 12b2f117f3
			
		
	
	
	12b2f117f3
	
	
	
		
			
			audit_trim_trees() calls get_tree(). If a failure occurs we must call put_tree(). [akpm@linux-foundation.org: run put_tree() before mutex_lock() for small scalability improvement] Signed-off-by: Chen Gang <gang.chen@asianux.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			964 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			964 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "audit.h"
 | |
| #include <linux/fsnotify_backend.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| struct audit_tree;
 | |
| struct audit_chunk;
 | |
| 
 | |
| struct audit_tree {
 | |
| 	atomic_t count;
 | |
| 	int goner;
 | |
| 	struct audit_chunk *root;
 | |
| 	struct list_head chunks;
 | |
| 	struct list_head rules;
 | |
| 	struct list_head list;
 | |
| 	struct list_head same_root;
 | |
| 	struct rcu_head head;
 | |
| 	char pathname[];
 | |
| };
 | |
| 
 | |
| struct audit_chunk {
 | |
| 	struct list_head hash;
 | |
| 	struct fsnotify_mark mark;
 | |
| 	struct list_head trees;		/* with root here */
 | |
| 	int dead;
 | |
| 	int count;
 | |
| 	atomic_long_t refs;
 | |
| 	struct rcu_head head;
 | |
| 	struct node {
 | |
| 		struct list_head list;
 | |
| 		struct audit_tree *owner;
 | |
| 		unsigned index;		/* index; upper bit indicates 'will prune' */
 | |
| 	} owners[];
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(tree_list);
 | |
| static LIST_HEAD(prune_list);
 | |
| 
 | |
| /*
 | |
|  * One struct chunk is attached to each inode of interest.
 | |
|  * We replace struct chunk on tagging/untagging.
 | |
|  * Rules have pointer to struct audit_tree.
 | |
|  * Rules have struct list_head rlist forming a list of rules over
 | |
|  * the same tree.
 | |
|  * References to struct chunk are collected at audit_inode{,_child}()
 | |
|  * time and used in AUDIT_TREE rule matching.
 | |
|  * These references are dropped at the same time we are calling
 | |
|  * audit_free_names(), etc.
 | |
|  *
 | |
|  * Cyclic lists galore:
 | |
|  * tree.chunks anchors chunk.owners[].list			hash_lock
 | |
|  * tree.rules anchors rule.rlist				audit_filter_mutex
 | |
|  * chunk.trees anchors tree.same_root				hash_lock
 | |
|  * chunk.hash is a hash with middle bits of watch.inode as
 | |
|  * a hash function.						RCU, hash_lock
 | |
|  *
 | |
|  * tree is refcounted; one reference for "some rules on rules_list refer to
 | |
|  * it", one for each chunk with pointer to it.
 | |
|  *
 | |
|  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 | |
|  * of watch contributes 1 to .refs).
 | |
|  *
 | |
|  * node.index allows to get from node.list to containing chunk.
 | |
|  * MSB of that sucker is stolen to mark taggings that we might have to
 | |
|  * revert - several operations have very unpleasant cleanup logics and
 | |
|  * that makes a difference.  Some.
