||
 | |
| 		(slave && ata_phys_link_online(slave));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_link_offline - test whether the given link is offline
 | |
|  *	@link: ATA link to test
 | |
|  *
 | |
|  *	Test whether @link is offline.  This is identical to
 | |
|  *	ata_phys_link_offline() when there's no slave link.  When
 | |
|  *	there's a slave link, this function should only be called on
 | |
|  *	the master link and will return true if both M/S links are
 | |
|  *	offline.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	True if the port offline status is available and offline.
 | |
|  */
 | |
| bool ata_link_offline(struct ata_link *link)
 | |
| {
 | |
| 	struct ata_link *slave = link->ap->slave_link;
 | |
| 
 | |
| 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
 | |
| 
 | |
| 	return ata_phys_link_offline(link) &&
 | |
| 		(!slave || ata_phys_link_offline(slave));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
 | |
| 			       unsigned int action, unsigned int ehi_flags,
 | |
| 			       int wait)
 | |
| {
 | |
| 	struct ata_link *link;
 | |
| 	unsigned long flags;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Previous resume operation might still be in
 | |
| 	 * progress.  Wait for PM_PENDING to clear.
 | |
| 	 */
 | |
| 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
 | |
| 		ata_port_wait_eh(ap);
 | |
| 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
 | |
| 	}
 | |
| 
 | |
| 	/* request PM ops to EH */
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 	ap->pm_mesg = mesg;
 | |
| 	if (wait) {
 | |
| 		rc = 0;
 | |
| 		ap->pm_result = &rc;
 | |
| 	}
 | |
| 
 | |
| 	ap->pflags |= ATA_PFLAG_PM_PENDING;
 | |
| 	ata_for_each_link(link, ap, HOST_FIRST) {
 | |
| 		link->eh_info.action |= action;
 | |
| 		link->eh_info.flags |= ehi_flags;
 | |
| 	}
 | |
| 
 | |
| 	ata_port_schedule_eh(ap);
 | |
| 
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	/* wait and check result */
 | |
| 	if (wait) {
 | |
| 		ata_port_wait_eh(ap);
 | |
| 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #define to_ata_port(d) container_of(d, struct ata_port, tdev)
 | |
| 
 | |
| static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
 | |
| {
 | |
| 	struct ata_port *ap = to_ata_port(dev);
 | |
| 	unsigned int ehi_flags = ATA_EHI_QUIET;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * On some hardware, device fails to respond after spun down
 | |
| 	 * for suspend.  As the device won't be used before being
 | |
| 	 * resumed, we don't need to touch the device.  Ask EH to skip
 | |
| 	 * the usual stuff and proceed directly to suspend.
 | |
| 	 *
 | |
| 	 * http://thread.gmane.org/gmane.linux.ide/46764
 | |
| 	 */
 | |
| 	if (mesg.event == PM_EVENT_SUSPEND)
 | |
| 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
 | |
| 
 | |
| 	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ata_port_suspend(struct device *dev)
 | |
| {
 | |
| 	if (pm_runtime_suspended(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
 | |
| }
 | |
| 
 | |
| static int ata_port_do_freeze(struct device *dev)
 | |
| {
 | |
| 	if (pm_runtime_suspended(dev))
 | |
| 		pm_runtime_resume(dev);
 | |
| 
 | |
| 	return ata_port_suspend_common(dev, PMSG_FREEZE);
 | |
| }
 | |
| 
 | |
| static int ata_port_poweroff(struct device *dev)
 | |
| {
 | |
| 	if (pm_runtime_suspended(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
 | |
| }
 | |
| 
 | |
| static int ata_port_resume_common(struct device *dev)
 | |
| {
 | |
| 	struct ata_port *ap = to_ata_port(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
 | |
| 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ata_port_resume(struct device *dev)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ata_port_resume_common(dev);
 | |
| 	if (!rc) {
 | |
| 		pm_runtime_disable(dev);
 | |
| 		pm_runtime_set_active(dev);
 | |
| 		pm_runtime_enable(dev);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ata_port_runtime_idle(struct device *dev)
 | |
| {
 | |
| 	return pm_runtime_suspend(dev);
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops ata_port_pm_ops = {
 | |
| 	.suspend = ata_port_suspend,
 | |
| 	.resume = ata_port_resume,
 | |
| 	.freeze = ata_port_do_freeze,
 | |
| 	.thaw = ata_port_resume,
 | |
| 	.poweroff = ata_port_poweroff,
 | |
| 	.restore = ata_port_resume,
 | |
| 
 | |
| 	.runtime_suspend = ata_port_suspend,
 | |
| 	.runtime_resume = ata_port_resume_common,
 | |
| 	.runtime_idle = ata_port_runtime_idle,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ata_host_suspend - suspend host
 | |
|  *	@host: host to suspend
 | |
|  *	@mesg: PM message
 | |
|  *
 | |
|  *	Suspend @host.  Actual operation is performed by port suspend.
 | |
|  */
 | |
| int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
 | |
| {
 | |
| 	host->dev->power.power_state = mesg;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_resume - resume host
 | |
|  *	@host: host to resume
 | |
|  *
 | |
|  *	Resume @host.  Actual operation is performed by port resume.
