 437275272f
			
		
	
	
	437275272f
	
	
	
		
			
			This patch makes clearer the ambiguous f2fs_gc flow as follows. 1. Remove intermediate checkpoint condition during f2fs_gc (i.e., should_do_checkpoint() and GC_BLOCKED) 2. Remove unnecessary return values of f2fs_gc because of #1. (i.e., GC_NODE, GC_OK, etc) 3. Simplify write_checkpoint() because of #2. 4. Clarify the main f2fs_gc flow. o monitor how many freed sections during one iteration of do_garbage_collect(). o do GC more without checkpoints if we can't get enough free sections. o do checkpoint once we've got enough free sections through forground GCs. 5. Adopt thread-logging (Slack-Space-Recycle) scheme more aggressively on data log types. See. get_ssr_segement() Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
		
			
				
	
	
		
			1770 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1770 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/f2fs/segment.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "segment.h"
 | |
| #include "node.h"
 | |
| 
 | |
| /*
 | |
|  * This function balances dirty node and dentry pages.
 | |
|  * In addition, it controls garbage collection.
 | |
|  */
 | |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	/*
 | |
| 	 * We should do GC or end up with checkpoint, if there are so many dirty
 | |
| 	 * dir/node pages without enough free segments.
 | |
| 	 */
 | |
| 	if (has_not_enough_free_secs(sbi, 0)) {
 | |
| 		mutex_lock(&sbi->gc_mutex);
 | |
| 		f2fs_gc(sbi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	/* need not be added */
 | |
| 	if (IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]++;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		dirty_type = sentry->type;
 | |
| 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 			dirty_i->nr_dirty[dirty_type]++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]--;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		dirty_type = sentry->type;
 | |
| 		if (test_and_clear_bit(segno,
 | |
| 					dirty_i->dirty_segmap[dirty_type]))
 | |
| 			dirty_i->nr_dirty[dirty_type]--;
 | |
| 		clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
 | |
| 		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should not occur error such as -ENOMEM.
 | |
|  * Adding dirty entry into seglist is not critical operation.
 | |
|  * If a given segment is one of current working segments, it won't be added.
 | |
|  */
 | |
| void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned short valid_blocks;
 | |
| 
 | |
| 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	valid_blocks = get_valid_blocks(sbi, segno, 0);
 | |
| 
 | |
| 	if (valid_blocks == 0) {
 | |
| 		__locate_dirty_segment(sbi, segno, PRE);
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else if (valid_blocks < sbi->blocks_per_seg) {
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else {
 | |
| 		/* Recovery routine with SSR needs this */
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should call clear_prefree_segments after checkpoint is done.
 | |
|  */
 | |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno, offset = 0;
 | |
| 	unsigned int total_segs = TOTAL_SEGS(sbi);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	while (1) {
 | |
| 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
 | |
| 				offset);
 | |
| 		if (segno >= total_segs)
 | |
| 			break;
 | |
| 		__set_test_and_free(sbi, segno);
 | |
| 		offset = segno + 1;
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| void clear_prefree_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno, offset = 0;
 | |
| 	unsigned int total_segs = TOTAL_SEGS(sbi);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	while (1) {
 | |
| 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
 | |
| 				offset);
 | |
| 		if (segno >= total_segs)
 | |
| 			break;
 | |
| 
 | |
| 		offset = segno + 1;
 | |
| 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
 | |
| 			dirty_i->nr_dirty[PRE]--;
 | |
| 
 | |
| 		/* Let's use trim */
 | |
| 		if (test_opt(sbi, DISCARD))
 | |
| 			blkdev_issue_discard(sbi->sb->s_bdev,
 | |
| 					START_BLOCK(sbi, segno) <<
 | |
| 					sbi->log_sectors_per_block,
 | |
| 					1 << (sbi->log_sectors_per_block +
 | |
| 						sbi->log_blocks_per_seg),
 | |
| 					GFP_NOFS, 0);
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
 | |
| 		sit_i->dirty_sentries++;
 | |
| }
 | |
| 
 | |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 | |