 | |
|  */
 | |
| 
 | |
| static struct fsnotify_group *audit_tree_group;
 | |
| 
 | |
| static struct audit_tree *alloc_tree(const char *s)
 | |
| {
 | |
| 	struct audit_tree *tree;
 | |
| 
 | |
| 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 | |
| 	if (tree) {
 | |
| 		atomic_set(&tree->count, 1);
 | |
| 		tree->goner = 0;
 | |
| 		INIT_LIST_HEAD(&tree->chunks);
 | |
| 		INIT_LIST_HEAD(&tree->rules);
 | |
| 		INIT_LIST_HEAD(&tree->list);
 | |
| 		INIT_LIST_HEAD(&tree->same_root);
 | |
| 		tree->root = NULL;
 | |
| 		strcpy(tree->pathname, s);
 | |
| 	}
 | |
| 	return tree;
 | |
| }
 | |
| 
 | |
| static inline void get_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	atomic_inc(&tree->count);
 | |
| }
 | |
| 
 | |
| static inline void put_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&tree->count))
 | |
| 		kfree_rcu(tree, head);
 | |
| }
 | |
| 
 | |
| /* to avoid bringing the entire thing in audit.h */
 | |
| const char *audit_tree_path(struct audit_tree *tree)
 | |
| {
 | |
| 	return tree->pathname;
 | |
| }
 | |
| 
 | |
| static void free_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < chunk->count; i++) {
 | |
| 		if (chunk->owners[i].owner)
 | |
| 			put_tree(chunk->owners[i].owner);
 | |
| 	}
 | |
| 	kfree(chunk);
 | |
| }
 | |
| 
 | |
| void audit_put_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	if (atomic_long_dec_and_test(&chunk->refs))
 | |
| 		free_chunk(chunk);
 | |
| }
 | |
| 
 | |
| static void __put_chunk(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
 | |
| 	audit_put_chunk(chunk);
 | |
| }
 | |
| 
 | |
| static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
 | |
| {
 | |
| 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
 | |
| 	call_rcu(&chunk->head, __put_chunk);
 | |
| }
 | |
| 
 | |
| static struct audit_chunk *alloc_chunk(int count)
 | |
| {
 | |
| 	struct audit_chunk *chunk;
 | |
| 	size_t size;
 | |
| 	int i;
 | |
| 
 | |
| 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
 | |
| 	chunk = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->hash);
 | |
| 	INIT_LIST_HEAD(&chunk->trees);
 | |
| 	chunk->count = count;
 | |
| 	atomic_long_set(&chunk->refs, 1);
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		INIT_LIST_HEAD(&chunk->owners[i].list);
 | |
| 		chunk->owners[i].index = i;
 | |
| 	}
 | |
| 	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| enum {HASH_SIZE = 128};
 | |
| static struct list_head chunk_hash_heads[HASH_SIZE];
 | |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
 | |
| 
 | |
| static inline struct list_head *chunk_hash(const struct inode *inode)
 | |
| {
 | |
| 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
 | |
| 	return chunk_hash_heads + n % HASH_SIZE;
 | |
| }
 | |
| 
 | |
| /* hash_lock & entry->lock is held by caller */
 | |
| static void insert_hash(struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct fsnotify_mark *entry = &chunk->mark;
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	if (!entry->i.inode)
 | |
| 		return;
 | |
| 	list = chunk_hash(entry->i.inode);
 | |
| 	list_add_rcu(&chunk->hash, list);
 | |
| }
 | |
| 
 | |
| /* called under rcu_read_lock */
 | |
| struct audit_chunk *audit_tree_lookup(const struct inode *inode)
 | |
| {
 | |
| 	struct list_head *list = chunk_hash(inode);
 | |
| 	struct audit_chunk *p;
 | |
| 
 | |
| 	list_for_each_entry_rcu(p, list, hash) {
 | |
| 		/* mark.inode may have gone NULL, but who cares? */
 | |
| 		if (p->mark.i.inode == inode) {
 | |
| 			atomic_long_inc(&p->refs);
 | |
| 			return p;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
 | |
| {
 | |
| 	int n;
 | |
| 	for (n = 0; n < chunk->count; n++)
 | |
| 		if (chunk->owners[n].owner == tree)
