 bf7ad8eeab
			
		
	
	
	bf7ad8eeab
	
	
	
		
			
			rbtree users must use the documented APIs to manipulate the tree structure. Low-level helpers to manipulate node colors and parenthood are not part of that API, so move them to lib/rbtree.c [dwmw2@infradead.org: fix jffs2 build issue due to renamed __rb_parent_color field] Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1471 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1471 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/compiler.h>
 | |
| #include "nodelist.h"
 | |
| 
 | |
| /*
 | |
|  * Check the data CRC of the node.
 | |
|  *
 | |
|  * Returns: 0 if the data CRC is correct;
 | |
|  * 	    1 - if incorrect;
 | |
|  *	    error code if an error occurred.
 | |
|  */
 | |
| static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
 | |
| {
 | |
| 	struct jffs2_raw_node_ref *ref = tn->fn->raw;
 | |
| 	int err = 0, pointed = 0;
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	unsigned char *buffer;
 | |
| 	uint32_t crc, ofs, len;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	BUG_ON(tn->csize == 0);
 | |
| 
 | |
| 	/* Calculate how many bytes were already checked */
 | |
| 	ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
 | |
| 	len = tn->csize;
 | |
| 
 | |
| 	if (jffs2_is_writebuffered(c)) {
 | |
| 		int adj = ofs % c->wbuf_pagesize;
 | |
| 		if (likely(adj))
 | |
| 			adj = c->wbuf_pagesize - adj;
 | |
| 
 | |
| 		if (adj >= tn->csize) {
 | |
| 			dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
 | |
| 				      ref_offset(ref), tn->csize, ofs);
 | |
| 			goto adj_acc;
 | |
| 		}
 | |
| 
 | |
| 		ofs += adj;
 | |
| 		len -= adj;
 | |
| 	}
 | |
| 
 | |
| 	dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
 | |
| 		ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
 | |
| 
 | |
| #ifndef __ECOS
 | |
| 	/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
 | |
| 	 * adding and jffs2_flash_read_end() interface. */
 | |
| 	err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL);
 | |
| 	if (!err && retlen < len) {
 | |
| 		JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
 | |
| 		mtd_unpoint(c->mtd, ofs, retlen);
 | |
| 	} else if (err) {
 | |
| 		if (err != -EOPNOTSUPP)
 | |
| 			JFFS2_WARNING("MTD point failed: error code %d.\n", err);
 | |
| 	} else
 | |
| 		pointed = 1; /* succefully pointed to device */
 | |
| #endif
 | |
| 
 | |
| 	if (!pointed) {
 | |
| 		buffer = kmalloc(len, GFP_KERNEL);
 | |
| 		if (unlikely(!buffer))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* TODO: this is very frequent pattern, make it a separate
 | |
| 		 * routine */
 | |
| 		err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
 | |
| 		if (err) {
 | |
| 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 
 | |
| 		if (retlen != len) {
 | |
| 			JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
 | |
| 			err = -EIO;
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Continue calculating CRC */
 | |
| 	crc = crc32(tn->partial_crc, buffer, len);
 | |
| 	if(!pointed)
 | |
| 		kfree(buffer);
 | |
| #ifndef __ECOS
 | |
| 	else
 | |
| 		mtd_unpoint(c->mtd, ofs, len);
 | |
| #endif
 | |
| 
 | |
| 	if (crc != tn->data_crc) {
 | |
| 		JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
 | |
| 			     ref_offset(ref), tn->data_crc, crc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| adj_acc:
 | |
| 	jeb = &c->blocks[ref->flash_offset / c->sector_size];
 | |
| 	len = ref_totlen(c, jeb, ref);
 | |
| 	/* If it should be REF_NORMAL, it'll get marked as such when
 | |
| 	   we build the fragtree, shortly. No need to worry about GC
 | |
| 	   moving it while it's marked REF_PRISTINE -- GC won't happen
 | |
| 	   till we've finished checking every inode anyway. */
 | |
| 	ref->flash_offset |= REF_PRISTINE;
 | |
| 	/*
 | |
| 	 * Mark the node as having been checked and fix the
 | |
| 	 * accounting accordingly.
 | |
| 	 */
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	jeb->used_size += len;
 | |
| 	jeb->unchecked_size -= len;
 | |
| 	c->used_size += len;
 | |
| 	c->unchecked_size -= len;
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_out:
 | |
| 	if(!pointed)
 | |
| 		kfree(buffer);
 | |
| #ifndef __ECOS
 | |
| 	else
 | |
| 		mtd_unpoint(c->mtd, ofs, len);
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for jffs2_add_older_frag_to_fragtree().
 | |
|  *
 | |
|  * Checks the node if we are in the checking stage.
 | |
|  */
 | |
| static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(ref_obsolete(tn->fn->raw));
 | |
| 
 | |
| 	/* We only check the data CRC of unchecked nodes */
 | |
| 	if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
 | |
| 		return 0;
 | |
| 
 | |
| 	dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
 | |
| 		      tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
 | |
| 
 | |
| 	ret = check_node_data(c, tn);
 | |
| 	if (unlikely(ret < 0)) {
 | |
| 		JFFS2_ERROR("check_node_data() returned error: %d.\n",
 | |
| 			ret);
 | |
| 	} else if (unlikely(ret > 0)) {
 | |
| 		dbg_readinode("CRC error, mark it obsolete.\n");
 | |
| 		jffs2_mark_node_obsolete(c, tn->fn->raw);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
 | |
| {
 | |
| 	struct rb_node *next;
 | |
| 	struct jffs2_tmp_dnode_info *tn = NULL;
 | |
| 
 | |
| 	dbg_readinode("root %p, offset %d\n", tn_root, offset);
 | |
| 
 | |
| 	next = tn_root->rb_node;
 | |
| 
 | |
| 	while (next) {
 | |
| 		tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
 | |
| 
 | |
| 		if (tn->fn->ofs < offset)
 | |
| 			next = tn->rb.rb_right;
 | |
| 		else if (tn->fn->ofs >= offset)
 | |
| 			next = tn->rb.rb_left;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return tn;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
 | |
| {
 | |
| 	jffs2_mark_node_obsolete(c, tn->fn->raw);
 | |
| 	jffs2_free_full_dnode(tn->fn);
 | |
| 	jffs2_free_tmp_dnode_info(tn);
 | |
| }
 | |
| /*
 | |
|  * This function is used when we read an inode. Data nodes arrive in
 | |
|  * arbitrary order -- they may be older or newer than the nodes which
 | |
|  * are already in the tree. Where overlaps occur, the older node can
 | |
|  * be discarded as long as the newer passes the CRC check. We don't
 | |
|  * bother to keep track of holes in this rbtree, and neither do we deal
 | |
|  * with frags -- we can have multiple entries starting at the same
 | |
|  * offset, and the one with the smallest length will come first in the
 | |
|  * ordering.