 | |
|  */
 | |
| void ata_host_resume(struct ata_host *host)
 | |
| {
 | |
| 	host->dev->power.power_state = PMSG_ON;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct device_type ata_port_type = {
 | |
| 	.name = "ata_port",
 | |
| #ifdef CONFIG_PM
 | |
| 	.pm = &ata_port_pm_ops,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_init - Initialize an ata_device structure
 | |
|  *	@dev: Device structure to initialize
 | |
|  *
 | |
|  *	Initialize @dev in preparation for probing.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_dev_init(struct ata_device *dev)
 | |
| {
 | |
| 	struct ata_link *link = ata_dev_phys_link(dev);
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* SATA spd limit is bound to the attached device, reset together */
 | |
| 	link->sata_spd_limit = link->hw_sata_spd_limit;
 | |
| 	link->sata_spd = 0;
 | |
| 
 | |
| 	/* High bits of dev->flags are used to record warm plug
 | |
| 	 * requests which occur asynchronously.  Synchronize using
 | |
| 	 * host lock.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
 | |
| 	dev->horkage = 0;
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
 | |
| 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
 | |
| 	dev->pio_mask = UINT_MAX;
 | |
| 	dev->mwdma_mask = UINT_MAX;
 | |
| 	dev->udma_mask = UINT_MAX;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_link_init - Initialize an ata_link structure
 | |
|  *	@ap: ATA port link is attached to
 | |
|  *	@link: Link structure to initialize
 | |
|  *	@pmp: Port multiplier port number
 | |
|  *
 | |
|  *	Initialize @link.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* clear everything except for devices */
 | |
| 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
 | |
| 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
 | |
| 
 | |
| 	link->ap = ap;
 | |
| 	link->pmp = pmp;
 | |
| 	link->active_tag = ATA_TAG_POISON;
 | |
| 	link->hw_sata_spd_limit = UINT_MAX;
 | |
| 
 | |
| 	/* can't use iterator, ap isn't initialized yet */
 | |
| 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 | |
| 		struct ata_device *dev = &link->device[i];
 | |
| 
 | |
| 		dev->link = link;
 | |
| 		dev->devno = dev - link->device;
 | |
| #ifdef CONFIG_ATA_ACPI
 | |
| 		dev->gtf_filter = ata_acpi_gtf_filter;
 | |
| #endif
 | |
| 		ata_dev_init(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sata_link_init_spd - Initialize link->sata_spd_limit
 | |
|  *	@link: Link to configure sata_spd_limit for
 | |
|  *
 | |
|  *	Initialize @link->[hw_]sata_spd_limit to the currently
 | |
|  *	configured value.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno on failure.
 | |
|  */
 | |
| int sata_link_init_spd(struct ata_link *link)
 | |
| {
 | |
| 	u8 spd;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	spd = (link->saved_scontrol >> 4) & 0xf;
 | |
| 	if (spd)
 | |
| 		link->hw_sata_spd_limit &= (1 << spd) - 1;
 | |
| 
 | |
| 	ata_force_link_limits(link);
 | |
| 
 | |
| 	link->sata_spd_limit = link->hw_sata_spd_limit;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_port_alloc - allocate and initialize basic ATA port resources
 | |
|  *	@host: ATA host this allocated port belongs to
 | |
|  *
 | |
|  *	Allocate and initialize basic ATA port resources.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Allocate ATA port on success, NULL on failure.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  */
 | |
| struct ata_port *ata_port_alloc(struct ata_host *host)
 | |
| {
 | |
| 	struct ata_port *ap;
 | |
| 
 | |
| 	DPRINTK("ENTER\n");
 | |
| 
 | |
| 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
 | |
| 	if (!ap)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
 | |
| 	ap->lock = &host->lock;
 | |
| 	ap->print_id = -1;
 | |
| 	ap->host = host;
 | |
| 	ap->dev = host->dev;
 | |
| 
 | |
| #if defined(ATA_VERBOSE_DEBUG)
 | |
| 	/* turn on all debugging levels */
 | |
| 	ap->msg_enable = 0x00FF;
 | |
| #elif defined(ATA_DEBUG)
 | |
| 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
 | |
| #else
 | |
| 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
 | |
| #endif
 | |
| 
 | |
| 	mutex_init(&ap->scsi_scan_mutex);
 | |
| 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
 | |
| 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
 | |
| 	INIT_LIST_HEAD(&ap->eh_done_q);
 | |
| 	init_waitqueue_head(&ap->eh_wait_q);
 | |
| 	init_completion(&ap->park_req_pending);
 | |
| 	init_timer_deferrable(&ap->fastdrain_timer);
 | |
| 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
 | |
| 	ap->fastdrain_timer.data = (unsigned long)ap;
 | |
| 
 | |
| 	ap->cbl = ATA_CBL_NONE;
 | |
| 
 | |
| 	ata_link_init(ap, &ap->link, 0);
 | |
| 
 | |
| #ifdef ATA_IRQ_TRAP
 | |
| 	ap->stats.unhandled_irq = 1;
 | |
| 	ap->stats.idle_irq = 1;
 | |
| #endif
 | |
| 	ata_sff_port_init(ap);
 | |
| 
 | |
| 	return ap;
 | |
| }
 | |
| 
 | |
| static void ata_host_release(struct device *gendev, void *res)
 | |
| {
 | |
| 	struct ata_host *host = dev_get_drvdata(gendev);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		if (!ap)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ap->scsi_host)
 | |
| 			scsi_host_put(ap->scsi_host);
 | |
| 
 | |
| 		kfree(ap->pmp_link);
 | |
| 		kfree(ap->slave_link);
 | |
| 		kfree(ap);
 | |
| 		host->ports[i] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	dev_set_drvdata(gendev, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_alloc - allocate and init basic ATA host resources
 | |
|  *	@dev: generic device this host is associated with
 | |
|  *	@max_ports: maximum number of ATA ports associated with this host
 | |
|  *
 | |
|  *	Allocate and initialize basic ATA host resources.  LLD calls
 | |
|  *	this function to allocate a host, initializes it fully and
 | |
|  *	attaches it using ata_host_register().