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* tagging and untagging inodes with trees */
 | |
| 
 | |
| static struct audit_chunk *find_chunk(struct node *p)
 | |
| {
 | |
| 	int index = p->index & ~(1U<<31);
 | |
| 	p -= index;
 | |
| 	return container_of(p, struct audit_chunk, owners[0]);
 | |
| }
 | |
| 
 | |
| static void untag_chunk(struct node *p)
 | |
| {
 | |
| 	struct audit_chunk *chunk = find_chunk(p);
 | |
| 	struct fsnotify_mark *entry = &chunk->mark;
 | |
| 	struct audit_chunk *new = NULL;
 | |
| 	struct audit_tree *owner;
 | |
| 	int size = chunk->count - 1;
 | |
| 	int i, j;
 | |
| 
 | |
| 	fsnotify_get_mark(entry);
 | |
| 
 | |
| 	spin_unlock(&hash_lock);
 | |
| 
 | |
| 	if (size)
 | |
| 		new = alloc_chunk(size);
 | |
| 
 | |
| 	spin_lock(&entry->lock);
 | |
| 	if (chunk->dead || !entry->i.inode) {
 | |
| 		spin_unlock(&entry->lock);
 | |
| 		if (new)
 | |
| 			free_chunk(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	owner = p->owner;
 | |
| 
 | |
| 	if (!size) {
 | |
| 		chunk->dead = 1;
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_del_init(&chunk->trees);
 | |
| 		if (owner->root == chunk)
 | |
| 			owner->root = NULL;
 | |
| 		list_del_init(&p->list);
 | |
| 		list_del_rcu(&chunk->hash);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		spin_unlock(&entry->lock);
 | |
| 		fsnotify_destroy_mark(entry, audit_tree_group);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!new)
 | |
| 		goto Fallback;
 | |
| 
 | |
| 	fsnotify_duplicate_mark(&new->mark, entry);
 | |
| 	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
 | |
| 		fsnotify_put_mark(&new->mark);
 | |
| 		goto Fallback;
 | |
| 	}
 | |
| 
 | |
| 	chunk->dead = 1;
 | |
| 	spin_lock(&hash_lock);
 | |
| 	list_replace_init(&chunk->trees, &new->trees);
 | |
| 	if (owner->root == chunk) {
 | |
| 		list_del_init(&owner->same_root);
 | |
| 		owner->root = NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = j = 0; j <= size; i++, j++) {
 | |
| 		struct audit_tree *s;
 | |
| 		if (&chunk->owners[j] == p) {
 | |
| 			list_del_init(&p->list);
 | |
| 			i--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		s = chunk->owners[j].owner;
 | |
| 		new->owners[i].owner = s;
 | |
| 		new->owners[i].index = chunk->owners[j].index - j + i;
 | |
| 		if (!s) /* result of earlier fallback */
 | |
| 			continue;
 | |
| 		get_tree(s);
 | |
| 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
 | |
| 	}
 | |
| 
 | |
| 	list_replace_rcu(&chunk->hash, &new->hash);
 | |
| 	list_for_each_entry(owner, &new->trees, same_root)
 | |
| 		owner->root = new;
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	spin_unlock(&entry->lock);
 | |
| 	fsnotify_destroy_mark(entry, audit_tree_group);
 | |
| 	fsnotify_put_mark(&new->mark);	/* drop initial reference */
 | |
| 	goto out;
 | |
| 
 | |
| Fallback:
 | |
| 	// do the best we can
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (owner->root == chunk) {
 | |
| 		list_del_init(&owner->same_root);
 | |
| 		owner->root = NULL;
 | |
| 	}
 | |
| 	list_del_init(&p->list);
 | |
| 	p->owner = NULL;
 | |
| 	put_tree(owner);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	spin_unlock(&entry->lock);
 | |
| out:
 | |
| 	fsnotify_put_mark(entry);
 | |
| 	spin_lock(&hash_lock);
 | |
| }
 | |
| 
 | |
| static int create_chunk(struct inode *inode, struct audit_tree *tree)
 | |
| {
 | |
| 	struct fsnotify_mark *entry;
 | |
| 	struct audit_chunk *chunk = alloc_chunk(1);
 | |
| 	if (!chunk)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	entry = &chunk->mark;
 | |
| 	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
 | |
| 		fsnotify_put_mark(entry);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&entry->lock);