 | |
|  *
 | |
|  * Returns 0 if the node was handled (including marking it obsolete)
 | |
|  *	 < 0 an if error occurred
 | |
|  */
 | |
| static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
 | |
| 				struct jffs2_readinode_info *rii,
 | |
| 				struct jffs2_tmp_dnode_info *tn)
 | |
| {
 | |
| 	uint32_t fn_end = tn->fn->ofs + tn->fn->size;
 | |
| 	struct jffs2_tmp_dnode_info *this, *ptn;
 | |
| 
 | |
| 	dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
 | |
| 
 | |
| 	/* If a node has zero dsize, we only have to keep if it if it might be the
 | |
| 	   node with highest version -- i.e. the one which will end up as f->metadata.
 | |
| 	   Note that such nodes won't be REF_UNCHECKED since there are no data to
 | |
| 	   check anyway. */
 | |
| 	if (!tn->fn->size) {
 | |
| 		if (rii->mdata_tn) {
 | |
| 			if (rii->mdata_tn->version < tn->version) {
 | |
| 				/* We had a candidate mdata node already */
 | |
| 				dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
 | |
| 				jffs2_kill_tn(c, rii->mdata_tn);
 | |
| 			} else {
 | |
| 				dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
 | |
| 					      tn->version, rii->mdata_tn->version);
 | |
| 				jffs2_kill_tn(c, tn);
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		rii->mdata_tn = tn;
 | |
| 		dbg_readinode("keep new mdata with ver %d\n", tn->version);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the earliest node which _may_ be relevant to this one */
 | |
| 	this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
 | |
| 	if (this) {
 | |
| 		/* If the node is coincident with another at a lower address,
 | |
| 		   back up until the other node is found. It may be relevant */
 | |
| 		while (this->overlapped) {
 | |
| 			ptn = tn_prev(this);
 | |
| 			if (!ptn) {
 | |
| 				/*
 | |
| 				 * We killed a node which set the overlapped
 | |
| 				 * flags during the scan. Fix it up.
 | |
| 				 */
 | |
| 				this->overlapped = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			this = ptn;
 | |
| 		}
 | |
| 		dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
 | |
| 	}
 | |
| 
 | |
| 	while (this) {
 | |
| 		if (this->fn->ofs > fn_end)
 | |
| 			break;
 | |
| 		dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
 | |
| 			      this->version, this->fn->ofs, this->fn->size);
 | |
| 
 | |
| 		if (this->version == tn->version) {
 | |
| 			/* Version number collision means REF_PRISTINE GC. Accept either of them
 | |
| 			   as long as the CRC is correct. Check the one we have already...  */
 | |
| 			if (!check_tn_node(c, this)) {
 | |
| 				/* The one we already had was OK. Keep it and throw away the new one */
 | |
| 				dbg_readinode("Like old node. Throw away new\n");
 | |
| 				jffs2_kill_tn(c, tn);
 | |
| 				return 0;
 | |
| 			} else {
 | |
| 				/* Who cares if the new one is good; keep it for now anyway. */
 | |
| 				dbg_readinode("Like new node. Throw away old\n");
 | |
| 				rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
 | |
| 				jffs2_kill_tn(c, this);
 | |
| 				/* Same overlapping from in front and behind */
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		if (this->version < tn->version &&
 | |
| 		    this->fn->ofs >= tn->fn->ofs &&
 | |
| 		    this->fn->ofs + this->fn->size <= fn_end) {
 | |
| 			/* New node entirely overlaps 'this' */
 | |
| 			if (check_tn_node(c, tn)) {
 | |
| 				dbg_readinode("new node bad CRC\n");
 | |
| 				jffs2_kill_tn(c, tn);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
 | |
| 			while (this && this->fn->ofs + this->fn->size <= fn_end) {
 | |
| 				struct jffs2_tmp_dnode_info *next = tn_next(this);
 | |
| 				if (this->version < tn->version) {
 | |
| 					tn_erase(this, &rii->tn_root);
 | |
| 					dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
 | |
| 						      this->version, this->fn->ofs,
 | |
| 						      this->fn->ofs+this->fn->size);
 | |
| 					jffs2_kill_tn(c, this);
 | |
| 				}
 | |
| 				this = next;
 | |
| 			}
 | |
| 			dbg_readinode("Done killing overlapped nodes\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (this->version > tn->version &&
 | |
| 		    this->fn->ofs <= tn->fn->ofs &&
 | |
| 		    this->fn->ofs+this->fn->size >= fn_end) {
 | |
| 			/* New node entirely overlapped by 'this' */
 | |
| 			if (!check_tn_node(c, this)) {
 | |
| 				dbg_readinode("Good CRC on old node. Kill new\n");
 | |
| 				jffs2_kill_tn(c, tn);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			/* ... but 'this' was bad. Replace it... */
 | |
| 			dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
 | |
| 			tn_erase(this, &rii->tn_root);
 | |
| 			jffs2_kill_tn(c, this);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		this = tn_next(this);
 | |
| 	}
 | |
| 
 | |
| 	/* We neither completely obsoleted nor were completely
 | |
| 	   obsoleted by an earlier node. Insert into the tree */
 | |
| 	{
 | |
| 		struct rb_node *parent;
 | |
| 		struct rb_node **link = &rii->tn_root.rb_node;
 | |
| 		struct jffs2_tmp_dnode_info *insert_point = NULL;
 | |
| 
 | |
| 		while (*link) {
 | |
| 			parent = *link;
 | |
| 			insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
 | |
| 			if (tn->fn->ofs > insert_point->fn->ofs)
 | |
| 				link = &insert_point->rb.rb_right;
 | |
| 			else if (tn->fn->ofs < insert_point->fn->ofs ||
 | |
| 				 tn->fn->size < insert_point->fn->size)
 | |
| 				link = &insert_point->rb.rb_left;
 | |
| 			else
 | |
| 				link = &insert_point->rb.rb_right;
 | |
| 		}
 | |
| 		rb_link_node(&tn->rb, &insert_point->rb, link);
 | |
| 		rb_insert_color(&tn->rb, &rii->tn_root);
 | |
| 	}
 | |
| 
 | |
| 	/* If there's anything behind that overlaps us, note it */
 | |
| 	this = tn_prev(tn);
 | |
| 	if (this) {
 | |
| 		while (1) {
 | |
| 			if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
 | |
| 				dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
 | |
| 					      this, this->version, this->fn->ofs,
 | |
| 					      this->fn->ofs+this->fn->size);
 | |
| 				tn->overlapped = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (!this->overlapped)
 | |
| 				break;
 | |
| 
 | |
| 			ptn = tn_prev(this);
 | |
| 			if (!ptn) {
 | |
| 				/*
 | |
| 				 * We killed a node which set the overlapped
 | |
| 				 * flags during the scan. Fix it up.