 | |
|  *
 | |
|  *	@max_ports ports are allocated and host->n_ports is
 | |
|  *	initialized to @max_ports.  The caller is allowed to decrease
 | |
|  *	host->n_ports before calling ata_host_register().  The unused
 | |
|  *	ports will be automatically freed on registration.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Allocate ATA host on success, NULL on failure.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  */
 | |
| struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
 | |
| {
 | |
| 	struct ata_host *host;
 | |
| 	size_t sz;
 | |
| 	int i;
 | |
| 
 | |
| 	DPRINTK("ENTER\n");
 | |
| 
 | |
| 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* alloc a container for our list of ATA ports (buses) */
 | |
| 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
 | |
| 	/* alloc a container for our list of ATA ports (buses) */
 | |
| 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
 | |
| 	if (!host)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	devres_add(dev, host);
 | |
| 	dev_set_drvdata(dev, host);
 | |
| 
 | |
| 	spin_lock_init(&host->lock);
 | |
| 	mutex_init(&host->eh_mutex);
 | |
| 	host->dev = dev;
 | |
| 	host->n_ports = max_ports;
 | |
| 
 | |
| 	/* allocate ports bound to this host */
 | |
| 	for (i = 0; i < max_ports; i++) {
 | |
| 		struct ata_port *ap;
 | |
| 
 | |
| 		ap = ata_port_alloc(host);
 | |
| 		if (!ap)
 | |
| 			goto err_out;
 | |
| 
 | |
| 		ap->port_no = i;
 | |
| 		host->ports[i] = ap;
 | |
| 	}
 | |
| 
 | |
| 	devres_remove_group(dev, NULL);
 | |
| 	return host;
 | |
| 
 | |
|  err_out:
 | |
| 	devres_release_group(dev, NULL);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_alloc_pinfo - alloc host and init with port_info array
 | |
|  *	@dev: generic device this host is associated with
 | |
|  *	@ppi: array of ATA port_info to initialize host with
 | |
|  *	@n_ports: number of ATA ports attached to this host
 | |
|  *
 | |
|  *	Allocate ATA host and initialize with info from @ppi.  If NULL
 | |
|  *	terminated, @ppi may contain fewer entries than @n_ports.  The
 | |
|  *	last entry will be used for the remaining ports.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Allocate ATA host on success, NULL on failure.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  */
 | |
| struct ata_host *ata_host_alloc_pinfo(struct device *dev,
 | |
| 				      const struct ata_port_info * const * ppi,
 | |
| 				      int n_ports)
 | |
| {
 | |
| 	const struct ata_port_info *pi;
 | |
| 	struct ata_host *host;
 | |
| 	int i, j;
 | |
| 
 | |
| 	host = ata_host_alloc(dev, n_ports);
 | |
| 	if (!host)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		if (ppi[j])
 | |
| 			pi = ppi[j++];
 | |
| 
 | |
| 		ap->pio_mask = pi->pio_mask;
 | |
| 		ap->mwdma_mask = pi->mwdma_mask;
 | |
| 		ap->udma_mask = pi->udma_mask;
 | |
| 		ap->flags |= pi->flags;
 | |
| 		ap->link.flags |= pi->link_flags;
 | |
| 		ap->ops = pi->port_ops;
 | |
| 
 | |
| 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
 | |
| 			host->ops = pi->port_ops;
 | |
| 	}
 | |
| 
 | |
| 	return host;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_slave_link_init - initialize slave link
 | |
|  *	@ap: port to initialize slave link for
 | |
|  *
 | |
|  *	Create and initialize slave link for @ap.  This enables slave
 | |
|  *	link handling on the port.
 | |
|  *
 | |
|  *	In libata, a port contains links and a link contains devices.
 | |
|  *	There is single host link but if a PMP is attached to it,
 | |
|  *	there can be multiple fan-out links.  On SATA, there's usually
 | |
|  *	a single device connected to a link but PATA and SATA
 | |
|  *	controllers emulating TF based interface can have two - master
 | |
|  *	and slave.
 | |
|  *
 | |
|  *	However, there are a few controllers which don't fit into this
 | |
|  *	abstraction too well - SATA controllers which emulate TF
 | |
|  *	interface with both master and slave devices but also have
 | |
|  *	separate SCR register sets for each device.  These controllers
 | |
|  *	need separate links for physical link handling
 | |
|  *	(e.g. onlineness, link speed) but should be treated like a
 | |
|  *	traditional M/S controller for everything else (e.g. command
 | |
|  *	issue, softreset).
 | |
|  *
 | |
|  *	slave_link is libata's way of handling this class of
 | |
|  *	controllers without impacting core layer too much.  For
 | |
|  *	anything other than physical link handling, the default host
 | |
|  *	link is used for both master and slave.  For physical link
 | |
|  *	handling, separate @ap->slave_link is used.  All dirty details
 | |
|  *	are implemented inside libata core layer.  From LLD's POV, the
 | |
|  *	only difference is that prereset, hardreset and postreset are
 | |
|  *	called once more for the slave link, so the reset sequence
 | |
|  *	looks like the following.
 | |
|  *
 | |
|  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
 | |
|  *	softreset(M) -> postreset(M) -> postreset(S)
 | |
|  *
 | |
|  *	Note that softreset is called only for the master.  Softreset
 | |
|  *	resets both M/S by definition, so SRST on master should handle
 | |
|  *	both (the standard method will work just fine).
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Should be called before host is registered.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno on failure.
 | |
|  */
 | |
| int ata_slave_link_init(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_link *link;
 | |
| 
 | |
| 	WARN_ON(ap->slave_link);
 | |
| 	WARN_ON(ap->flags & ATA_FLAG_PMP);
 | |
| 
 | |
| 	link = kzalloc(sizeof(*link), GFP_KERNEL);
 | |
| 	if (!link)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ata_link_init(ap, link, 1);
 | |
| 	ap->slave_link = link;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ata_host_stop(struct device *gendev, void *res)
 | |
| {
 | |
| 	struct ata_host *host = dev_get_drvdata(gendev);
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		if (ap->ops->port_stop)
 | |
| 			ap->ops->port_stop(ap);
 | |
| 	}
 | |
| 
 | |
| 	if (host->ops->host_stop)
 | |
| 		host->ops->host_stop(host);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_finalize_port_ops - finalize ata_port_operations
 | |
|  *	@ops: ata_port_operations to finalize
 | |
|  *
 | |
|  *	An ata_port_operations can inherit from another ops and that
 | |
|  *	ops can again inherit from another.  This can go on as many
 | |
|  *	times as necessary as long as there is no loop in the
 | |
|  *	inheritance chain.
 | |
|  *
 | |
|  *	Ops tables are finalized when the host is started.  NULL or
 | |
|  *	unspecified entries are inherited from the closet ancestor
 | |
|  *	which has the method and the entry is populated with it.
 | |
|  *	After finalization, the ops table directly points to all the
 | |
|  *	methods and ->inherits is no longer necessary and cleared.