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		chunk->dead = 1;
 | |
| 		spin_unlock(&entry->lock);
 | |
| 		fsnotify_destroy_mark(entry, audit_tree_group);
 | |
| 		fsnotify_put_mark(entry);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	chunk->owners[0].index = (1U << 31);
 | |
| 	chunk->owners[0].owner = tree;
 | |
| 	get_tree(tree);
 | |
| 	list_add(&chunk->owners[0].list, &tree->chunks);
 | |
| 	if (!tree->root) {
 | |
| 		tree->root = chunk;
 | |
| 		list_add(&tree->same_root, &chunk->trees);
 | |
| 	}
 | |
| 	insert_hash(chunk);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	spin_unlock(&entry->lock);
 | |
| 	fsnotify_put_mark(entry);	/* drop initial reference */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the first tagged inode becomes root of tree */
 | |
| static int tag_chunk(struct inode *inode, struct audit_tree *tree)
 | |
| {
 | |
| 	struct fsnotify_mark *old_entry, *chunk_entry;
 | |
| 	struct audit_tree *owner;
 | |
| 	struct audit_chunk *chunk, *old;
 | |
| 	struct node *p;
 | |
| 	int n;
 | |
| 
 | |
| 	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
 | |
| 	if (!old_entry)
 | |
| 		return create_chunk(inode, tree);
 | |
| 
 | |
| 	old = container_of(old_entry, struct audit_chunk, mark);
 | |
| 
 | |
| 	/* are we already there? */
 | |
| 	spin_lock(&hash_lock);
 | |
| 	for (n = 0; n < old->count; n++) {
 | |
| 		if (old->owners[n].owner == tree) {
 | |
| 			spin_unlock(&hash_lock);
 | |
| 			fsnotify_put_mark(old_entry);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| 
 | |
| 	chunk = alloc_chunk(old->count + 1);
 | |
| 	if (!chunk) {
 | |
| 		fsnotify_put_mark(old_entry);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	chunk_entry = &chunk->mark;
 | |
| 
 | |
| 	spin_lock(&old_entry->lock);
 | |
| 	if (!old_entry->i.inode) {
 | |
| 		/* old_entry is being shot, lets just lie */
 | |
| 		spin_unlock(&old_entry->lock);
 | |
| 		fsnotify_put_mark(old_entry);
 | |
| 		free_chunk(chunk);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	fsnotify_duplicate_mark(chunk_entry, old_entry);
 | |
| 	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
 | |
| 		spin_unlock(&old_entry->lock);
 | |
| 		fsnotify_put_mark(chunk_entry);
 | |
| 		fsnotify_put_mark(old_entry);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
 | |
| 	spin_lock(&chunk_entry->lock);
 | |
| 	spin_lock(&hash_lock);
 | |
| 
 | |
| 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		chunk->dead = 1;
 | |
| 		spin_unlock(&chunk_entry->lock);
 | |
| 		spin_unlock(&old_entry->lock);
 | |
| 
 | |
| 		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
 | |
| 
 | |
| 		fsnotify_put_mark(chunk_entry);
 | |
| 		fsnotify_put_mark(old_entry);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	list_replace_init(&old->trees, &chunk->trees);
 | |
| 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
 | |
| 		struct audit_tree *s = old->owners[n].owner;
 | |
| 		p->owner = s;
 | |
| 		p->index = old->owners[n].index;
 | |
| 		if (!s) /* result of fallback in untag */
 | |
| 			continue;
 | |
| 		get_tree(s);
 | |
| 		list_replace_init(&old->owners[n].list, &p->list);
 | |
| 	}
 | |
| 	p->index = (chunk->count - 1) | (1U<<31);
 | |
| 	p->owner = tree;
 | |
| 	get_tree(tree);
 | |
| 	list_add(&p->list, &tree->chunks);
 | |
| 	list_replace_rcu(&old->hash, &chunk->hash);
 | |
| 	list_for_each_entry(owner, &chunk->trees, same_root)
 | |
| 		owner->root = chunk;
 | |
| 	old->dead = 1;
 | |
| 	if (!tree->root) {
 | |
| 		tree->root = chunk;
 | |
| 		list_add(&tree->same_root, &chunk->trees);
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	spin_unlock(&chunk_entry->lock);
 | |
| 	spin_unlock(&old_entry->lock);