 | |
| 				 */
 | |
| 				this->overlapped = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			this = ptn;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If the new node overlaps anything ahead, note it */
 | |
| 	this = tn_next(tn);
 | |
| 	while (this && this->fn->ofs < fn_end) {
 | |
| 		this->overlapped = 1;
 | |
| 		dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
 | |
| 			      this->version, this->fn->ofs,
 | |
| 			      this->fn->ofs+this->fn->size);
 | |
| 		this = tn_next(this);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Trivial function to remove the last node in the tree. Which by definition
 | |
|    has no right-hand child — so can be removed just by making its left-hand
 | |
|    child (if any) take its place under its parent. Since this is only done
 | |
|    when we're consuming the whole tree, there's no need to use rb_erase()
 | |
|    and let it worry about adjusting colours and balancing the tree. That
 | |
|    would just be a waste of time. */
 | |
| static void eat_last(struct rb_root *root, struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node *parent = rb_parent(node);
 | |
| 	struct rb_node **link;
 | |
| 
 | |
| 	/* LAST! */
 | |
| 	BUG_ON(node->rb_right);
 | |
| 
 | |
| 	if (!parent)
 | |
| 		link = &root->rb_node;
 | |
| 	else if (node == parent->rb_left)
 | |
| 		link = &parent->rb_left;
 | |
| 	else
 | |
| 		link = &parent->rb_right;
 | |
| 
 | |
| 	*link = node->rb_left;
 | |
| 	if (node->rb_left)
 | |
| 		node->rb_left->__rb_parent_color = node->__rb_parent_color;
 | |
| }
 | |
| 
 | |
| /* We put the version tree in reverse order, so we can use the same eat_last()
 | |
|    function that we use to consume the tmpnode tree (tn_root). */
 | |
| static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
 | |
| {
 | |
| 	struct rb_node **link = &ver_root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct jffs2_tmp_dnode_info *this_tn;
 | |
| 
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
 | |
| 
 | |
| 		if (tn->version > this_tn->version)
 | |
| 			link = &parent->rb_left;
 | |
| 		else
 | |
| 			link = &parent->rb_right;
 | |
| 	}
 | |
| 	dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
 | |
| 	rb_link_node(&tn->rb, parent, link);
 | |
| 	rb_insert_color(&tn->rb, ver_root);
 | |
| }
 | |
| 
 | |
| /* Build final, normal fragtree from tn tree. It doesn't matter which order
 | |
|    we add nodes to the real fragtree, as long as they don't overlap. And
 | |
|    having thrown away the majority of overlapped nodes as we went, there
 | |
|    really shouldn't be many sets of nodes which do overlap. If we start at
 | |
|    the end, we can use the overlap markers -- we can just eat nodes which
 | |
|    aren't overlapped, and when we encounter nodes which _do_ overlap we
 | |
|    sort them all into a temporary tree in version order before replaying them. */
 | |
| static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
 | |
| 				      struct jffs2_inode_info *f,
 | |
| 				      struct jffs2_readinode_info *rii)
 | |
| {
 | |
| 	struct jffs2_tmp_dnode_info *pen, *last, *this;
 | |
| 	struct rb_root ver_root = RB_ROOT;
 | |
| 	uint32_t high_ver = 0;
 | |
| 
 | |
| 	if (rii->mdata_tn) {
 | |
| 		dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
 | |
| 		high_ver = rii->mdata_tn->version;
 | |
| 		rii->latest_ref = rii->mdata_tn->fn->raw;
 | |
| 	}
 | |
| #ifdef JFFS2_DBG_READINODE_MESSAGES
 | |
| 	this = tn_last(&rii->tn_root);
 | |
| 	while (this) {
 | |
| 		dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
 | |
| 			      this->fn->ofs+this->fn->size, this->overlapped);
 | |
| 		this = tn_prev(this);
 | |
| 	}
 | |
| #endif
 | |
| 	pen = tn_last(&rii->tn_root);
 | |
| 	while ((last = pen)) {
 | |
| 		pen = tn_prev(last);
 | |
| 
 | |
| 		eat_last(&rii->tn_root, &last->rb);
 | |
| 		ver_insert(&ver_root, last);
 | |
| 
 | |
| 		if (unlikely(last->overlapped)) {
 | |
| 			if (pen)
 | |
| 				continue;
 | |
| 			/*
 | |
| 			 * We killed a node which set the overlapped
 | |
| 			 * flags during the scan. Fix it up.
 | |
| 			 */
 | |
| 			last->overlapped = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Now we have a bunch of nodes in reverse version
 | |
| 		   order, in the tree at ver_root. Most of the time,
 | |
| 		   there'll actually be only one node in the 'tree',
 | |
| 		   in fact. */
 | |
| 		this = tn_last(&ver_root);
 | |
| 
 | |
| 		while (this) {
 | |
| 			struct jffs2_tmp_dnode_info *vers_next;
 | |
| 			int ret;
 | |
| 			vers_next = tn_prev(this);
 | |
| 			eat_last(&ver_root, &this->rb);
 | |
| 			if (check_tn_node(c, this)) {
 | |
| 				dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
 | |
| 					     this->version, this->fn->ofs,
 | |
| 					     this->fn->ofs+this->fn->size);
 | |
| 				jffs2_kill_tn(c, this);
 | |
| 			} else {
 | |
| 				if (this->version > high_ver) {
 | |
| 					/* Note that this is different from the other
 | |
| 					   highest_version, because this one is only
 | |
| 					   counting _valid_ nodes which could give the
 | |
| 					   latest inode metadata */
 | |
| 					high_ver = this->version;
 | |
| 					rii->latest_ref = this->fn->raw;
 | |
| 				}
 | |
| 				dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
 | |
| 					     this, this->version, this->fn->ofs,
 | |
| 					     this->fn->ofs+this->fn->size, this->overlapped);
 | |
| 
 | |
| 				ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
 | |
| 				if (ret) {
 | |
| 					/* Free the nodes in vers_root; let the caller
 | |
| 					   deal with the rest */
 | |
| 					JFFS2_ERROR("Add node to tree failed %d\n", ret);
 | |
| 					while (1) {
 | |
| 						vers_next = tn_prev(this);
 | |
| 						if (check_tn_node(c, this))
 | |
| 							jffs2_mark_node_obsolete(c, this->fn->raw);
 | |
| 						jffs2_free_full_dnode(this->fn);
 | |
| 						jffs2_free_tmp_dnode_info(this);
 | |
| 						this = vers_next;
 | |
| 						if (!this)
 | |
| 							break;
 | |
| 						eat_last(&ver_root, &vers_next->rb);
 | |
| 					}
 | |
| 					return ret;
 | |
| 				}
 | |
| 				jffs2_free_tmp_dnode_info(this);
 | |
| 			}
 | |
| 			this = vers_next;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
 | |
| {
 | |
| 	struct rb_node *this;
 | |
| 	struct jffs2_tmp_dnode_info *tn;
 | |
| 
 | |
| 	this = list->rb_node;
 | |
| 
 | |
| 	/* Now at bottom of tree */
 | |
| 	while (this) {
 | |
| 		if (this->rb_left)
 | |
| 			this = this->rb_left;
 | |
| 		else if (this->rb_right)
 | |
| 			this = this->rb_right;
 | |
| 		else {
 | |
| 			tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
 | |
| 			jffs2_free_full_dnode(tn->fn);
 | |
| 			jffs2_free_tmp_dnode_info(tn);
 | |
| 
 | |
| 			this = rb_parent(this);
 | |
| 			if (!this)
 | |
| 				break;
 | |
| 
 | |
| 			if (this->rb_left == &tn->rb)
 | |
| 				this->rb_left = NULL;
 | |
| 			else if (this->rb_right == &tn->rb)
 | |
| 				this->rb_right = NULL;
 | |
| 			else BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	*list = RB_ROOT;
 | |
| }
 | |
| 
 | |
| static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
 | |
| {
 | |
| 	struct jffs2_full_dirent *next;
 | |
| 
 | |
| 	while (fd) {
 | |
| 		next = fd->next;
 | |
| 		jffs2_free_full_dirent(fd);
 | |
| 		fd = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns first valid node after 'ref'. May return 'ref' */
 | |
| static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
 | |
| {
 | |
| 	while (ref && ref->next_in_ino) {
 | |
| 		if (!ref_obsolete(ref))
 | |
| 			return ref;
 | |
| 		dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
 | |
| 		ref = ref->next_in_ino;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for jffs2_get_inode_nodes().