| 					unsigned int segno, int modified)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, segno);
 | |
| 	se->type = type;
 | |
| 	if (modified)
 | |
| 		__mark_sit_entry_dirty(sbi, segno);
 | |
| }
 | |
| 
 | |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 | |
| {
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno, offset;
 | |
| 	long int new_vblocks;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	new_vblocks = se->valid_blocks + del;
 | |
| 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
 | |
| 
 | |
| 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
 | |
| 				(new_vblocks > sbi->blocks_per_seg)));
 | |
| 
 | |
| 	se->valid_blocks = new_vblocks;
 | |
| 	se->mtime = get_mtime(sbi);
 | |
| 	SIT_I(sbi)->max_mtime = se->mtime;
 | |
| 
 | |
| 	/* Update valid block bitmap */
 | |
| 	if (del > 0) {
 | |
| 		if (f2fs_set_bit(offset, se->cur_valid_map))
 | |
| 			BUG();
 | |
| 	} else {
 | |
| 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
 | |
| 			BUG();
 | |
| 	}
 | |
| 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 | |
| 		se->ckpt_valid_blocks += del;
 | |
| 
 | |
| 	__mark_sit_entry_dirty(sbi, segno);
 | |
| 
 | |
| 	/* update total number of valid blocks to be written in ckpt area */
 | |
| 	SIT_I(sbi)->written_valid_blocks += del;
 | |
| 
 | |
| 	if (sbi->segs_per_sec > 1)
 | |
| 		get_sec_entry(sbi, segno)->valid_blocks += del;
 | |
| }
 | |
| 
 | |
| static void refresh_sit_entry(struct f2fs_sb_info *sbi,
 | |
| 			block_t old_blkaddr, block_t new_blkaddr)
 | |
| {
 | |
| 	update_sit_entry(sbi, new_blkaddr, 1);
 | |
| 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 | |
| 		update_sit_entry(sbi, old_blkaddr, -1);
 | |
| }
 | |
| 
 | |
| void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 | |
| {
 | |
| 	unsigned int segno = GET_SEGNO(sbi, addr);
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	BUG_ON(addr == NULL_ADDR);
 | |
| 	if (addr == NEW_ADDR)
 | |
| 		return;
 | |
| 
 | |
| 	/* add it into sit main buffer */
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	update_sit_entry(sbi, addr, -1);
 | |
| 
 | |
| 	/* add it into dirty seglist */
 | |
| 	locate_dirty_segment(sbi, segno);
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function should be resided under the curseg_mutex lock
 | |
|  */
 | |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 | |
| 		struct f2fs_summary *sum, unsigned short offset)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	void *addr = curseg->sum_blk;
 | |
| 	addr += offset * sizeof(struct f2fs_summary);
 | |
| 	memcpy(addr, sum, sizeof(struct f2fs_summary));
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of current summary pages for writing
 | |
|  */
 | |
| int npages_for_summary_flush(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int total_size_bytes = 0;
 | |
| 	int valid_sum_count = 0;
 | |
| 	int i, sum_space;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			valid_sum_count += sbi->blocks_per_seg;
 | |
| 		else
 | |
| 			valid_sum_count += curseg_blkoff(sbi, i);
 | |
| 	}
 | |
| 
 | |
| 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
 | |
| 			+ sizeof(struct nat_journal) + 2
 | |
| 			+ sizeof(struct sit_journal) + 2;
 | |
| 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
 | |
| 	if (total_size_bytes < sum_space)
 | |
| 		return 1;
 | |
| 	else if (total_size_bytes < 2 * sum_space)
 | |
| 		return 2;
 | |
| 	return 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should put this summary page
 | |
|  */
 | |
| struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 | |
| }
 | |
| 
 | |
| static void write_sum_page(struct f2fs_sb_info *sbi,
 | |
| 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 | |
| {
 | |
| 	struct page *page = grab_meta_page(sbi, blk_addr);
 | |
| 	void *kaddr = page_address(page);
 | |
| 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
 | |
| 					int ofs_unit, int type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
 | |
| 	unsigned int segno, next_segno, i;
 | |
| 	int ofs = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is not enough reserved sections,
 | |
| 	 * we should not reuse prefree segments.
 | |
| 	 */
 | |
| 	if (has_not_enough_free_secs(sbi, 0))
 | |
| 		return NULL_SEGNO;
 | |
| 
 | |
| 	/*
 | |
| 	 * NODE page should not reuse prefree segment,
 | |
| 	 * since those information is used for SPOR.