 | |
| 	fsnotify_destroy_mark(old_entry, audit_tree_group);
 | |
| 	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
 | |
| 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void audit_log_remove_rule(struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 
 | |
| 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 | |
| 	if (unlikely(!ab))
 | |
| 		return;
 | |
| 	audit_log_format(ab, "op=");
 | |
| 	audit_log_string(ab, "remove rule");
 | |
| 	audit_log_format(ab, " dir=");
 | |
| 	audit_log_untrustedstring(ab, rule->tree->pathname);
 | |
| 	audit_log_key(ab, rule->filterkey);
 | |
| 	audit_log_format(ab, " list=%d res=1", rule->listnr);
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| static void kill_rules(struct audit_tree *tree)
 | |
| {
 | |
| 	struct audit_krule *rule, *next;
 | |
| 	struct audit_entry *entry;
 | |
| 
 | |
| 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
 | |
| 		entry = container_of(rule, struct audit_entry, rule);
 | |
| 
 | |
| 		list_del_init(&rule->rlist);
 | |
| 		if (rule->tree) {
 | |
| 			/* not a half-baked one */
 | |
| 			audit_log_remove_rule(rule);
 | |
| 			rule->tree = NULL;
 | |
| 			list_del_rcu(&entry->list);
 | |
| 			list_del(&entry->rule.list);
 | |
| 			call_rcu(&entry->rcu, audit_free_rule_rcu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finish killing struct audit_tree
 | |
|  */
 | |
| static void prune_one(struct audit_tree *victim)
 | |
| {
 | |
| 	spin_lock(&hash_lock);
 | |
| 	while (!list_empty(&victim->chunks)) {
 | |
| 		struct node *p;
 | |
| 
 | |
| 		p = list_entry(victim->chunks.next, struct node, list);
 | |
| 
 | |
| 		untag_chunk(p);
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	put_tree(victim);
 | |
| }
 | |
| 
 | |
| /* trim the uncommitted chunks from tree */
 | |
| 
 | |
| static void trim_marked(struct audit_tree *tree)
 | |
| {
 | |
| 	struct list_head *p, *q;
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* reorder */
 | |
| 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
 | |
| 		struct node *node = list_entry(p, struct node, list);
 | |
| 		q = p->next;
 | |
| 		if (node->index & (1U<<31)) {
 | |
| 			list_del_init(p);
 | |
| 			list_add(p, &tree->chunks);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&tree->chunks)) {
 | |
| 		struct node *node;
 | |
| 
 | |
| 		node = list_entry(tree->chunks.next, struct node, list);
 | |
| 
 | |
| 		/* have we run out of marked? */
 | |
| 		if (!(node->index & (1U<<31)))
 | |
| 			break;
 | |
| 
 | |
| 		untag_chunk(node);
 | |
| 	}
 | |
| 	if (!tree->root && !tree->goner) {
 | |
| 		tree->goner = 1;
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 		kill_rules(tree);
 | |
| 		list_del_init(&tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 		prune_one(tree);
 | |
| 	} else {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void audit_schedule_prune(void);
 | |
| 
 | |
| /* called with audit_filter_mutex */
 | |
| int audit_remove_tree_rule(struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_tree *tree;
 | |
| 	tree = rule->tree;
 | |
| 	if (tree) {
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_del_init(&rule->rlist);
 | |
| 		if (list_empty(&tree->rules) && !tree->goner) {
 | |
| 			tree->root = NULL;
 | |
| 			list_del_init(&tree->same_root);
 | |
| 			tree->goner = 1;
 | |
| 			list_move(&tree->list, &prune_list);
 | |
| 			rule->tree = NULL;
 | |
| 			spin_unlock(&hash_lock);
 | |
| 			audit_schedule_prune();
 | |
| 			return 1;
 | |
| 		}
 | |
| 		rule->tree = NULL;
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int compare_root(struct vfsmount *mnt, void *arg)
 | |
| {
 | |
| 	return mnt->mnt_root->d_inode == arg;
 | |
| }
 | |
| 