 | |
|  * It is called every time an directory entry node is found.
 | |
|  *
 | |
|  * Returns: 0 on success;
 | |
|  * 	    negative error code on failure.
 | |
|  */
 | |
| static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
 | |
| 				struct jffs2_raw_dirent *rd, size_t read,
 | |
| 				struct jffs2_readinode_info *rii)
 | |
| {
 | |
| 	struct jffs2_full_dirent *fd;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
 | |
| 	BUG_ON(ref_obsolete(ref));
 | |
| 
 | |
| 	crc = crc32(0, rd, sizeof(*rd) - 8);
 | |
| 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
 | |
| 		JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
 | |
| 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
 | |
| 		jffs2_mark_node_obsolete(c, ref);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* If we've never checked the CRCs on this node, check them now */
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 		struct jffs2_eraseblock *jeb;
 | |
| 		int len;
 | |
| 
 | |
| 		/* Sanity check */
 | |
| 		if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
 | |
| 			JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
 | |
| 				    ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
 | |
| 			jffs2_mark_node_obsolete(c, ref);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		jeb = &c->blocks[ref->flash_offset / c->sector_size];
 | |
| 		len = ref_totlen(c, jeb, ref);
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 		jeb->used_size += len;
 | |
| 		jeb->unchecked_size -= len;
 | |
| 		c->used_size += len;
 | |
| 		c->unchecked_size -= len;
 | |
| 		ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 	fd = jffs2_alloc_full_dirent(rd->nsize + 1);
 | |
| 	if (unlikely(!fd))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	fd->raw = ref;
 | |
| 	fd->version = je32_to_cpu(rd->version);
 | |
| 	fd->ino = je32_to_cpu(rd->ino);
 | |
| 	fd->type = rd->type;
 | |
| 
 | |
| 	if (fd->version > rii->highest_version)
 | |
| 		rii->highest_version = fd->version;
 | |
| 
 | |
| 	/* Pick out the mctime of the latest dirent */
 | |
| 	if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
 | |
| 		rii->mctime_ver = fd->version;
 | |
| 		rii->latest_mctime = je32_to_cpu(rd->mctime);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy as much of the name as possible from the raw
 | |
| 	 * dirent we've already read from the flash.
 | |
| 	 */
 | |
| 	if (read > sizeof(*rd))
 | |
| 		memcpy(&fd->name[0], &rd->name[0],
 | |
| 		       min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
 | |
| 
 | |
| 	/* Do we need to copy any more of the name directly from the flash? */
 | |
| 	if (rd->nsize + sizeof(*rd) > read) {
 | |
| 		/* FIXME: point() */
 | |
| 		int err;
 | |
| 		int already = read - sizeof(*rd);
 | |
| 
 | |
| 		err = jffs2_flash_read(c, (ref_offset(ref)) + read,
 | |
| 				rd->nsize - already, &read, &fd->name[already]);
 | |
| 		if (unlikely(read != rd->nsize - already) && likely(!err))
 | |
| 			return -EIO;
 | |
| 
 | |
| 		if (unlikely(err)) {
 | |
| 			JFFS2_ERROR("read remainder of name: error %d\n", err);
 | |
| 			jffs2_free_full_dirent(fd);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fd->nhash = full_name_hash(fd->name, rd->nsize);
 | |
| 	fd->next = NULL;
 | |
| 	fd->name[rd->nsize] = '\0';
 | |
| 
 | |
| 	/*
 | |
| 	 * Wheee. We now have a complete jffs2_full_dirent structure, with
 | |
| 	 * the name in it and everything. Link it into the list
 | |
| 	 */
 | |
| 	jffs2_add_fd_to_list(c, fd, &rii->fds);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for jffs2_get_inode_nodes().
 | |
|  * It is called every time an inode node is found.
 | |
|  *
 | |
|  * Returns: 0 on success (possibly after marking a bad node obsolete);
 | |
|  * 	    negative error code on failure.
 | |
|  */
 | |
| static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
 | |
| 			     struct jffs2_raw_inode *rd, int rdlen,
 | |
| 			     struct jffs2_readinode_info *rii)
 | |
| {
 | |
| 	struct jffs2_tmp_dnode_info *tn;
 | |
| 	uint32_t len, csize;
 | |
| 	int ret = 0;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
 | |
| 	BUG_ON(ref_obsolete(ref));
 | |
| 
 | |
| 	crc = crc32(0, rd, sizeof(*rd) - 8);
 | |
| 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
 | |
| 		JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
 | |
| 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
 | |
| 		jffs2_mark_node_obsolete(c, ref);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	tn = jffs2_alloc_tmp_dnode_info();
 | |
| 	if (!tn) {
 | |
| 		JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tn->partial_crc = 0;
 | |
| 	csize = je32_to_cpu(rd->csize);
 | |
| 
 | |
| 	/* If we've never checked the CRCs on this node, check them now */
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 
 | |
| 		/* Sanity checks */
 | |
| 		if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
 | |
| 		    unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
 | |
| 			JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
 | |
| 			jffs2_dbg_dump_node(c, ref_offset(ref));
 | |
| 			jffs2_mark_node_obsolete(c, ref);
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 
 | |
| 		if (jffs2_is_writebuffered(c) && csize != 0) {
 | |
| 			/* At this point we are supposed to check the data CRC
 | |
| 			 * of our unchecked node. But thus far, we do not
 | |
| 			 * know whether the node is valid or obsolete. To
 | |
| 			 * figure this out, we need to walk all the nodes of
 | |
| 			 * the inode and build the inode fragtree. We don't
 | |
| 			 * want to spend time checking data of nodes which may
 | |
| 			 * later be found to be obsolete. So we put off the full
 | |
| 			 * data CRC checking until we have read all the inode
 | |
| 			 * nodes and have started building the fragtree.
