Building these files does not reveal a hidden need for any of these. Since module.h brings in the whole kitchen sink, it just needlessly adds 30k+ lines to the cpp burden. There are probably lots more, but ARM files of mach-* and plat-* don't get coverage via a simple yesconfig build. They will have to be cleaned up and tested via using their respective configs. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/arch/arm/vfp/vfpmodule.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2004 ARM Limited.
 | 
						|
 *  Written by Deep Blue Solutions Limited.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License version 2 as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpu_pm.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/init.h>
 | 
						|
 | 
						|
#include <asm/cputype.h>
 | 
						|
#include <asm/thread_notify.h>
 | 
						|
#include <asm/vfp.h>
 | 
						|
 | 
						|
#include "vfpinstr.h"
 | 
						|
#include "vfp.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Our undef handlers (in entry.S)
 | 
						|
 */
 | 
						|
void vfp_testing_entry(void);
 | 
						|
void vfp_support_entry(void);
 | 
						|
void vfp_null_entry(void);
 | 
						|
 | 
						|
void (*vfp_vector)(void) = vfp_null_entry;
 | 
						|
 | 
						|
/*
 | 
						|
 * Dual-use variable.
 | 
						|
 * Used in startup: set to non-zero if VFP checks fail
 | 
						|
 * After startup, holds VFP architecture
 | 
						|
 */
 | 
						|
unsigned int VFP_arch;
 | 
						|
 | 
						|
/*
 | 
						|
 * The pointer to the vfpstate structure of the thread which currently
 | 
						|
 * owns the context held in the VFP hardware, or NULL if the hardware
 | 
						|
 * context is invalid.
 | 
						|
 *
 | 
						|
 * For UP, this is sufficient to tell which thread owns the VFP context.
 | 
						|
 * However, for SMP, we also need to check the CPU number stored in the
 | 
						|
 * saved state too to catch migrations.
 | 
						|
 */
 | 
						|
union vfp_state *vfp_current_hw_state[NR_CPUS];
 | 
						|
 | 
						|
/*
 | 
						|
 * Is 'thread's most up to date state stored in this CPUs hardware?
 | 
						|
 * Must be called from non-preemptible context.
 | 
						|
 */
 | 
						|
static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (thread->vfpstate.hard.cpu != cpu)
 | 
						|
		return false;
 | 
						|
#endif
 | 
						|
	return vfp_current_hw_state[cpu] == &thread->vfpstate;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Force a reload of the VFP context from the thread structure.  We do
 | 
						|
 * this by ensuring that access to the VFP hardware is disabled, and
 | 
						|
 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
 | 
						|
 */
 | 
						|
static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
 | 
						|
{
 | 
						|
	if (vfp_state_in_hw(cpu, thread)) {
 | 
						|
		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 | 
						|
		vfp_current_hw_state[cpu] = NULL;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	thread->vfpstate.hard.cpu = NR_CPUS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Per-thread VFP initialization.
 | 
						|
 */
 | 
						|
static void vfp_thread_flush(struct thread_info *thread)
 | 
						|
{
 | 
						|
	union vfp_state *vfp = &thread->vfpstate;
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Disable VFP to ensure we initialize it first.  We must ensure
 | 
						|
	 * that the modification of vfp_current_hw_state[] and hardware
 | 
						|
	 * disable are done for the same CPU and without preemption.
 | 
						|
	 *
 | 
						|
	 * Do this first to ensure that preemption won't overwrite our
 | 
						|
	 * state saving should access to the VFP be enabled at this point.
 | 
						|
	 */
 | 
						|
	cpu = get_cpu();
 | 
						|
	if (vfp_current_hw_state[cpu] == vfp)
 | 
						|
		vfp_current_hw_state[cpu] = NULL;
 | 
						|
	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	memset(vfp, 0, sizeof(union vfp_state));
 | 
						|
 | 
						|
	vfp->hard.fpexc = FPEXC_EN;
 | 
						|
	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	vfp->hard.cpu = NR_CPUS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_thread_exit(struct thread_info *thread)
 | 
						|
{
 | 
						|
	/* release case: Per-thread VFP cleanup. */
 | 
						|
	union vfp_state *vfp = &thread->vfpstate;
 | 
						|
	unsigned int cpu = get_cpu();
 | 
						|
 | 
						|
	if (vfp_current_hw_state[cpu] == vfp)
 | 
						|
		vfp_current_hw_state[cpu] = NULL;
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_thread_copy(struct thread_info *thread)
 | 
						|
{
 | 
						|
	struct thread_info *parent = current_thread_info();
 | 
						|
 | 
						|
	vfp_sync_hwstate(parent);
 | 
						|
	thread->vfpstate = parent->vfpstate;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	thread->vfpstate.hard.cpu = NR_CPUS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When this function is called with the following 'cmd's, the following
 | 
						|
 * is true while this function is being run:
 | 
						|
 *  THREAD_NOFTIFY_SWTICH:
 | 
						|
 *   - the previously running thread will not be scheduled onto another CPU.