 | |
| void audit_trim_trees(void)
 | |
| {
 | |
| 	struct list_head cursor;
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_add(&cursor, &tree_list);
 | |
| 	while (cursor.next != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 		struct path path;
 | |
| 		struct vfsmount *root_mnt;
 | |
| 		struct node *node;
 | |
| 		int err;
 | |
| 
 | |
| 		tree = container_of(cursor.next, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_del(&cursor);
 | |
| 		list_add(&cursor, &tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		err = kern_path(tree->pathname, 0, &path);
 | |
| 		if (err)
 | |
| 			goto skip_it;
 | |
| 
 | |
| 		root_mnt = collect_mounts(&path);
 | |
| 		path_put(&path);
 | |
| 		if (IS_ERR(root_mnt))
 | |
| 			goto skip_it;
 | |
| 
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_for_each_entry(node, &tree->chunks, list) {
 | |
| 			struct audit_chunk *chunk = find_chunk(node);
 | |
| 			/* this could be NULL if the watch is dying else where... */
 | |
| 			struct inode *inode = chunk->mark.i.inode;
 | |
| 			node->index |= 1U<<31;
 | |
| 			if (iterate_mounts(compare_root, inode, root_mnt))
 | |
| 				node->index &= ~(1U<<31);
 | |
| 		}
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		trim_marked(tree);
 | |
| 		drop_collected_mounts(root_mnt);
 | |
| skip_it:
 | |
| 		put_tree(tree);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 	list_del(&cursor);
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| }
 | |
| 
 | |
| int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
 | |
| {
 | |
| 
 | |
| 	if (pathname[0] != '/' ||
 | |
| 	    rule->listnr != AUDIT_FILTER_EXIT ||
 | |
| 	    op != Audit_equal ||
 | |
| 	    rule->inode_f || rule->watch || rule->tree)
 | |
| 		return -EINVAL;
 | |
| 	rule->tree = alloc_tree(pathname);
 | |
| 	if (!rule->tree)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void audit_put_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	put_tree(tree);
 | |
| }
 | |
| 
 | |
| static int tag_mount(struct vfsmount *mnt, void *arg)
 | |
| {
 | |
| 	return tag_chunk(mnt->mnt_root->d_inode, arg);
 | |
| }
 | |
| 
 | |
| /* called with audit_filter_mutex */
 | |
| int audit_add_tree_rule(struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_tree *seed = rule->tree, *tree;
 | |
| 	struct path path;
 | |
| 	struct vfsmount *mnt;
 | |
| 	int err;
 | |
| 
 | |
| 	list_for_each_entry(tree, &tree_list, list) {
 | |
| 		if (!strcmp(seed->pathname, tree->pathname)) {
 | |
| 			put_tree(seed);
 | |
| 			rule->tree = tree;
 | |
| 			list_add(&rule->rlist, &tree->rules);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	tree = seed;
 | |
| 	list_add(&tree->list, &tree_list);
 | |
| 	list_add(&rule->rlist, &tree->rules);
 | |
| 	/* do not set rule->tree yet */
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 	err = kern_path(tree->pathname, 0, &path);
 | |
| 	if (err)
 | |
| 		goto Err;
 | |
| 	mnt = collect_mounts(&path);
 | |
| 	path_put(&path);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		err = PTR_ERR(mnt);
 | |
| 		goto Err;
 | |
| 	}
 | |
| 
 | |
| 	get_tree(tree);
 | |
| 	err = iterate_mounts(tag_mount, tree, mnt);
 | |
| 	drop_collected_mounts(mnt);
 | |
| 
 | |
| 	if (!err) {
 | |
| 		struct node *node;
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_for_each_entry(node, &tree->chunks, list)
 | |
| 			node->index &= ~(1U<<31);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 	} else {
 | |
| 		trim_marked(tree);
 | |
| 		goto Err;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	if (list_empty(&rule->rlist)) {
 | |
| 		put_tree(tree);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	rule->tree = tree;
 | |
| 	put_tree(tree);
 | |