 | |
| 			 *
 | |
| 			 * The fragtree is being built starting with nodes
 | |
| 			 * having the highest version number, so we'll be able
 | |
| 			 * to detect whether a node is valid (i.e., it is not
 | |
| 			 * overlapped by a node with higher version) or not.
 | |
| 			 * And we'll be able to check only those nodes, which
 | |
| 			 * are not obsolete.
 | |
| 			 *
 | |
| 			 * Of course, this optimization only makes sense in case
 | |
| 			 * of NAND flashes (or other flashes with
 | |
| 			 * !jffs2_can_mark_obsolete()), since on NOR flashes
 | |
| 			 * nodes are marked obsolete physically.
 | |
| 			 *
 | |
| 			 * Since NAND flashes (or other flashes with
 | |
| 			 * jffs2_is_writebuffered(c)) are anyway read by
 | |
| 			 * fractions of c->wbuf_pagesize, and we have just read
 | |
| 			 * the node header, it is likely that the starting part
 | |
| 			 * of the node data is also read when we read the
 | |
| 			 * header. So we don't mind to check the CRC of the
 | |
| 			 * starting part of the data of the node now, and check
 | |
| 			 * the second part later (in jffs2_check_node_data()).
 | |
| 			 * Of course, we will not need to re-read and re-check
 | |
| 			 * the NAND page which we have just read. This is why we
 | |
| 			 * read the whole NAND page at jffs2_get_inode_nodes(),
 | |
| 			 * while we needed only the node header.
 | |
| 			 */
 | |
| 			unsigned char *buf;
 | |
| 
 | |
| 			/* 'buf' will point to the start of data */
 | |
| 			buf = (unsigned char *)rd + sizeof(*rd);
 | |
| 			/* len will be the read data length */
 | |
| 			len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
 | |
| 			tn->partial_crc = crc32(0, buf, len);
 | |
| 
 | |
| 			dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
 | |
| 
 | |
| 			/* If we actually calculated the whole data CRC
 | |
| 			 * and it is wrong, drop the node. */
 | |
| 			if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
 | |
| 				JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
 | |
| 					ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
 | |
| 				jffs2_mark_node_obsolete(c, ref);
 | |
| 				goto free_out;
 | |
| 			}
 | |
| 
 | |
| 		} else if (csize == 0) {
 | |
| 			/*
 | |
| 			 * We checked the header CRC. If the node has no data, adjust
 | |
| 			 * the space accounting now. For other nodes this will be done
 | |
| 			 * later either when the node is marked obsolete or when its
 | |
| 			 * data is checked.
 | |
| 			 */
 | |
| 			struct jffs2_eraseblock *jeb;
 | |
| 
 | |
| 			dbg_readinode("the node has no data.\n");
 | |
| 			jeb = &c->blocks[ref->flash_offset / c->sector_size];
 | |
| 			len = ref_totlen(c, jeb, ref);
 | |
| 
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 			jeb->used_size += len;
 | |
| 			jeb->unchecked_size -= len;
 | |
| 			c->used_size += len;
 | |
| 			c->unchecked_size -= len;
 | |
| 			ref->flash_offset = ref_offset(ref) | REF_NORMAL;
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tn->fn = jffs2_alloc_full_dnode();
 | |
| 	if (!tn->fn) {
 | |
| 		JFFS2_ERROR("alloc fn failed\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_out;
 | |
| 	}
 | |
| 
 | |
| 	tn->version = je32_to_cpu(rd->version);
 | |
| 	tn->fn->ofs = je32_to_cpu(rd->offset);
 | |
| 	tn->data_crc = je32_to_cpu(rd->data_crc);
 | |
| 	tn->csize = csize;
 | |
| 	tn->fn->raw = ref;
 | |
| 	tn->overlapped = 0;
 | |
| 
 | |
| 	if (tn->version > rii->highest_version)
 | |
| 		rii->highest_version = tn->version;
 | |
| 
 | |
| 	/* There was a bug where we wrote hole nodes out with
 | |
| 	   csize/dsize swapped. Deal with it */
 | |
| 	if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
 | |
| 		tn->fn->size = csize;
 | |
| 	else // normal case...
 | |
| 		tn->fn->size = je32_to_cpu(rd->dsize);
 | |
| 
 | |
| 	dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
 | |
| 		       ref_offset(ref), je32_to_cpu(rd->version),
 | |
| 		       je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
 | |
| 
 | |
| 	ret = jffs2_add_tn_to_tree(c, rii, tn);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		jffs2_free_full_dnode(tn->fn);
 | |
| 	free_out:
 | |
| 		jffs2_free_tmp_dnode_info(tn);
 | |
| 		return ret;
 | |
| 	}
 | |
| #ifdef JFFS2_DBG_READINODE2_MESSAGES
 | |
| 	dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
 | |
| 	tn = tn_first(&rii->tn_root);
 | |
| 	while (tn) {
 | |
| 		dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
 | |
| 			       tn, tn->version, tn->fn->ofs,
 | |
| 			       tn->fn->ofs+tn->fn->size, tn->overlapped);
 | |
| 		tn = tn_next(tn);
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for jffs2_get_inode_nodes().
 | |
|  * It is called every time an unknown node is found.
 | |
|  *
 | |
|  * Returns: 0 on success;
 | |
|  * 	    negative error code on failure.
 | |
|  */
 | |
| static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
 | |
| {
 | |
| 	/* We don't mark unknown nodes as REF_UNCHECKED */
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 		JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
 | |
| 			    ref_offset(ref));
 | |
| 		JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
 | |
| 			    je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
 | |
| 			    je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
 | |
| 		jffs2_mark_node_obsolete(c, ref);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
 | |
| 
 | |
| 	switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
 | |
| 
 | |
| 	case JFFS2_FEATURE_INCOMPAT:
 | |
| 		JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
 | |
| 			    je16_to_cpu(un->nodetype), ref_offset(ref));
 | |
| 		/* EEP */
 | |
| 		BUG();
 | |
| 		break;
 | |
| 
 | |
| 	case JFFS2_FEATURE_ROCOMPAT:
 | |
| 		JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
 | |
| 			    je16_to_cpu(un->nodetype), ref_offset(ref));
 | |
| 		BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
 | |
| 		break;
 | |
| 
 | |
| 	case JFFS2_FEATURE_RWCOMPAT_COPY:
 | |
| 		JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
 | |
| 			     je16_to_cpu(un->nodetype), ref_offset(ref));
 | |
| 		break;
 | |
| 
 | |
| 	case JFFS2_FEATURE_RWCOMPAT_DELETE:
 | |
| 		JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
 | |
| 			     je16_to_cpu(un->nodetype), ref_offset(ref));
 | |
| 		jffs2_mark_node_obsolete(c, ref);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for jffs2_get_inode_nodes().