 | |
| 	 */
 | |
| 	if (IS_NODESEG(type))
 | |
| 		return NULL_SEGNO;
 | |
| next:
 | |
| 	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
 | |
| 	ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
 | |
| 	if (segno < TOTAL_SEGS(sbi)) {
 | |
| 		/* skip intermediate segments in a section */
 | |
| 		if (segno % ofs_unit)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* skip if whole section is not prefree */
 | |
| 		next_segno = find_next_zero_bit(prefree_segmap,
 | |
| 						TOTAL_SEGS(sbi), segno + 1);
 | |
| 		if (next_segno - segno < ofs_unit)
 | |
| 			goto next;
 | |
| 
 | |
| 		/* skip if whole section was not free at the last checkpoint */
 | |
| 		for (i = 0; i < ofs_unit; i++)
 | |
| 			if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
 | |
| 				goto next;
 | |
| 		return segno;
 | |
| 	}
 | |
| 	return NULL_SEGNO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a new segment from the free segments bitmap to right order
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void get_new_segment(struct f2fs_sb_info *sbi,
 | |
| 			unsigned int *newseg, bool new_sec, int dir)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int total_secs = sbi->total_sections;
 | |
| 	unsigned int segno, secno, zoneno;
 | |
| 	unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
 | |
| 	unsigned int hint = *newseg / sbi->segs_per_sec;
 | |
| 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 | |
| 	unsigned int left_start = hint;
 | |
| 	bool init = true;
 | |
| 	int go_left = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	write_lock(&free_i->segmap_lock);
 | |
| 
 | |
| 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 | |
| 		segno = find_next_zero_bit(free_i->free_segmap,
 | |
| 					TOTAL_SEGS(sbi), *newseg + 1);
 | |
| 		if (segno < TOTAL_SEGS(sbi))
 | |
| 			goto got_it;
 | |
| 	}
 | |
| find_other_zone:
 | |
| 	secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
 | |
| 	if (secno >= total_secs) {
 | |
| 		if (dir == ALLOC_RIGHT) {
 | |
| 			secno = find_next_zero_bit(free_i->free_secmap,
 | |
| 						total_secs, 0);
 | |
| 			BUG_ON(secno >= total_secs);
 | |
| 		} else {
 | |
| 			go_left = 1;
 | |
| 			left_start = hint - 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (go_left == 0)
 | |
| 		goto skip_left;
 | |
| 
 | |
| 	while (test_bit(left_start, free_i->free_secmap)) {
 | |
| 		if (left_start > 0) {
 | |
| 			left_start--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		left_start = find_next_zero_bit(free_i->free_secmap,
 | |
| 						total_secs, 0);
 | |
| 		BUG_ON(left_start >= total_secs);
 | |
| 		break;
 | |
| 	}
 | |
| 	secno = left_start;
 | |
| skip_left:
 | |
| 	hint = secno;
 | |
| 	segno = secno * sbi->segs_per_sec;
 | |
| 	zoneno = secno / sbi->secs_per_zone;
 | |
| 
 | |
| 	/* give up on finding another zone */
 | |
| 	if (!init)
 | |
| 		goto got_it;
 | |
| 	if (sbi->secs_per_zone == 1)
 | |
| 		goto got_it;
 | |
| 	if (zoneno == old_zoneno)
 | |
| 		goto got_it;
 | |
| 	if (dir == ALLOC_LEFT) {
 | |
| 		if (!go_left && zoneno + 1 >= total_zones)
 | |
| 			goto got_it;
 | |
| 		if (go_left && zoneno == 0)
 | |
| 			goto got_it;
 | |
| 	}
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++)
 | |
| 		if (CURSEG_I(sbi, i)->zone == zoneno)
 | |
| 			break;
 | |
| 
 | |
| 	if (i < NR_CURSEG_TYPE) {
 | |
| 		/* zone is in user, try another */
 | |
| 		if (go_left)
 | |
| 			hint = zoneno * sbi->secs_per_zone - 1;
 | |
| 		else if (zoneno + 1 >= total_zones)
 | |
| 			hint = 0;
 | |
| 		else
 | |
| 			hint = (zoneno + 1) * sbi->secs_per_zone;
 | |
| 		init = false;
 | |
| 		goto find_other_zone;
 | |
| 	}
 | |
| got_it:
 | |
| 	/* set it as dirty segment in free segmap */
 | |
| 	BUG_ON(test_bit(segno, free_i->free_segmap));
 | |
| 	__set_inuse(sbi, segno);
 | |
| 	*newseg = segno;
 | |
| 	write_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	struct summary_footer *sum_footer;
 | |
| 
 | |
| 	curseg->segno = curseg->next_segno;
 | |
| 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
 | |
| 	curseg->next_blkoff = 0;
 | |
| 	curseg->next_segno = NULL_SEGNO;
 | |
| 
 | |
| 	sum_footer = &(curseg->sum_blk->footer);
 | |
| 	memset(sum_footer, 0, sizeof(struct summary_footer));
 | |
| 	if (IS_DATASEG(type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
 | |
| 	if (IS_NODESEG(type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
 | |
| 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a current working segment.