 | 
						|
 *   - the next thread to be run (v) will not be running on another CPU.
 | 
						|
 *   - thread->cpu is the local CPU number
 | 
						|
 *   - not preemptible as we're called in the middle of a thread switch
 | 
						|
 *  THREAD_NOTIFY_FLUSH:
 | 
						|
 *   - the thread (v) will be running on the local CPU, so
 | 
						|
 *	v === current_thread_info()
 | 
						|
 *   - thread->cpu is the local CPU number at the time it is accessed,
 | 
						|
 *	but may change at any time.
 | 
						|
 *   - we could be preempted if tree preempt rcu is enabled, so
 | 
						|
 *	it is unsafe to use thread->cpu.
 | 
						|
 *  THREAD_NOTIFY_EXIT
 | 
						|
 *   - the thread (v) will be running on the local CPU, so
 | 
						|
 *	v === current_thread_info()
 | 
						|
 *   - thread->cpu is the local CPU number at the time it is accessed,
 | 
						|
 *	but may change at any time.
 | 
						|
 *   - we could be preempted if tree preempt rcu is enabled, so
 | 
						|
 *	it is unsafe to use thread->cpu.
 | 
						|
 */
 | 
						|
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
 | 
						|
{
 | 
						|
	struct thread_info *thread = v;
 | 
						|
	u32 fpexc;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	unsigned int cpu;
 | 
						|
#endif
 | 
						|
 | 
						|
	switch (cmd) {
 | 
						|
	case THREAD_NOTIFY_SWITCH:
 | 
						|
		fpexc = fmrx(FPEXC);
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		cpu = thread->cpu;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * On SMP, if VFP is enabled, save the old state in
 | 
						|
		 * case the thread migrates to a different CPU. The
 | 
						|
		 * restoring is done lazily.
 | 
						|
		 */
 | 
						|
		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
 | 
						|
			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 | 
						|
#endif
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Always disable VFP so we can lazily save/restore the
 | 
						|
		 * old state.
 | 
						|
		 */
 | 
						|
		fmxr(FPEXC, fpexc & ~FPEXC_EN);
 | 
						|
		break;
 | 
						|
 | 
						|
	case THREAD_NOTIFY_FLUSH:
 | 
						|
		vfp_thread_flush(thread);
 | 
						|
		break;
 | 
						|
 | 
						|
	case THREAD_NOTIFY_EXIT:
 | 
						|
		vfp_thread_exit(thread);
 | 
						|
		break;
 | 
						|
 | 
						|
	case THREAD_NOTIFY_COPY:
 | 
						|
		vfp_thread_copy(thread);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return NOTIFY_DONE;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block vfp_notifier_block = {
 | 
						|
	.notifier_call	= vfp_notifier,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Raise a SIGFPE for the current process.
 | 
						|
 * sicode describes the signal being raised.
 | 
						|
 */
 | 
						|
static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	siginfo_t info;
 | 
						|
 | 
						|
	memset(&info, 0, sizeof(info));
 | 
						|
 | 
						|
	info.si_signo = SIGFPE;
 | 
						|
	info.si_code = sicode;
 | 
						|
	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is the same as NWFPE, because it's not clear what
 | 
						|
	 * this is used for
 | 
						|
	 */
 | 
						|
	current->thread.error_code = 0;
 | 
						|
	current->thread.trap_no = 6;
 | 
						|
 | 
						|
	send_sig_info(SIGFPE, &info, current);
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_panic(char *reason, u32 inst)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	printk(KERN_ERR "VFP: Error: %s\n", reason);
 | 
						|
	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
 | 
						|
		fmrx(FPEXC), fmrx(FPSCR), inst);
 | 
						|
	for (i = 0; i < 32; i += 2)
 | 
						|
		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
 | 
						|
		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Process bitmask of exception conditions.