 | |
|  *
 | |
|  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| static void ata_finalize_port_ops(struct ata_port_operations *ops)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(lock);
 | |
| 	const struct ata_port_operations *cur;
 | |
| 	void **begin = (void **)ops;
 | |
| 	void **end = (void **)&ops->inherits;
 | |
| 	void **pp;
 | |
| 
 | |
| 	if (!ops || !ops->inherits)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&lock);
 | |
| 
 | |
| 	for (cur = ops->inherits; cur; cur = cur->inherits) {
 | |
| 		void **inherit = (void **)cur;
 | |
| 
 | |
| 		for (pp = begin; pp < end; pp++, inherit++)
 | |
| 			if (!*pp)
 | |
| 				*pp = *inherit;
 | |
| 	}
 | |
| 
 | |
| 	for (pp = begin; pp < end; pp++)
 | |
| 		if (IS_ERR(*pp))
 | |
| 			*pp = NULL;
 | |
| 
 | |
| 	ops->inherits = NULL;
 | |
| 
 | |
| 	spin_unlock(&lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_start - start and freeze ports of an ATA host
 | |
|  *	@host: ATA host to start ports for
 | |
|  *
 | |
|  *	Start and then freeze ports of @host.  Started status is
 | |
|  *	recorded in host->flags, so this function can be called
 | |
|  *	multiple times.  Ports are guaranteed to get started only
 | |
|  *	once.  If host->ops isn't initialized yet, its set to the
 | |
|  *	first non-dummy port ops.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if all ports are started successfully, -errno otherwise.
 | |
|  */
 | |
| int ata_host_start(struct ata_host *host)
 | |
| {
 | |
| 	int have_stop = 0;
 | |
| 	void *start_dr = NULL;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	if (host->flags & ATA_HOST_STARTED)
 | |
| 		return 0;
 | |
| 
 | |
| 	ata_finalize_port_ops(host->ops);
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		ata_finalize_port_ops(ap->ops);
 | |
| 
 | |
| 		if (!host->ops && !ata_port_is_dummy(ap))
 | |
| 			host->ops = ap->ops;
 | |
| 
 | |
| 		if (ap->ops->port_stop)
 | |
| 			have_stop = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (host->ops->host_stop)
 | |
| 		have_stop = 1;
 | |
| 
 | |
| 	if (have_stop) {
 | |
| 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
 | |
| 		if (!start_dr)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		if (ap->ops->port_start) {
 | |
| 			rc = ap->ops->port_start(ap);
 | |
| 			if (rc) {
 | |
| 				if (rc != -ENODEV)
 | |
| 					dev_err(host->dev,
 | |
| 						"failed to start port %d (errno=%d)\n",
 | |
| 						i, rc);
 | |
| 				goto err_out;
 | |
| 			}
 | |
| 		}
 | |
| 		ata_eh_freeze_port(ap);
 | |
| 	}
 | |
| 
 | |
| 	if (start_dr)
 | |
| 		devres_add(host->dev, start_dr);
 | |
| 	host->flags |= ATA_HOST_STARTED;
 | |
| 	return 0;
 | |
| 
 | |
|  err_out:
 | |
| 	while (--i >= 0) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 		if (ap->ops->port_stop)
 | |
| 			ap->ops->port_stop(ap);
 | |
| 	}
 | |
| 	devres_free(start_dr);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sas_host_init - Initialize a host struct
 | |
|  *	@host:	host to initialize
 | |
|  *	@dev:	device host is attached to
 | |
|  *	@flags:	host flags
 | |
|  *	@ops:	port_ops
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	PCI/etc. bus probe sem.
 | |
|  *
 | |
|  */
 | |
| /* KILLME - the only user left is ipr */
 | |
| void ata_host_init(struct ata_host *host, struct device *dev,
 | |
| 		   unsigned long flags, struct ata_port_operations *ops)
 | |
| {
 | |
| 	spin_lock_init(&host->lock);
 | |
| 	mutex_init(&host->eh_mutex);
 | |
| 	host->dev = dev;
 | |
| 	host->flags = flags;
 | |
| 	host->ops = ops;
 | |
| }
 | |
| 
 | |
| int ata_port_probe(struct ata_port *ap)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* probe */
 | |
| 	if (ap->ops->error_handler) {
 | |
| 		struct ata_eh_info *ehi = &ap->link.eh_info;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* kick EH for boot probing */
 | |
| 		spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 		ehi->probe_mask |= ATA_ALL_DEVICES;
 | |
| 		ehi->action |= ATA_EH_RESET;
 | |
| 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
 | |
| 
 | |
| 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
 | |
| 		ap->pflags |= ATA_PFLAG_LOADING;
 | |
| 		ata_port_schedule_eh(ap);
 | |
| 
 | |
| 		spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 		/* wait for EH to finish */
 | |
| 		ata_port_wait_eh(ap);
 | |
| 	} else {
 | |
| 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
 | |
| 		rc = ata_bus_probe(ap);
 | |
| 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void async_port_probe(void *data, async_cookie_t cookie)
 | |
| {
 | |
| 	struct ata_port *ap = data;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're not allowed to scan this host in parallel,
 | |
| 	 * we need to wait until all previous scans have completed
 | |
| 	 * before going further.
 | |
| 	 * Jeff Garzik says this is only within a controller, so we
 | |
| 	 * don't need to wait for port 0, only for later ports.
 | |
| 	 */
 | |
| 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
 | |
| 		async_synchronize_cookie(cookie);
 | |
| 
 | |
| 	(void)ata_port_probe(ap);
 | |
| 
 | |
| 	/* in order to keep device order, we need to synchronize at this point */
 | |
| 	async_synchronize_cookie(cookie);
 | |
| 
 | |
| 	ata_scsi_scan_host(ap, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_register - register initialized ATA host
 | |
|  *	@host: ATA host to register
 | |
|  *	@sht: template for SCSI host
 | |
|  *
 | |
|  *	Register initialized ATA host.  @host is allocated using
 | |
|  *	ata_host_alloc() and fully initialized by LLD.  This function
 | |
|  *	starts ports, registers @host with ATA and SCSI layers and
 | |
|  *	probe registered devices.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
 | |
| {
 | |
| 	int i, rc;
 | |
| 
 | |
| 	/* host must have been started */
 | |
| 	if (!(host->flags & ATA_HOST_STARTED)) {
 | |
| 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Blow away unused ports.  This happens when LLD can't
 | |
| 	 * determine the exact number of ports to allocate at
 | |
| 	 * allocation time.