 | |
|  * The function detects whether more data should be read and reads it if yes.
 | |
|  *
 | |
|  * Returns: 0 on success;
 | |
|  * 	    negative error code on failure.
 | |
|  */
 | |
| static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
 | |
| 		     int needed_len, int *rdlen, unsigned char *buf)
 | |
| {
 | |
| 	int err, to_read = needed_len - *rdlen;
 | |
| 	size_t retlen;
 | |
| 	uint32_t offs;
 | |
| 
 | |
| 	if (jffs2_is_writebuffered(c)) {
 | |
| 		int rem = to_read % c->wbuf_pagesize;
 | |
| 
 | |
| 		if (rem)
 | |
| 			to_read += c->wbuf_pagesize - rem;
 | |
| 	}
 | |
| 
 | |
| 	/* We need to read more data */
 | |
| 	offs = ref_offset(ref) + *rdlen;
 | |
| 
 | |
| 	dbg_readinode("read more %d bytes\n", to_read);
 | |
| 
 | |
| 	err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
 | |
| 	if (err) {
 | |
| 		JFFS2_ERROR("can not read %d bytes from 0x%08x, "
 | |
| 			"error code: %d.\n", to_read, offs, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (retlen < to_read) {
 | |
| 		JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
 | |
| 				offs, retlen, to_read);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	*rdlen += to_read;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
 | |
|    with this ino. Perform a preliminary ordering on data nodes, throwing away
 | |
|    those which are completely obsoleted by newer ones. The naïve approach we
 | |
|    use to take of just returning them _all_ in version order will cause us to
 | |
|    run out of memory in certain degenerate cases. */
 | |
| static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
 | |
| 				 struct jffs2_readinode_info *rii)
 | |
| {
 | |
| 	struct jffs2_raw_node_ref *ref, *valid_ref;
 | |
| 	unsigned char *buf = NULL;
 | |
| 	union jffs2_node_union *node;
 | |
| 	size_t retlen;
 | |
| 	int len, err;
 | |
| 
 | |
| 	rii->mctime_ver = 0;
 | |
| 
 | |
| 	dbg_readinode("ino #%u\n", f->inocache->ino);
 | |
| 
 | |
| 	/* FIXME: in case of NOR and available ->point() this
 | |
| 	 * needs to be fixed. */
 | |
| 	len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
 | |
| 	buf = kmalloc(len, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	valid_ref = jffs2_first_valid_node(f->inocache->nodes);
 | |
| 	if (!valid_ref && f->inocache->ino != 1)
 | |
| 		JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
 | |
| 	while (valid_ref) {
 | |
| 		/* We can hold a pointer to a non-obsolete node without the spinlock,
 | |
| 		   but _obsolete_ nodes may disappear at any time, if the block
 | |
| 		   they're in gets erased. So if we mark 'ref' obsolete while we're
 | |
| 		   not holding the lock, it can go away immediately. For that reason,
 | |
| 		   we find the next valid node first, before processing 'ref'.
 | |
| 		*/
 | |
| 		ref = valid_ref;
 | |
| 		valid_ref = jffs2_first_valid_node(ref->next_in_ino);
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point we don't know the type of the node we're going
 | |
| 		 * to read, so we do not know the size of its header. In order
 | |
| 		 * to minimize the amount of flash IO we assume the header is
 | |
| 		 * of size = JFFS2_MIN_NODE_HEADER.
 | |
| 		 */
 | |
| 		len = JFFS2_MIN_NODE_HEADER;
 | |
| 		if (jffs2_is_writebuffered(c)) {
 | |
| 			int end, rem;
 | |
| 
 | |
| 			/*
 | |
| 			 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
 | |
| 			 * but this flash has some minimal I/O unit. It is
 | |
| 			 * possible that we'll need to read more soon, so read
 | |
| 			 * up to the next min. I/O unit, in order not to
 | |
| 			 * re-read the same min. I/O unit twice.
 | |
| 			 */
 | |
| 			end = ref_offset(ref) + len;
 | |
| 			rem = end % c->wbuf_pagesize;
 | |
| 			if (rem)
 | |
| 				end += c->wbuf_pagesize - rem;
 | |
| 			len = end - ref_offset(ref);
 | |
| 		}
 | |
| 
 | |
| 		dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
 | |
| 
 | |
| 		/* FIXME: point() */
 | |
| 		err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
 | |
| 		if (err) {
 | |
| 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err);
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 
 | |
| 		if (retlen < len) {
 | |
| 			JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
 | |
| 			err = -EIO;
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 
 | |
| 		node = (union jffs2_node_union *)buf;
 | |
| 
 | |
| 		/* No need to mask in the valid bit; it shouldn't be invalid */
 | |
| 		if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
 | |
| 			JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
 | |
| 				     ref_offset(ref), je16_to_cpu(node->u.magic),
 | |
| 				     je16_to_cpu(node->u.nodetype),
 | |
| 				     je32_to_cpu(node->u.totlen),
 | |
| 				     je32_to_cpu(node->u.hdr_crc));
 | |
| 			jffs2_dbg_dump_node(c, ref_offset(ref));
 | |
| 			jffs2_mark_node_obsolete(c, ref);
 | |
| 			goto cont;
 | |
| 		}
 | |
| 		if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
 | |
| 			/* Not a JFFS2 node, whinge and move on */
 | |
| 			JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
 | |
| 				     je16_to_cpu(node->u.magic), ref_offset(ref));
 | |
| 			jffs2_mark_node_obsolete(c, ref);
 | |
| 			goto cont;
 | |
| 		}
 | |
| 
 | |
| 		switch (je16_to_cpu(node->u.nodetype)) {
 | |
| 
 | |
| 		case JFFS2_NODETYPE_DIRENT:
 | |
| 
 | |
| 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
 | |
| 			    len < sizeof(struct jffs2_raw_dirent)) {
 | |
| 				err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
 | |
| 				if (unlikely(err))
 | |
| 					goto free_out;
 | |
| 			}