 | |
|  * This function always allocates a free segment in LFS manner.
 | |
|  */
 | |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int segno = curseg->segno;
 | |
| 	int dir = ALLOC_LEFT;
 | |
| 
 | |
| 	write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, curseg->segno));
 | |
| 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	if (test_opt(sbi, NOHEAP))
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	get_new_segment(sbi, &segno, new_sec, dir);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = LFS;
 | |
| }
 | |
| 
 | |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi,
 | |
| 			struct curseg_info *seg, block_t start)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
 | |
| 	block_t ofs;
 | |
| 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
 | |
| 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
 | |
| 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
 | |
| 			break;
 | |
| 	}
 | |
| 	seg->next_blkoff = ofs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a segment is written by LFS manner, next block offset is just obtained
 | |
|  * by increasing the current block offset. However, if a segment is written by
 | |
|  * SSR manner, next block offset obtained by calling __next_free_blkoff
 | |
|  */
 | |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
 | |
| 				struct curseg_info *seg)
 | |
| {
 | |
| 	if (seg->alloc_type == SSR)
 | |
| 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
 | |
| 	else
 | |
| 		seg->next_blkoff++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function always allocates a used segment (from dirty seglist) by SSR
 | |
|  * manner, so it should recover the existing segment information of valid blocks
 | |
|  */
 | |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int new_segno = curseg->next_segno;
 | |
| 	struct f2fs_summary_block *sum_node;
 | |
| 	struct page *sum_page;
 | |
| 
 | |
| 	write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, curseg->segno));
 | |
| 	__set_test_and_inuse(sbi, new_segno);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	__remove_dirty_segment(sbi, new_segno, PRE);
 | |
| 	__remove_dirty_segment(sbi, new_segno, DIRTY);
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = SSR;
 | |
| 	__next_free_blkoff(sbi, curseg, 0);
 | |
| 
 | |
| 	if (reuse) {
 | |
| 		sum_page = get_sum_page(sbi, new_segno);
 | |
| 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
 | |
| 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
 | |
| 		f2fs_put_page(sum_page, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 | |
| 
 | |
| 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
 | |
| 		return v_ops->get_victim(sbi,
 | |
| 				&(curseg)->next_segno, BG_GC, type, SSR);
 | |
| 
 | |
| 	/* For data segments, let's do SSR more intensively */
 | |
| 	for (; type >= CURSEG_HOT_DATA; type--)
 | |
| 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
 | |
| 						BG_GC, type, SSR))
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flush out current segment and replace it with new segment
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
 | |
| 						int type, bool force)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int ofs_unit;
 | |
| 
 | |
| 	if (force) {
 | |
| 		new_curseg(sbi, type, true);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
 | |
| 	curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
 | |
| 
 | |
| 	if (curseg->next_segno != NULL_SEGNO)
 | |
| 		change_curseg(sbi, type, false);
 | |
| 	else if (type == CURSEG_WARM_NODE)
 | |