 | 
						|
 */
 | 
						|
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	int si_code = 0;
 | 
						|
 | 
						|
	pr_debug("VFP: raising exceptions %08x\n", exceptions);
 | 
						|
 | 
						|
	if (exceptions == VFP_EXCEPTION_ERROR) {
 | 
						|
		vfp_panic("unhandled bounce", inst);
 | 
						|
		vfp_raise_sigfpe(0, regs);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If any of the status flags are set, update the FPSCR.
 | 
						|
	 * Comparison instructions always return at least one of
 | 
						|
	 * these flags set.
 | 
						|
	 */
 | 
						|
	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
 | 
						|
		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
 | 
						|
 | 
						|
	fpscr |= exceptions;
 | 
						|
 | 
						|
	fmxr(FPSCR, fpscr);
 | 
						|
 | 
						|
#define RAISE(stat,en,sig)				\
 | 
						|
	if (exceptions & stat && fpscr & en)		\
 | 
						|
		si_code = sig;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * These are arranged in priority order, least to highest.
 | 
						|
	 */
 | 
						|
	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
 | 
						|
	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
 | 
						|
	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
 | 
						|
	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
 | 
						|
	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
 | 
						|
 | 
						|
	if (si_code)
 | 
						|
		vfp_raise_sigfpe(si_code, regs);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Emulate a VFP instruction.
 | 
						|
 */
 | 
						|
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u32 exceptions = VFP_EXCEPTION_ERROR;
 | 
						|
 | 
						|
	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
 | 
						|
 | 
						|
	if (INST_CPRTDO(inst)) {
 | 
						|
		if (!INST_CPRT(inst)) {
 | 
						|
			/*
 | 
						|
			 * CPDO
 | 
						|
			 */
 | 
						|
			if (vfp_single(inst)) {
 | 
						|
				exceptions = vfp_single_cpdo(inst, fpscr);
 | 
						|
			} else {
 | 
						|
				exceptions = vfp_double_cpdo(inst, fpscr);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * A CPRT instruction can not appear in FPINST2, nor
 | 
						|
			 * can it cause an exception.  Therefore, we do not
 | 
						|
			 * have to emulate it.
 | 
						|
			 */
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * A CPDT instruction can not appear in FPINST2, nor can
 | 
						|
		 * it cause an exception.  Therefore, we do not have to
 | 
						|
		 * emulate it.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
	return exceptions & ~VFP_NAN_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Package up a bounce condition.
 | 
						|
 */
 | 
						|
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u32 fpscr, orig_fpscr, fpsid, exceptions;
 | 
						|
 | 
						|
	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point, FPEXC can have the following configuration:
 | 
						|
	 *
 | 
						|
	 *  EX DEX IXE
 | 
						|
	 *  0   1   x   - synchronous exception
 | 
						|
	 *  1   x   0   - asynchronous exception
 | 
						|
	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
 | 
						|
	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
 | 
						|
	 *                implementation), undefined otherwise
 | 
						|
	 *
 | 
						|
	 * Clear various bits and enable access to the VFP so we can
 | 
						|
	 * handle the bounce.
 | 
						|
	 */
 | 
						|
	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
 | 
						|
 | 
						|
	fpsid = fmrx(FPSID);
 | 
						|
	orig_fpscr = fpscr = fmrx(FPSCR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
 | 
						|
	 */
 | 
						|
	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
 | 
						|
	    && (fpscr & FPSCR_IXE)) {
 | 
						|
		/*
 | 
						|
		 * Synchronous exception, emulate the trigger instruction
 | 
						|
		 */
 | 
						|
		goto emulate;
 | 
						|
	}
 | 
						|
 | 
						|
	if (fpexc & FPEXC_EX) {
 | 
						|
#ifndef CONFIG_CPU_FEROCEON
 | 
						|
		/*
 | 
						|
		 * Asynchronous exception. The instruction is read from FPINST
 | 
						|
		 * and the interrupted instruction has to be restarted.
 | 
						|
		 */
 | 
						|
		trigger = fmrx(FPINST);
 | 
						|
		regs->ARM_pc -= 4;
 | 
						|
#endif
 | 
						|
	} else if (!(fpexc & FPEXC_DEX)) {
 | 
						|
		/*
 | 
						|
		 * Illegal combination of bits. It can be caused by an
 | 
						|
		 * unallocated VFP instruction but with FPSCR.IXE set and not
 | 
						|
		 * on VFP subarch 1.