 | |
| 
 | |
| 			err = read_direntry(c, ref, &node->d, retlen, rii);
 | |
| 			if (unlikely(err))
 | |
| 				goto free_out;
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case JFFS2_NODETYPE_INODE:
 | |
| 
 | |
| 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
 | |
| 			    len < sizeof(struct jffs2_raw_inode)) {
 | |
| 				err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
 | |
| 				if (unlikely(err))
 | |
| 					goto free_out;
 | |
| 			}
 | |
| 
 | |
| 			err = read_dnode(c, ref, &node->i, len, rii);
 | |
| 			if (unlikely(err))
 | |
| 				goto free_out;
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
 | |
| 			    len < sizeof(struct jffs2_unknown_node)) {
 | |
| 				err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
 | |
| 				if (unlikely(err))
 | |
| 					goto free_out;
 | |
| 			}
 | |
| 
 | |
| 			err = read_unknown(c, ref, &node->u);
 | |
| 			if (unlikely(err))
 | |
| 				goto free_out;
 | |
| 
 | |
| 		}
 | |
| 	cont:
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	kfree(buf);
 | |
| 
 | |
| 	f->highest_version = rii->highest_version;
 | |
| 
 | |
| 	dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
 | |
| 		      f->inocache->ino, rii->highest_version, rii->latest_mctime,
 | |
| 		      rii->mctime_ver);
 | |
| 	return 0;
 | |
| 
 | |
|  free_out:
 | |
| 	jffs2_free_tmp_dnode_info_list(&rii->tn_root);
 | |
| 	jffs2_free_full_dirent_list(rii->fds);
 | |
| 	rii->fds = NULL;
 | |
| 	kfree(buf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
 | |
| 					struct jffs2_inode_info *f,
 | |
| 					struct jffs2_raw_inode *latest_node)
 | |
| {
 | |
| 	struct jffs2_readinode_info rii;
 | |
| 	uint32_t crc, new_size;
 | |
| 	size_t retlen;
 | |
| 	int ret;
 | |
| 
 | |
| 	dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
 | |
| 		      f->inocache->pino_nlink);
 | |
| 
 | |
| 	memset(&rii, 0, sizeof(rii));
 | |
| 
 | |
| 	/* Grab all nodes relevant to this ino */
 | |
| 	ret = jffs2_get_inode_nodes(c, f, &rii);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
 | |
| 		if (f->inocache->state == INO_STATE_READING)
 | |
| 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = jffs2_build_inode_fragtree(c, f, &rii);
 | |
| 	if (ret) {
 | |
| 		JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
 | |
| 			    f->inocache->ino, ret);
 | |
| 		if (f->inocache->state == INO_STATE_READING)
 | |
| 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
 | |
| 		jffs2_free_tmp_dnode_info_list(&rii.tn_root);
 | |
| 		/* FIXME: We could at least crc-check them all */
 | |
| 		if (rii.mdata_tn) {
 | |
| 			jffs2_free_full_dnode(rii.mdata_tn->fn);
 | |
| 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
 | |
| 			rii.mdata_tn = NULL;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (rii.mdata_tn) {
 | |
| 		if (rii.mdata_tn->fn->raw == rii.latest_ref) {
 | |
| 			f->metadata = rii.mdata_tn->fn;
 | |
| 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
 | |
| 		} else {
 | |
| 			jffs2_kill_tn(c, rii.mdata_tn);
 | |
| 		}
 | |
| 		rii.mdata_tn = NULL;
 | |
| 	}
 | |
| 
 | |
| 	f->dents = rii.fds;
 | |
| 
 | |
| 	jffs2_dbg_fragtree_paranoia_check_nolock(f);
 | |
| 
 | |
| 	if (unlikely(!rii.latest_ref)) {
 | |
| 		/* No data nodes for this inode. */
 | |
| 		if (f->inocache->ino != 1) {
 | |
| 			JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
 | |
| 			if (!rii.fds) {
 | |
| 				if (f->inocache->state == INO_STATE_READING)
 | |
| 					jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			JFFS2_NOTICE("but it has children so we fake some modes for it\n");
 | |
| 		}
 | |
| 		latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
 | |
| 		latest_node->version = cpu_to_je32(0);
 | |
| 		latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
 | |
| 		latest_node->isize = cpu_to_je32(0);
 | |
| 		latest_node->gid = cpu_to_je16(0);
 | |
| 		latest_node->uid = cpu_to_je16(0);
 | |
| 		if (f->inocache->state == INO_STATE_READING)
 | |
| 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
 | |
| 	if (ret || retlen != sizeof(*latest_node)) {
 | |
| 		JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
 | |
| 			ret, retlen, sizeof(*latest_node));
 | |
| 		/* FIXME: If this fails, there seems to be a memory leak. Find it. */
 | |
| 		mutex_unlock(&f->sem);
 | |
| 		jffs2_do_clear_inode(c, f);
 | |
| 		return ret?ret:-EIO;
 | |
| 	}
 | |
| 
 | |
| 	crc = crc32(0, latest_node, sizeof(*latest_node)-8);
 | |
| 	if (crc != je32_to_cpu(latest_node->node_crc)) {
 | |
| 		JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
 | |
| 			f->inocache->ino, ref_offset(rii.latest_ref));
 | |
| 		mutex_unlock(&f->sem);
 | |
| 		jffs2_do_clear_inode(c, f);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
 | |
| 	case S_IFDIR:
 | |
| 		if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
 | |
| 			/* The times in the latest_node are actually older than
 | |
| 			   mctime in the latest dirent. Cheat. */
 | |
| 			latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 
 | |
| 	case S_IFREG:
 | |
| 		/* If it was a regular file, truncate it to the latest node's isize */
 | |
| 		new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
 | |
| 		if (new_size != je32_to_cpu(latest_node->isize)) {
 | |
| 			JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
 | |
| 				      f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
 | |
| 			latest_node->isize = cpu_to_je32(new_size);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case S_IFLNK:
 | |
| 		/* Hack to work around broken isize in old symlink code.