| 
 | |
| 	return 0;
 | |
| Err:
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_del_init(&tree->list);
 | |
| 	list_del_init(&tree->rules);
 | |
| 	put_tree(tree);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int audit_tag_tree(char *old, char *new)
 | |
| {
 | |
| 	struct list_head cursor, barrier;
 | |
| 	int failed = 0;
 | |
| 	struct path path1, path2;
 | |
| 	struct vfsmount *tagged;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kern_path(new, 0, &path2);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	tagged = collect_mounts(&path2);
 | |
| 	path_put(&path2);
 | |
| 	if (IS_ERR(tagged))
 | |
| 		return PTR_ERR(tagged);
 | |
| 
 | |
| 	err = kern_path(old, 0, &path1);
 | |
| 	if (err) {
 | |
| 		drop_collected_mounts(tagged);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_add(&barrier, &tree_list);
 | |
| 	list_add(&cursor, &barrier);
 | |
| 
 | |
| 	while (cursor.next != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 		int good_one = 0;
 | |
| 
 | |
| 		tree = container_of(cursor.next, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_del(&cursor);
 | |
| 		list_add(&cursor, &tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		err = kern_path(tree->pathname, 0, &path2);
 | |
| 		if (!err) {
 | |
| 			good_one = path_is_under(&path1, &path2);
 | |
| 			path_put(&path2);
 | |
| 		}
 | |
| 
 | |
| 		if (!good_one) {
 | |
| 			put_tree(tree);
 | |
| 			mutex_lock(&audit_filter_mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		failed = iterate_mounts(tag_mount, tree, tagged);
 | |
| 		if (failed) {
 | |
| 			put_tree(tree);
 | |
| 			mutex_lock(&audit_filter_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 		spin_lock(&hash_lock);
 | |
| 		if (!tree->goner) {
 | |
| 			list_del(&tree->list);
 | |
| 			list_add(&tree->list, &tree_list);
 | |
| 		}
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		put_tree(tree);
 | |
| 	}
 | |
| 
 | |
| 	while (barrier.prev != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 
 | |
| 		tree = container_of(barrier.prev, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_del(&tree->list);
 | |
| 		list_add(&tree->list, &barrier);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		if (!failed) {
 | |
| 			struct node *node;
 | |
| 			spin_lock(&hash_lock);
 | |
| 			list_for_each_entry(node, &tree->chunks, list)
 | |
| 				node->index &= ~(1U<<31);
 | |
| 			spin_unlock(&hash_lock);
 | |
| 		} else {
 | |
| 			trim_marked(tree);
 | |
| 		}
 | |
| 
 | |
| 		put_tree(tree);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 	list_del(&barrier);
 | |
| 	list_del(&cursor);
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	path_put(&path1);
 | |
| 	drop_collected_mounts(tagged);
 | |
| 	return failed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * That gets run when evict_chunk() ends up needing to kill audit_tree.
 | |
|  * Runs from a separate thread.
 | |
|  */
 | |
| static int prune_tree_thread(void *unused)
 | |
| {
 | |
| 	mutex_lock(&audit_cmd_mutex);
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 
 | |
| 	while (!list_empty(&prune_list)) {
 | |
| 		struct audit_tree *victim;
 | |
| 
 | |
| 		victim = list_entry(prune_list.next, struct audit_tree, list);
 | |
| 		list_del_init(&victim->list);
 | |
| 
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		prune_one(victim);
 | |
| 
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	mutex_unlock(&audit_cmd_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void audit_schedule_prune(void)
 | |
| {
 | |
| 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ... and that one is done if evict_chunk() decides to delay until the end
 | |
|  * of syscall.  Runs synchronously.