 | 
						|
		 */
 | 
						|
		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
 | 
						|
		goto exit;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Modify fpscr to indicate the number of iterations remaining.
 | 
						|
	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
 | 
						|
	 * whether FPEXC.VECITR or FPSCR.LEN is used.
 | 
						|
	 */
 | 
						|
	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
 | 
						|
		u32 len;
 | 
						|
 | 
						|
		len = fpexc + (1 << FPEXC_LENGTH_BIT);
 | 
						|
 | 
						|
		fpscr &= ~FPSCR_LENGTH_MASK;
 | 
						|
		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Handle the first FP instruction.  We used to take note of the
 | 
						|
	 * FPEXC bounce reason, but this appears to be unreliable.
 | 
						|
	 * Emulate the bounced instruction instead.
 | 
						|
	 */
 | 
						|
	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
 | 
						|
	if (exceptions)
 | 
						|
		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there isn't a second FP instruction, exit now. Note that
 | 
						|
	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
 | 
						|
	 */
 | 
						|
	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
 | 
						|
		goto exit;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The barrier() here prevents fpinst2 being read
 | 
						|
	 * before the condition above.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	trigger = fmrx(FPINST2);
 | 
						|
 | 
						|
 emulate:
 | 
						|
	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
 | 
						|
	if (exceptions)
 | 
						|
		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 | 
						|
 exit:
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_enable(void *unused)
 | 
						|
{
 | 
						|
	u32 access = get_copro_access();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Enable full access to VFP (cp10 and cp11)
 | 
						|
	 */
 | 
						|
	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CPU_PM
 | 
						|
static int vfp_pm_suspend(void)
 | 
						|
{
 | 
						|
	struct thread_info *ti = current_thread_info();
 | 
						|
	u32 fpexc = fmrx(FPEXC);
 | 
						|
 | 
						|
	/* if vfp is on, then save state for resumption */
 | 
						|
	if (fpexc & FPEXC_EN) {
 | 
						|
		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
 | 
						|
		vfp_save_state(&ti->vfpstate, fpexc);
 | 
						|
 | 
						|
		/* disable, just in case */
 | 
						|
		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 | 
						|
	}
 | 
						|
 | 
						|
	/* clear any information we had about last context state */
 | 
						|
	memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void vfp_pm_resume(void)
 | 
						|
{
 | 
						|
	/* ensure we have access to the vfp */
 | 
						|
	vfp_enable(NULL);
 | 
						|
 | 
						|
	/* and disable it to ensure the next usage restores the state */
 | 
						|
	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 | 
						|
}
 | 
						|
 | 
						|
static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
 | 
						|
	void *v)
 | 
						|
{
 | 
						|
	switch (cmd) {
 | 
						|
	case CPU_PM_ENTER:
 | 
						|
		vfp_pm_suspend();
 | 
						|
		break;
 | 
						|
	case CPU_PM_ENTER_FAILED:
 | 
						|
	case CPU_PM_EXIT:
 | 
						|
		vfp_pm_resume();
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block vfp_cpu_pm_notifier_block = {
 | 
						|
	.notifier_call = vfp_cpu_pm_notifier,
 | 
						|
};
 | 
						|
 | 
						|
static void vfp_pm_init(void)
 | 
						|
{
 | 
						|
	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void vfp_pm_init(void) { }
 | 
						|
#endif /* CONFIG_CPU_PM */
 | 
						|
 | 
						|
/*
 | 
						|
 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
 | 
						|
 * with the hardware state.
 | 
						|
 */
 | 
						|
void vfp_sync_hwstate(struct thread_info *thread)
 | 
						|
{
 | 
						|
	unsigned int cpu = get_cpu();
 | 
						|
 | 
						|
	if (vfp_state_in_hw(cpu, thread)) {
 | 
						|
		u32 fpexc = fmrx(FPEXC);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Save the last VFP state on this CPU.