 | |
| 	 */
 | |
| 	for (i = host->n_ports; host->ports[i]; i++)
 | |
| 		kfree(host->ports[i]);
 | |
| 
 | |
| 	/* give ports names and add SCSI hosts */
 | |
| 	for (i = 0; i < host->n_ports; i++)
 | |
| 		host->ports[i]->print_id = ata_print_id++;
 | |
| 
 | |
| 
 | |
| 	/* Create associated sysfs transport objects  */
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		rc = ata_tport_add(host->dev,host->ports[i]);
 | |
| 		if (rc) {
 | |
| 			goto err_tadd;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = ata_scsi_add_hosts(host, sht);
 | |
| 	if (rc)
 | |
| 		goto err_tadd;
 | |
| 
 | |
| 	/* associate with ACPI nodes */
 | |
| 	ata_acpi_associate(host);
 | |
| 
 | |
| 	/* set cable, sata_spd_limit and report */
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 		unsigned long xfer_mask;
 | |
| 
 | |
| 		/* set SATA cable type if still unset */
 | |
| 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
 | |
| 			ap->cbl = ATA_CBL_SATA;
 | |
| 
 | |
| 		/* init sata_spd_limit to the current value */
 | |
| 		sata_link_init_spd(&ap->link);
 | |
| 		if (ap->slave_link)
 | |
| 			sata_link_init_spd(ap->slave_link);
 | |
| 
 | |
| 		/* print per-port info to dmesg */
 | |
| 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
 | |
| 					      ap->udma_mask);
 | |
| 
 | |
| 		if (!ata_port_is_dummy(ap)) {
 | |
| 			ata_port_info(ap, "%cATA max %s %s\n",
 | |
| 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
 | |
| 				      ata_mode_string(xfer_mask),
 | |
| 				      ap->link.eh_info.desc);
 | |
| 			ata_ehi_clear_desc(&ap->link.eh_info);
 | |
| 		} else
 | |
| 			ata_port_info(ap, "DUMMY\n");
 | |
| 	}
 | |
| 
 | |
| 	/* perform each probe asynchronously */
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 		async_schedule(async_port_probe, ap);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_tadd:
 | |
| 	while (--i >= 0) {
 | |
| 		ata_tport_delete(host->ports[i]);
 | |
| 	}
 | |
| 	return rc;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_activate - start host, request IRQ and register it
 | |
|  *	@host: target ATA host
 | |
|  *	@irq: IRQ to request
 | |
|  *	@irq_handler: irq_handler used when requesting IRQ
 | |
|  *	@irq_flags: irq_flags used when requesting IRQ
 | |
|  *	@sht: scsi_host_template to use when registering the host
 | |
|  *
 | |
|  *	After allocating an ATA host and initializing it, most libata
 | |
|  *	LLDs perform three steps to activate the host - start host,
 | |
|  *	request IRQ and register it.  This helper takes necessasry
 | |
|  *	arguments and performs the three steps in one go.
 | |
|  *
 | |
|  *	An invalid IRQ skips the IRQ registration and expects the host to
 | |
|  *	have set polling mode on the port. In this case, @irq_handler
 | |
|  *	should be NULL.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_host_activate(struct ata_host *host, int irq,
 | |
| 		      irq_handler_t irq_handler, unsigned long irq_flags,
 | |
| 		      struct scsi_host_template *sht)
 | |
| {
 | |
| 	int i, rc;
 | |
| 
 | |
| 	rc = ata_host_start(host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Special case for polling mode */
 | |
| 	if (!irq) {
 | |
| 		WARN_ON(irq_handler);
 | |
| 		return ata_host_register(host, sht);
 | |
| 	}
 | |
| 
 | |
| 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
 | |
| 			      dev_driver_string(host->dev), host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++)
 | |
| 		ata_port_desc(host->ports[i], "irq %d", irq);
 | |
| 
 | |
| 	rc = ata_host_register(host, sht);
 | |
| 	/* if failed, just free the IRQ and leave ports alone */
 | |
| 	if (rc)
 | |
| 		devm_free_irq(host->dev, irq, host);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_port_detach - Detach ATA port in prepration of device removal
 | |
|  *	@ap: ATA port to be detached
 | |
|  *
 | |
|  *	Detach all ATA devices and the associated SCSI devices of @ap;
 | |
|  *	then, remove the associated SCSI host.  @ap is guaranteed to
 | |
|  *	be quiescent on return from this function.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  */
 | |
| static void ata_port_detach(struct ata_port *ap)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!ap->ops->error_handler)
 | |
| 		goto skip_eh;
 | |
| 
 | |
| 	/* tell EH we're leaving & flush EH */
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 	ap->pflags |= ATA_PFLAG_UNLOADING;
 | |
| 	ata_port_schedule_eh(ap);
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	/* wait till EH commits suicide */
 | |
| 	ata_port_wait_eh(ap);
 | |
| 
 | |
| 	/* it better be dead now */
 | |
| 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
 | |
| 
 | |
| 	cancel_delayed_work_sync(&ap->hotplug_task);
 | |
| 
 | |
|  skip_eh:
 | |
| 	if (ap->pmp_link) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
 | |
| 			ata_tlink_delete(&ap->pmp_link[i]);
 | |
| 	}
 | |
| 	ata_tport_delete(ap);
 | |
| 
 | |
| 	/* remove the associated SCSI host */
 | |
| 	scsi_remove_host(ap->scsi_host);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_host_detach - Detach all ports of an ATA host
 | |
|  *	@host: Host to detach
 | |
|  *
 | |
|  *	Detach all ports of @host.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  */
 | |
| void ata_host_detach(struct ata_host *host)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++)
 | |
| 		ata_port_detach(host->ports[i]);
 | |
| 
 | |
| 	/* the host is dead now, dissociate ACPI */
 | |
| 	ata_acpi_dissociate(host);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_remove_one - PCI layer callback for device removal
 | |
|  *	@pdev: PCI device that was removed
 | |
|  *
 | |
|  *	PCI layer indicates to libata via this hook that hot-unplug or
 | |
|  *	module unload event has occurred.  Detach all ports.  Resource
 | |
|  *	release is handled via devres.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from PCI layer (may sleep).