 | |
|  */
 | |
| void audit_kill_trees(struct list_head *list)
 | |
| {
 | |
| 	mutex_lock(&audit_cmd_mutex);
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 
 | |
| 	while (!list_empty(list)) {
 | |
| 		struct audit_tree *victim;
 | |
| 
 | |
| 		victim = list_entry(list->next, struct audit_tree, list);
 | |
| 		kill_rules(victim);
 | |
| 		list_del_init(&victim->list);
 | |
| 
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		prune_one(victim);
 | |
| 
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	mutex_unlock(&audit_cmd_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Here comes the stuff asynchronous to auditctl operations
 | |
|  */
 | |
| 
 | |
| static void evict_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct audit_tree *owner;
 | |
| 	struct list_head *postponed = audit_killed_trees();
 | |
| 	int need_prune = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	if (chunk->dead)
 | |
| 		return;
 | |
| 
 | |
| 	chunk->dead = 1;
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	spin_lock(&hash_lock);
 | |
| 	while (!list_empty(&chunk->trees)) {
 | |
| 		owner = list_entry(chunk->trees.next,
 | |
| 				   struct audit_tree, same_root);
 | |
| 		owner->goner = 1;
 | |
| 		owner->root = NULL;
 | |
| 		list_del_init(&owner->same_root);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		if (!postponed) {
 | |
| 			kill_rules(owner);
 | |
| 			list_move(&owner->list, &prune_list);
 | |
| 			need_prune = 1;
 | |
| 		} else {
 | |
| 			list_move(&owner->list, postponed);
 | |
| 		}
 | |
| 		spin_lock(&hash_lock);
 | |
| 	}
 | |
| 	list_del_rcu(&chunk->hash);
 | |
| 	for (n = 0; n < chunk->count; n++)
 | |
| 		list_del_init(&chunk->owners[n].list);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	if (need_prune)
 | |
| 		audit_schedule_prune();
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| }
 | |
| 
 | |
| static int audit_tree_handle_event(struct fsnotify_group *group,
 | |
| 				   struct fsnotify_mark *inode_mark,
 | |
| 				   struct fsnotify_mark *vfsmonut_mark,
 | |
| 				   struct fsnotify_event *event)
 | |
| {
 | |
| 	BUG();
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
 | |
| {
 | |
| 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
 | |
| 
 | |
| 	evict_chunk(chunk);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are guaranteed to have at least one reference to the mark from
 | |
| 	 * either the inode or the caller of fsnotify_destroy_mark().
 | |
| 	 */
 | |
| 	BUG_ON(atomic_read(&entry->refcnt) < 1);
 | |
| }
 | |
| 
 | |
| static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
 | |
| 				  struct fsnotify_mark *inode_mark,
 | |
| 				  struct fsnotify_mark *vfsmount_mark,
 | |
| 				  __u32 mask, void *data, int data_type)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static const struct fsnotify_ops audit_tree_ops = {
 | |
| 	.handle_event = audit_tree_handle_event,
 | |
| 	.should_send_event = audit_tree_send_event,
 | |
| 	.free_group_priv = NULL,
 | |
| 	.free_event_priv = NULL,
 | |
| 	.freeing_mark = audit_tree_freeing_mark,
 | |
| };
 | |
| 
 | |
| static int __init audit_tree_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
 | |
| 	if (IS_ERR(audit_tree_group))
 | |
| 		audit_panic("cannot initialize fsnotify group for rectree watches");
 | |
| 
 | |
| 	for (i = 0; i < HASH_SIZE; i++)
 | |
| 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(audit_tree_init);
 |