| 		new_curseg(sbi, type, false);
 | |
| 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	else
 | |
| 		new_curseg(sbi, type, false);
 | |
| out:
 | |
| 	sbi->segment_count[curseg->alloc_type]++;
 | |
| }
 | |
| 
 | |
| void allocate_new_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int old_curseg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		curseg = CURSEG_I(sbi, i);
 | |
| 		old_curseg = curseg->segno;
 | |
| 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
 | |
| 		locate_dirty_segment(sbi, old_curseg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct segment_allocation default_salloc_ops = {
 | |
| 	.allocate_segment = allocate_segment_by_default,
 | |
| };
 | |
| 
 | |
| static void f2fs_end_io_write(struct bio *bio, int err)
 | |
| {
 | |
| 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct bio_private *p = bio->bi_private;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		if (--bvec >= bio->bi_io_vec)
 | |
| 			prefetchw(&bvec->bv_page->flags);
 | |
| 		if (!uptodate) {
 | |
| 			SetPageError(page);
 | |
| 			if (page->mapping)
 | |
| 				set_bit(AS_EIO, &page->mapping->flags);
 | |
| 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
 | |
| 			p->sbi->sb->s_flags |= MS_RDONLY;
 | |
| 		}
 | |
| 		end_page_writeback(page);
 | |
| 		dec_page_count(p->sbi, F2FS_WRITEBACK);
 | |
| 	} while (bvec >= bio->bi_io_vec);
 | |
| 
 | |
| 	if (p->is_sync)
 | |
| 		complete(p->wait);
 | |
| 	kfree(p);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct bio_private *priv;
 | |
| retry:
 | |
| 	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
 | |
| 	if (!priv) {
 | |
| 		cond_resched();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* No failure on bio allocation */
 | |
| 	bio = bio_alloc(GFP_NOIO, npages);
 | |
| 	bio->bi_bdev = bdev;
 | |
| 	bio->bi_private = priv;
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| static void do_submit_bio(struct f2fs_sb_info *sbi,
 | |
| 				enum page_type type, bool sync)
 | |
| {
 | |
| 	int rw = sync ? WRITE_SYNC : WRITE;
 | |
| 	enum page_type btype = type > META ? META : type;
 | |
| 
 | |
| 	if (type >= META_FLUSH)
 | |
| 		rw = WRITE_FLUSH_FUA;
 | |
| 
 | |
| 	if (sbi->bio[btype]) {
 | |
| 		struct bio_private *p = sbi->bio[btype]->bi_private;
 | |
| 		p->sbi = sbi;
 | |
| 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
 | |
| 		if (type == META_FLUSH) {
 | |
| 			DECLARE_COMPLETION_ONSTACK(wait);
 | |
| 			p->is_sync = true;
 | |
| 			p->wait = &wait;
 | |
| 			submit_bio(rw, sbi->bio[btype]);
 | |
| 			wait_for_completion(&wait);
 | |
| 		} else {
 | |
| 			p->is_sync = false;
 | |
| 			submit_bio(rw, sbi->bio[btype]);
 | |
| 		}
 | |
| 		sbi->bio[btype] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
 | |
| {
 | |
| 	down_write(&sbi->bio_sem);
 | |
| 	do_submit_bio(sbi, type, sync);
 | |
| 	up_write(&sbi->bio_sem);
 | |
| }
 | |
| 
 | |
| static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 				block_t blk_addr, enum page_type type)
 | |
| {
 | |
| 	struct block_device *bdev = sbi->sb->s_bdev;
 | |
| 
 | |
| 	verify_block_addr(sbi, blk_addr);
 | |
| 
 | |
| 	down_write(&sbi->bio_sem);
 | |
| 
 | |
| 	inc_page_count(sbi, F2FS_WRITEBACK);
 | |
| 
 | |
| 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
 | |
| 		do_submit_bio(sbi, type, false);
 | |
| alloc_new:
 | |
| 	if (sbi->bio[type] == NULL) {
 | |
| 		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
 | |
| 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
 | |
| 		/*
 | |
| 		 * The end_io will be assigned at the sumbission phase.