 | |
|  */
 | |
| void ata_pci_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct ata_host *host = dev_get_drvdata(dev);
 | |
| 
 | |
| 	ata_host_detach(host);
 | |
| }
 | |
| 
 | |
| /* move to PCI subsystem */
 | |
| int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
 | |
| {
 | |
| 	unsigned long tmp = 0;
 | |
| 
 | |
| 	switch (bits->width) {
 | |
| 	case 1: {
 | |
| 		u8 tmp8 = 0;
 | |
| 		pci_read_config_byte(pdev, bits->reg, &tmp8);
 | |
| 		tmp = tmp8;
 | |
| 		break;
 | |
| 	}
 | |
| 	case 2: {
 | |
| 		u16 tmp16 = 0;
 | |
| 		pci_read_config_word(pdev, bits->reg, &tmp16);
 | |
| 		tmp = tmp16;
 | |
| 		break;
 | |
| 	}
 | |
| 	case 4: {
 | |
| 		u32 tmp32 = 0;
 | |
| 		pci_read_config_dword(pdev, bits->reg, &tmp32);
 | |
| 		tmp = tmp32;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tmp &= bits->mask;
 | |
| 
 | |
| 	return (tmp == bits->val) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
 | |
| {
 | |
| 	pci_save_state(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	if (mesg.event & PM_EVENT_SLEEP)
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| }
 | |
| 
 | |
| int ata_pci_device_do_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	pci_set_power_state(pdev, PCI_D0);
 | |
| 	pci_restore_state(pdev);
 | |
| 
 | |
| 	rc = pcim_enable_device(pdev);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"failed to enable device after resume (%d)\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
 | |
| {
 | |
| 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	rc = ata_host_suspend(host, mesg);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	ata_pci_device_do_suspend(pdev, mesg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ata_pci_device_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ata_pci_device_do_resume(pdev);
 | |
| 	if (rc == 0)
 | |
| 		ata_host_resume(host);
 | |
| 	return rc;
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| static int __init ata_parse_force_one(char **cur,
 | |
| 				      struct ata_force_ent *force_ent,
 | |
| 				      const char **reason)
 | |
| {
 | |
| 	/* FIXME: Currently, there's no way to tag init const data and
 | |
| 	 * using __initdata causes build failure on some versions of
 | |
| 	 * gcc.  Once __initdataconst is implemented, add const to the
 | |
| 	 * following structure.
 | |
| 	 */
 | |
| 	static struct ata_force_param force_tbl[] __initdata = {
 | |
| 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
 | |
| 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
 | |
| 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
 | |
| 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
 | |
| 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
 | |
| 		{ "sata",	.cbl		= ATA_CBL_SATA },
 | |
| 		{ "1.5Gbps",	.spd_limit	= 1 },
 | |
| 		{ "3.0Gbps",	.spd_limit	= 2 },
 | |
| 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
 | |
| 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
 | |
| 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
 | |
| 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
 | |
| 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
 | |
| 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
 | |
| 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
 | |
| 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
 | |
| 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
 | |
| 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
 | |
| 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
 | |
| 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
 | |
| 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
 | |
| 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
 | |
| 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
 | |
| 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
 | |
| 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
 | |
| 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
 | |
| 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
 | |
| 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
 | |
| 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
 | |
| 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
 | |
| 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
 | |
| 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
 | |
| 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
 | |
| 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
 | |
| 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
 | |
| 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
 | |
| 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
 | |
| 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
 | |
| 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
 | |
| 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
 | |
| 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
 | |
| 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
 | |
| 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
 | |
| 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
 | |
| 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
 | |
| 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
 | |
| 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
 | |
| 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
 | |
| 	};
 | |
| 	char *start = *cur, *p = *cur;
 | |
| 	char *id, *val, *endp;
 | |
| 	const struct ata_force_param *match_fp = NULL;
 | |
| 	int nr_matches = 0, i;
 | |
| 
 | |
| 	/* find where this param ends and update *cur */
 | |
| 	while (*p != '\0' && *p != ',')
 | |
| 		p++;
 | |
| 
 | |
| 	if (*p == '\0')
 | |
| 		*cur = p;
 | |
| 	else
 | |
| 		*cur = p + 1;
 | |
| 
 | |
| 	*p = '\0';
 | |
| 
 | |
| 	/* parse */
 | |
| 	p = strchr(start, ':');
 | |
| 	if (!p) {
 | |
| 		val = strstrip(start);
 | |
| 		goto parse_val;
 | |
| 	}
 | |
| 	*p = '\0';
 | |
| 
 | |
| 	id = strstrip(start);
 | |
| 	val = strstrip(p + 1);
 | |
| 
 | |
| 	/* parse id */
 | |
| 	p = strchr(id, '.');
 | |
| 	if (p) {
 | |
| 		*p++ = '\0';
 | |
| 		force_ent->device = simple_strtoul(p, &endp, 10);
 | |
| 		if (p == endp || *endp != '\0') {
 | |
| 			*reason = "invalid device";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	force_ent->port = simple_strtoul(id, &endp, 10);
 | |
| 	if (p == endp || *endp != '\0') {
 | |
| 		*reason = "invalid port/link";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
|  parse_val:
 | |
| 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
 | |
| 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
 | |
| 		const struct ata_force_param *fp = &force_tbl[i];
 | |
| 
 | |
| 		if (strncasecmp(val, fp->name, strlen(val)))
 | |
| 			continue;
 | |
| 
 | |
| 		nr_matches++;
 | |
| 		match_fp = fp;
 | |
| 
 | |
| 		if (strcasecmp(val, fp->name) == 0) {
 | |
| 			nr_matches = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_matches) {
 | |
| 		*reason = "unknown value";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (nr_matches > 1) {
 | |
| 		*reason = "ambigious value";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	force_ent->param = *match_fp;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init ata_parse_force_param(void)