 | |
| 		   Remove this when dwmw2 comes to his senses and stops
 | |
| 		   symlinks from being an entirely gratuitous special
 | |
| 		   case. */
 | |
| 		if (!je32_to_cpu(latest_node->isize))
 | |
| 			latest_node->isize = latest_node->dsize;
 | |
| 
 | |
| 		if (f->inocache->state != INO_STATE_CHECKING) {
 | |
| 			/* Symlink's inode data is the target path. Read it and
 | |
| 			 * keep in RAM to facilitate quick follow symlink
 | |
| 			 * operation. */
 | |
| 			uint32_t csize = je32_to_cpu(latest_node->csize);
 | |
| 			if (csize > JFFS2_MAX_NAME_LEN) {
 | |
| 				mutex_unlock(&f->sem);
 | |
| 				jffs2_do_clear_inode(c, f);
 | |
| 				return -ENAMETOOLONG;
 | |
| 			}
 | |
| 			f->target = kmalloc(csize + 1, GFP_KERNEL);
 | |
| 			if (!f->target) {
 | |
| 				JFFS2_ERROR("can't allocate %u bytes of memory for the symlink target path cache\n", csize);
 | |
| 				mutex_unlock(&f->sem);
 | |
| 				jffs2_do_clear_inode(c, f);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
 | |
| 					       csize, &retlen, (char *)f->target);
 | |
| 
 | |
| 			if (ret || retlen != csize) {
 | |
| 				if (retlen != csize)
 | |
| 					ret = -EIO;
 | |
| 				kfree(f->target);
 | |
| 				f->target = NULL;
 | |
| 				mutex_unlock(&f->sem);
 | |
| 				jffs2_do_clear_inode(c, f);
 | |
| 				return ret;
 | |
| 			}
 | |
| 
 | |
| 			f->target[csize] = '\0';
 | |
| 			dbg_readinode("symlink's target '%s' cached\n", f->target);
 | |
| 		}
 | |
| 
 | |
| 		/* fall through... */
 | |
| 
 | |
| 	case S_IFBLK:
 | |
| 	case S_IFCHR:
 | |
| 		/* Certain inode types should have only one data node, and it's
 | |
| 		   kept as the metadata node */
 | |
| 		if (f->metadata) {
 | |
| 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
 | |
| 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
 | |
| 			mutex_unlock(&f->sem);
 | |
| 			jffs2_do_clear_inode(c, f);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		if (!frag_first(&f->fragtree)) {
 | |
| 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
 | |
| 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
 | |
| 			mutex_unlock(&f->sem);
 | |
| 			jffs2_do_clear_inode(c, f);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		/* ASSERT: f->fraglist != NULL */
 | |
| 		if (frag_next(frag_first(&f->fragtree))) {
 | |
| 			JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
 | |
| 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
 | |
| 			/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
 | |
| 			mutex_unlock(&f->sem);
 | |
| 			jffs2_do_clear_inode(c, f);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		/* OK. We're happy */
 | |
| 		f->metadata = frag_first(&f->fragtree)->node;
 | |
| 		jffs2_free_node_frag(frag_first(&f->fragtree));
 | |
| 		f->fragtree = RB_ROOT;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (f->inocache->state == INO_STATE_READING)
 | |
| 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Scan the list of all nodes present for this ino, build map of versions, etc. */
 | |
| int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
 | |
| 			uint32_t ino, struct jffs2_raw_inode *latest_node)
 | |
| {
 | |
| 	dbg_readinode("read inode #%u\n", ino);
 | |
| 
 | |
|  retry_inocache:
 | |
| 	spin_lock(&c->inocache_lock);
 | |
| 	f->inocache = jffs2_get_ino_cache(c, ino);
 | |
| 
 | |
| 	if (f->inocache) {
 | |
| 		/* Check its state. We may need to wait before we can use it */
 | |
| 		switch(f->inocache->state) {
 | |
| 		case INO_STATE_UNCHECKED:
 | |
| 		case INO_STATE_CHECKEDABSENT:
 | |
| 			f->inocache->state = INO_STATE_READING;
 | |
| 			break;
 | |
| 
 | |
| 		case INO_STATE_CHECKING:
 | |
| 		case INO_STATE_GC:
 | |
| 			/* If it's in either of these states, we need
 | |
| 			   to wait for whoever's got it to finish and
 | |
| 			   put it back. */
 | |
| 			dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
 | |
| 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 | |
| 			goto retry_inocache;
 | |
| 
 | |
| 		case INO_STATE_READING:
 | |
| 		case INO_STATE_PRESENT:
 | |
| 			/* Eep. This should never happen. It can
 | |
| 			happen if Linux calls read_inode() again
 | |
| 			before clear_inode() has finished though. */
 | |
| 			JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
 | |
| 			/* Fail. That's probably better than allowing it to succeed */
 | |
| 			f->inocache = NULL;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->inocache_lock);
 | |
| 
 | |
| 	if (!f->inocache && ino == 1) {
 | |
| 		/* Special case - no root inode on medium */
 | |
| 		f->inocache = jffs2_alloc_inode_cache();
 | |
| 		if (!f->inocache) {
 | |
| 			JFFS2_ERROR("cannot allocate inocache for root inode\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		dbg_readinode("creating inocache for root inode\n");
 | |
| 		memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
 | |
| 		f->inocache->ino = f->inocache->pino_nlink = 1;
 | |
| 		f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
 | |
| 		f->inocache->state = INO_STATE_READING;
 | |
| 		jffs2_add_ino_cache(c, f->inocache);
 | |
| 	}
 | |
| 	if (!f->inocache) {
 | |
| 		JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	return jffs2_do_read_inode_internal(c, f, latest_node);
 | |
| }
 | |
| 
 | |
| int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
 | |
| {
 | |
| 	struct jffs2_raw_inode n;
 | |
| 	struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!f)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_init(&f->sem);
 | |
| 	mutex_lock(&f->sem);
 | |
| 	f->inocache = ic;
 | |
| 
 | |
| 	ret = jffs2_do_read_inode_internal(c, f, &n);
 | |
| 	if (!ret) {
 | |
| 		mutex_unlock(&f->sem);
 | |
| 		jffs2_do_clear_inode(c, f);
 | |
| 	}
 | |
| 	jffs2_xattr_do_crccheck_inode(c, ic);
 | |
| 	kfree (f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
 | |
| {
 | |
| 	struct jffs2_full_dirent *fd, *fds;
 | |
| 	int deleted;
 | |
| 
 | |
| 	jffs2_xattr_delete_inode(c, f->inocache);
 | |
| 	mutex_lock(&f->sem);
 | |
| 	deleted = f->inocache && !f->inocache->pino_nlink;
 | |
| 
 | |
| 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
 | |
| 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
 | |
| 
 | |
| 	if (f->metadata) {
 | |
| 		if (deleted)
 | |
| 			jffs2_mark_node_obsolete(c, f->metadata->raw);
 | |
| 		jffs2_free_full_dnode(f->metadata);
 | |
| 	}
 | |
| 
 | |
| 	jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
 | |
| 
 | |
| 	if (f->target) {
 | |
| 		kfree(f->target);
 | |
| 		f->target = NULL;
 | |
| 	}
 | |
| 
 | |
| 	fds = f->dents;
 | |
| 	while(fds) {
 | |
| 		fd = fds;
 | |
| 		fds = fd->next;
 | |
| 		jffs2_free_full_dirent(fd);
 | |
| 	}
 | |
| 
 | |
| 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
 | |
| 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
 | |
| 		if (f->inocache->nodes == (void *)f->inocache)
 | |
| 			jffs2_del_ino_cache(c, f->inocache);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&f->sem);
 | |
| }
 |