 | |
| 		 * Until then, let bio_add_page() merge consecutive IOs as much
 | |
| 		 * as possible.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
 | |
| 							PAGE_CACHE_SIZE) {
 | |
| 		do_submit_bio(sbi, type, false);
 | |
| 		goto alloc_new;
 | |
| 	}
 | |
| 
 | |
| 	sbi->last_block_in_bio[type] = blk_addr;
 | |
| 
 | |
| 	up_write(&sbi->bio_sem);
 | |
| }
 | |
| 
 | |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	if (curseg->next_blkoff < sbi->blocks_per_seg)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_2(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA)
 | |
| 		return CURSEG_HOT_DATA;
 | |
| 	else
 | |
| 		return CURSEG_HOT_NODE;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_4(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA) {
 | |
| 		struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 		if (S_ISDIR(inode->i_mode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		else
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 	} else {
 | |
| 		if (IS_DNODE(page) && !is_cold_node(page))
 | |
| 			return CURSEG_HOT_NODE;
 | |
| 		else
 | |
| 			return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_6(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA) {
 | |
| 		struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 		if (S_ISDIR(inode->i_mode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		else if (is_cold_data(page) || is_cold_file(inode))
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 		else
 | |
| 			return CURSEG_WARM_DATA;
 | |
| 	} else {
 | |
| 		if (IS_DNODE(page))
 | |
| 			return is_cold_node(page) ? CURSEG_WARM_NODE :
 | |
| 						CURSEG_HOT_NODE;
 | |
| 		else
 | |
| 			return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
 | |
| 	switch (sbi->active_logs) {
 | |
| 	case 2:
 | |
| 		return __get_segment_type_2(page, p_type);
 | |
| 	case 4:
 | |
| 		return __get_segment_type_4(page, p_type);
 | |
| 	}
 | |
| 	/* NR_CURSEG_TYPE(6) logs by default */
 | |
| 	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
 | |
| 	return __get_segment_type_6(page, p_type);
 | |
| }
 | |
| 
 | |
| static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 			block_t old_blkaddr, block_t *new_blkaddr,
 | |
| 			struct f2fs_summary *sum, enum page_type p_type)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int old_cursegno;
 | |
| 	int type;
 | |
| 
 | |
| 	type = __get_segment_type(page, p_type);
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
 | |
| 	old_cursegno = curseg->segno;
 | |
| 
 | |
| 	/*
 | |
| 	 * __add_sum_entry should be resided under the curseg_mutex
 | |
| 	 * because, this function updates a summary entry in the
 | |
| 	 * current summary block.
 | |
| 	 */
 | |
| 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
 | |
| 
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 	__refresh_next_blkoff(sbi, curseg);
 | |
| 	sbi->block_count[curseg->alloc_type]++;
 | |
| 
 | |
| 	/*
 | |
| 	 * SIT information should be updated before segment allocation,
 | |
| 	 * since SSR needs latest valid block information.
 | |
| 	 */
 | |
| 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
 | |
| 
 | |
| 	if (!__has_curseg_space(sbi, type))
 | |
| 		sit_i->s_ops->allocate_segment(sbi, type, false);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, old_cursegno);
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (p_type == NODE)
 | |
| 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
 | |
| 
 | |
| 	/* writeout dirty page into bdev */
 | |
| 	submit_write_page(sbi, page, *new_blkaddr, p_type);
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
 | |
| {
 | |
| 	set_page_writeback(page);
 | |
| 	submit_write_page(sbi, page, page->index, META);
 | |
| }
 | |
| 
 | |
| void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
 | |
| {
 | |
| 	struct f2fs_summary sum;
 | |
| 	set_summary(&sum, nid, 0, 0);
 | |
| 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
 | |
| }
 | |
| 
 | |
| void write_data_page(struct inode *inode, struct page *page,
 | |
| 		struct dnode_of_data *dn, block_t old_blkaddr,
 | |
| 		block_t *new_blkaddr)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct f2fs_summary sum;
 | |
| 	struct node_info ni;
 | |
| 
 | |
| 	BUG_ON(old_blkaddr == NULL_ADDR);
 | |
| 	get_node_info(sbi, dn->nid, &ni);
 | |
| 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 | |
| 
 | |
| 	do_write_page(sbi, page, old_blkaddr,
 | |
| 			new_blkaddr, &sum, DATA);
 | |
| }
 | |
| 
 | |
| void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 					block_t old_blk_addr)
 | |
| {
 | |
| 	submit_write_page(sbi, page, old_blk_addr, DATA);
 | |
| }
 | |
| 
 | |