 | |
| {
 | |
| 	int idx = 0, size = 1;
 | |
| 	int last_port = -1, last_device = -1;
 | |
| 	char *p, *cur, *next;
 | |
| 
 | |
| 	/* calculate maximum number of params and allocate force_tbl */
 | |
| 	for (p = ata_force_param_buf; *p; p++)
 | |
| 		if (*p == ',')
 | |
| 			size++;
 | |
| 
 | |
| 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
 | |
| 	if (!ata_force_tbl) {
 | |
| 		printk(KERN_WARNING "ata: failed to extend force table, "
 | |
| 		       "libata.force ignored\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* parse and populate the table */
 | |
| 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
 | |
| 		const char *reason = "";
 | |
| 		struct ata_force_ent te = { .port = -1, .device = -1 };
 | |
| 
 | |
| 		next = cur;
 | |
| 		if (ata_parse_force_one(&next, &te, &reason)) {
 | |
| 			printk(KERN_WARNING "ata: failed to parse force "
 | |
| 			       "parameter \"%s\" (%s)\n",
 | |
| 			       cur, reason);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (te.port == -1) {
 | |
| 			te.port = last_port;
 | |
| 			te.device = last_device;
 | |
| 		}
 | |
| 
 | |
| 		ata_force_tbl[idx++] = te;
 | |
| 
 | |
| 		last_port = te.port;
 | |
| 		last_device = te.device;
 | |
| 	}
 | |
| 
 | |
| 	ata_force_tbl_size = idx;
 | |
| }
 | |
| 
 | |
| static int __init ata_init(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	ata_parse_force_param();
 | |
| 
 | |
| 	rc = ata_sff_init();
 | |
| 	if (rc) {
 | |
| 		kfree(ata_force_tbl);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	libata_transport_init();
 | |
| 	ata_scsi_transport_template = ata_attach_transport();
 | |
| 	if (!ata_scsi_transport_template) {
 | |
| 		ata_sff_exit();
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit ata_exit(void)
 | |
| {
 | |
| 	ata_release_transport(ata_scsi_transport_template);
 | |
| 	libata_transport_exit();
 | |
| 	ata_sff_exit();
 | |
| 	kfree(ata_force_tbl);
 | |
| }
 | |
| 
 | |
| subsys_initcall(ata_init);
 | |
| module_exit(ata_exit);
 | |
| 
 | |
| static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
 | |
| 
 | |
| int ata_ratelimit(void)
 | |
| {
 | |
| 	return __ratelimit(&ratelimit);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_msleep - ATA EH owner aware msleep
 | |
|  *	@ap: ATA port to attribute the sleep to
 | |
|  *	@msecs: duration to sleep in milliseconds
 | |
|  *
 | |
|  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
 | |
|  *	ownership is released before going to sleep and reacquired
 | |
|  *	after the sleep is complete.  IOW, other ports sharing the
 | |
|  *	@ap->host will be allowed to own the EH while this task is
 | |
|  *	sleeping.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Might sleep.
 | |
|  */
 | |
| void ata_msleep(struct ata_port *ap, unsigned int msecs)
 | |
| {
 | |
| 	bool owns_eh = ap && ap->host->eh_owner == current;
 | |
| 
 | |
| 	if (owns_eh)
 | |
| 		ata_eh_release(ap);
 | |
| 
 | |
| 	msleep(msecs);
 | |
| 
 | |
| 	if (owns_eh)
 | |
| 		ata_eh_acquire(ap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_wait_register - wait until register value changes
 | |
|  *	@ap: ATA port to wait register for, can be NULL
 | |
|  *	@reg: IO-mapped register
 | |
|  *	@mask: Mask to apply to read register value
 | |
|  *	@val: Wait condition
 | |
|  *	@interval: polling interval in milliseconds
 | |
|  *	@timeout: timeout in milliseconds
 | |
|  *
 | |
|  *	Waiting for some bits of register to change is a common
 | |
|  *	operation for ATA controllers.  This function reads 32bit LE
 | |
|  *	IO-mapped register @reg and tests for the following condition.
 | |
|  *
 | |
|  *	(*@reg & mask) != val
 | |
|  *
 | |
|  *	If the condition is met, it returns; otherwise, the process is
 | |
|  *	repeated after @interval_msec until timeout.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	The final register value.
 | |
|  */
 | |
| u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
 | |
| 		      unsigned long interval, unsigned long timeout)
 | |
| {
 | |
| 	unsigned long deadline;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	tmp = ioread32(reg);
 | |
| 
 | |
| 	/* Calculate timeout _after_ the first read to make sure
 | |
| 	 * preceding writes reach the controller before starting to
 | |
| 	 * eat away the timeout.
 | |
| 	 */
 | |
| 	deadline = ata_deadline(jiffies, timeout);
 | |
| 
 | |
| 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
 | |
| 		ata_msleep(ap, interval);
 | |
| 		tmp = ioread32(reg);
 | |
| 	}
 | |
| 
 | |
| 	return tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dummy port_ops
 | |
|  */
 | |
| static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	return AC_ERR_SYSTEM;
 | |
| }
 | |
| 
 | |
| static void ata_dummy_error_handler(struct ata_port *ap)
 | |
| {
 | |
| 	/* truly dummy */
 | |
| }
 | |
| 
 | |
| struct ata_port_operations ata_dummy_port_ops = {
 | |
| 	.qc_prep		= ata_noop_qc_prep,
 | |
| 	.qc_issue		= ata_dummy_qc_issue,
 | |
| 	.error_handler		= ata_dummy_error_handler,
 | |
| };
 | |
| 
 | |
| const struct ata_port_info ata_dummy_port_info = {
 | |
| 	.port_ops		= &ata_dummy_port_ops,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Utility print functions
 | |
|  */
 | |
| int ata_port_printk(const struct ata_port *ap, const char *level,
 | |
| 		    const char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 	int r;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 
 | |
| 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
 | |
| 
 | |
| 	va_end(args);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(ata_port_printk);
 | |
| 
 | |
| int ata_link_printk(const struct ata_link *link, const char *level,
 | |
| 		    const char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 	int r;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 
 | |
| 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
 | |
| 		r = printk("%sata%u.%02u: %pV",
 | |
| 			   level, link->ap->print_id, link->pmp, &vaf);
 | |
| 	else
 | |
| 		r = printk("%sata%u: %pV",
 | |
| 			   level, link->ap->print_id, &vaf);
 | |
| 
 | |
| 	va_end(args);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(ata_link_printk);
 | |
| 
 | |
| int ata_dev_printk(const struct ata_device *dev, const char *level,
 | |
| 		    const char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 	int r;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 
 | |
| 	r = printk("%sata%u.%02u: %pV",
 | |
| 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
 | |
| 		   &vaf);
 | |
| 
 | |
| 	va_end(args);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(ata_dev_printk);
 | |
| 
 | |
| void ata_print_version(const struct device *dev, const char *version)
 | |
| {
 | |
| 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
 | |
| }
 | |
| EXPORT_SYMBOL(ata_print_version);
 | |
| 
 | |
| /*
 | |
|  * libata is essentially a library of internal helper functions for
 | |
|  * low-level ATA host controller drivers.  As such, the API/ABI is
 | |
|  * likely to change as new drivers are added and updated.