 | 
						|
		 */
 | 
						|
		fmxr(FPEXC, fpexc | FPEXC_EN);
 | 
						|
		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
 | 
						|
		fmxr(FPEXC, fpexc);
 | 
						|
	}
 | 
						|
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
/* Ensure that the thread reloads the hardware VFP state on the next use. */
 | 
						|
void vfp_flush_hwstate(struct thread_info *thread)
 | 
						|
{
 | 
						|
	unsigned int cpu = get_cpu();
 | 
						|
 | 
						|
	vfp_force_reload(cpu, thread);
 | 
						|
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * VFP hardware can lose all context when a CPU goes offline.
 | 
						|
 * As we will be running in SMP mode with CPU hotplug, we will save the
 | 
						|
 * hardware state at every thread switch.  We clear our held state when
 | 
						|
 * a CPU has been killed, indicating that the VFP hardware doesn't contain
 | 
						|
 * a threads VFP state.  When a CPU starts up, we re-enable access to the
 | 
						|
 * VFP hardware.
 | 
						|
 *
 | 
						|
 * Both CPU_DYING and CPU_STARTING are called on the CPU which
 | 
						|
 * is being offlined/onlined.
 | 
						|
 */
 | 
						|
static int vfp_hotplug(struct notifier_block *b, unsigned long action,
 | 
						|
	void *hcpu)
 | 
						|
{
 | 
						|
	if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
 | 
						|
		vfp_force_reload((long)hcpu, current_thread_info());
 | 
						|
	} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
 | 
						|
		vfp_enable(NULL);
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * VFP support code initialisation.
 | 
						|
 */
 | 
						|
static int __init vfp_init(void)
 | 
						|
{
 | 
						|
	unsigned int vfpsid;
 | 
						|
	unsigned int cpu_arch = cpu_architecture();
 | 
						|
 | 
						|
	if (cpu_arch >= CPU_ARCH_ARMv6)
 | 
						|
		vfp_enable(NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First check that there is a VFP that we can use.
 | 
						|
	 * The handler is already setup to just log calls, so
 | 
						|
	 * we just need to read the VFPSID register.
 | 
						|
	 */
 | 
						|
	vfp_vector = vfp_testing_entry;
 | 
						|
	barrier();
 | 
						|
	vfpsid = fmrx(FPSID);
 | 
						|
	barrier();
 | 
						|
	vfp_vector = vfp_null_entry;
 | 
						|
 | 
						|
	printk(KERN_INFO "VFP support v0.3: ");
 | 
						|
	if (VFP_arch)
 | 
						|
		printk("not present\n");
 | 
						|
	else if (vfpsid & FPSID_NODOUBLE) {
 | 
						|
		printk("no double precision support\n");
 | 
						|
	} else {
 | 
						|
		hotcpu_notifier(vfp_hotplug, 0);
 | 
						|
 | 
						|
		smp_call_function(vfp_enable, NULL, 1);
 | 
						|
 | 
						|
		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
 | 
						|
		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
 | 
						|
			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
 | 
						|
			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
 | 
						|
			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
 | 
						|
			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
 | 
						|
			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
 | 
						|
 | 
						|
		vfp_vector = vfp_support_entry;
 | 
						|
 | 
						|
		thread_register_notifier(&vfp_notifier_block);
 | 
						|
		vfp_pm_init();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We detected VFP, and the support code is
 | 
						|
		 * in place; report VFP support to userspace.
 | 
						|
		 */
 | 
						|
		elf_hwcap |= HWCAP_VFP;
 | 
						|
#ifdef CONFIG_VFPv3
 | 
						|
		if (VFP_arch >= 2) {
 | 
						|
			elf_hwcap |= HWCAP_VFPv3;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Check for VFPv3 D16. CPUs in this configuration
 | 
						|
			 * only have 16 x 64bit registers.
 | 
						|
			 */
 | 
						|
			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
 | 
						|
				elf_hwcap |= HWCAP_VFPv3D16;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		/*
 | 
						|
		 * Check for the presence of the Advanced SIMD
 | 
						|
		 * load/store instructions, integer and single
 | 
						|
		 * precision floating point operations. Only check
 | 
						|
		 * for NEON if the hardware has the MVFR registers.
 | 
						|
		 */
 | 
						|
		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 | 
						|
#ifdef CONFIG_NEON
 | 
						|
			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
 | 
						|
				elf_hwcap |= HWCAP_NEON;
 | 
						|
#endif
 | 
						|
			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
 | 
						|
				elf_hwcap |= HWCAP_VFPv4;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
late_initcall(vfp_init);
 |