 | |
|  * Do not depend on ABI/API stability.
 | |
|  */
 | |
| EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
 | |
| EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
 | |
| EXPORT_SYMBOL_GPL(sata_deb_timing_long);
 | |
| EXPORT_SYMBOL_GPL(ata_base_port_ops);
 | |
| EXPORT_SYMBOL_GPL(sata_port_ops);
 | |
| EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
 | |
| EXPORT_SYMBOL_GPL(ata_dummy_port_info);
 | |
| EXPORT_SYMBOL_GPL(ata_link_next);
 | |
| EXPORT_SYMBOL_GPL(ata_dev_next);
 | |
| EXPORT_SYMBOL_GPL(ata_std_bios_param);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
 | |
| EXPORT_SYMBOL_GPL(ata_host_init);
 | |
| EXPORT_SYMBOL_GPL(ata_host_alloc);
 | |
| EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
 | |
| EXPORT_SYMBOL_GPL(ata_slave_link_init);
 | |
| EXPORT_SYMBOL_GPL(ata_host_start);
 | |
| EXPORT_SYMBOL_GPL(ata_host_register);
 | |
| EXPORT_SYMBOL_GPL(ata_host_activate);
 | |
| EXPORT_SYMBOL_GPL(ata_host_detach);
 | |
| EXPORT_SYMBOL_GPL(ata_sg_init);
 | |
| EXPORT_SYMBOL_GPL(ata_qc_complete);
 | |
| EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
 | |
| EXPORT_SYMBOL_GPL(atapi_cmd_type);
 | |
| EXPORT_SYMBOL_GPL(ata_tf_to_fis);
 | |
| EXPORT_SYMBOL_GPL(ata_tf_from_fis);
 | |
| EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 | |
| EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
 | |
| EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 | |
| EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 | |
| EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 | |
| EXPORT_SYMBOL_GPL(ata_mode_string);
 | |
| EXPORT_SYMBOL_GPL(ata_id_xfermask);
 | |
| EXPORT_SYMBOL_GPL(ata_do_set_mode);
 | |
| EXPORT_SYMBOL_GPL(ata_std_qc_defer);
 | |
| EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
 | |
| EXPORT_SYMBOL_GPL(ata_dev_disable);
 | |
| EXPORT_SYMBOL_GPL(sata_set_spd);
 | |
| EXPORT_SYMBOL_GPL(ata_wait_after_reset);
 | |
| EXPORT_SYMBOL_GPL(sata_link_debounce);
 | |
| EXPORT_SYMBOL_GPL(sata_link_resume);
 | |
| EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
 | |
| EXPORT_SYMBOL_GPL(ata_std_prereset);
 | |
| EXPORT_SYMBOL_GPL(sata_link_hardreset);
 | |
| EXPORT_SYMBOL_GPL(sata_std_hardreset);
 | |
| EXPORT_SYMBOL_GPL(ata_std_postreset);
 | |
| EXPORT_SYMBOL_GPL(ata_dev_classify);
 | |
| EXPORT_SYMBOL_GPL(ata_dev_pair);
 | |
| EXPORT_SYMBOL_GPL(ata_ratelimit);
 | |
| EXPORT_SYMBOL_GPL(ata_msleep);
 | |
| EXPORT_SYMBOL_GPL(ata_wait_register);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
 | |
| EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
 | |
| EXPORT_SYMBOL_GPL(sata_scr_valid);
 | |
| EXPORT_SYMBOL_GPL(sata_scr_read);
 | |
| EXPORT_SYMBOL_GPL(sata_scr_write);
 | |
| EXPORT_SYMBOL_GPL(sata_scr_write_flush);
 | |
| EXPORT_SYMBOL_GPL(ata_link_online);
 | |
| EXPORT_SYMBOL_GPL(ata_link_offline);
 | |
| #ifdef CONFIG_PM
 | |
| EXPORT_SYMBOL_GPL(ata_host_suspend);
 | |
| EXPORT_SYMBOL_GPL(ata_host_resume);
 | |
| #endif /* CONFIG_PM */
 | |
| EXPORT_SYMBOL_GPL(ata_id_string);
 | |
| EXPORT_SYMBOL_GPL(ata_id_c_string);
 | |
| EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
 | |
| EXPORT_SYMBOL_GPL(ata_scsi_simulate);
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
 | |
| EXPORT_SYMBOL_GPL(ata_timing_find_mode);
 | |
| EXPORT_SYMBOL_GPL(ata_timing_compute);
 | |
| EXPORT_SYMBOL_GPL(ata_timing_merge);
 | |
| EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| EXPORT_SYMBOL_GPL(pci_test_config_bits);
 | |
| EXPORT_SYMBOL_GPL(ata_pci_remove_one);
 | |
| #ifdef CONFIG_PM
 | |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
 | |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
 | |
| EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
 | |
| EXPORT_SYMBOL_GPL(ata_pci_device_resume);
 | |
| #endif /* CONFIG_PM */
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
 | |
| EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
 | |
| EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
 | |
| EXPORT_SYMBOL_GPL(ata_port_desc);
 | |
| #ifdef CONFIG_PCI
 | |
| EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
 | |
| #endif /* CONFIG_PCI */
 | |
| EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
 | |
| EXPORT_SYMBOL_GPL(ata_link_abort);
 | |
| EXPORT_SYMBOL_GPL(ata_port_abort);
 | |
| EXPORT_SYMBOL_GPL(ata_port_freeze);
 | |
| EXPORT_SYMBOL_GPL(sata_async_notification);
 | |
| EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
 | |
| EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
 | |
| EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
 | |
| EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
 | |
| EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
 | |
| EXPORT_SYMBOL_GPL(ata_do_eh);
 | |
| EXPORT_SYMBOL_GPL(ata_std_error_handler);
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ata_cable_40wire);
 | |
| EXPORT_SYMBOL_GPL(ata_cable_80wire);
 | |
| EXPORT_SYMBOL_GPL(ata_cable_unknown);
 | |
| EXPORT_SYMBOL_GPL(ata_cable_ignore);
 | |
| EXPORT_SYMBOL_GPL(ata_cable_sata);
 | 