| void recover_data_page(struct f2fs_sb_info *sbi,
 | |
| 			struct page *page, struct f2fs_summary *sum,
 | |
| 			block_t old_blkaddr, block_t new_blkaddr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int segno, old_cursegno;
 | |
| 	struct seg_entry *se;
 | |
| 	int type;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, new_blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	type = se->type;
 | |
| 
 | |
| 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
 | |
| 		if (old_blkaddr == NULL_ADDR)
 | |
| 			type = CURSEG_COLD_DATA;
 | |
| 		else
 | |
| 			type = CURSEG_WARM_DATA;
 | |
| 	}
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	old_cursegno = curseg->segno;
 | |
| 
 | |
| 	/* change the current segment */
 | |
| 	if (segno != curseg->segno) {
 | |
| 		curseg->next_segno = segno;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	}
 | |
| 
 | |
| 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
 | |
| 					(sbi->blocks_per_seg - 1);
 | |
| 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
 | |
| 
 | |
| 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, old_cursegno);
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| void rewrite_node_page(struct f2fs_sb_info *sbi,
 | |
| 			struct page *page, struct f2fs_summary *sum,
 | |
| 			block_t old_blkaddr, block_t new_blkaddr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	int type = CURSEG_WARM_NODE;
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int segno, old_cursegno;
 | |
| 	block_t next_blkaddr = next_blkaddr_of_node(page);
 | |
| 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
 | |
| 
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, new_blkaddr);
 | |
| 	old_cursegno = curseg->segno;
 | |
| 
 | |
| 	/* change the current segment */
 | |
| 	if (segno != curseg->segno) {
 | |
| 		curseg->next_segno = segno;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	}
 | |
| 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
 | |
| 					(sbi->blocks_per_seg - 1);
 | |
| 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
 | |
| 
 | |
| 	/* change the current log to the next block addr in advance */
 | |
| 	if (next_segno != segno) {
 | |
| 		curseg->next_segno = next_segno;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	}
 | |
| 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
 | |
| 					(sbi->blocks_per_seg - 1);
 | |
| 
 | |
| 	/* rewrite node page */
 | |
| 	set_page_writeback(page);
 | |
| 	submit_write_page(sbi, page, new_blkaddr, NODE);
 | |
| 	f2fs_submit_bio(sbi, NODE, true);
 | |
| 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, old_cursegno);
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct curseg_info *seg_i;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct page *page;
 | |
| 	block_t start;
 | |
| 	int i, j, offset;
 | |
| 
 | |
| 	start = start_sum_block(sbi);
 | |
| 
 | |
| 	page = get_meta_page(sbi, start++);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 
 | |
| 	/* Step 1: restore nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
 | |
| 
 | |
| 	/* Step 2: restore sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
 | |
| 						SUM_JOURNAL_SIZE);
 | |
| 	offset = 2 * SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 3: restore summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blk_off;
 | |
| 		unsigned int segno;
 | |
| 
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
 | |
| 		seg_i->next_segno = segno;
 | |
| 		reset_curseg(sbi, i, 0);
 | |
| 		seg_i->alloc_type = ckpt->alloc_type[i];
 | |
| 		seg_i->next_blkoff = blk_off;
 | |
| 
 | |
| 		if (seg_i->alloc_type == SSR)
 | |
| 			blk_off = sbi->blocks_per_seg;
 | |
| 
 | |
| 		for (j = 0; j < blk_off; j++) {
 | |
| 			struct f2fs_summary *s;
 | |
| 			s = (struct f2fs_summary *)(kaddr + offset);
 | |
| 			seg_i->sum_blk->entries[j] = *s;
 | |
| 			offset += SUMMARY_SIZE;
 | |
| 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
 | |
| 						SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 
 | |
| 			page = get_meta_page(sbi, start++);
 | |
| 			kaddr = (unsigned char *)page_address(page);
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	f2fs_put_page(page, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_summary_block *sum;
 | |
| 	struct curseg_info *curseg;
 | |
| 	struct page *new;
 | |
| 	unsigned short blk_off;
 | |
| 	unsigned int segno = 0;
 | |
| 	block_t blk_addr = 0;
 | |
| 
 | |
| 	/* get segment number and block addr */
 | |
| 	if (IS_DATASEG(type)) {
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
 | |
| 							CURSEG_HOT_DATA]);
 | |
| 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
 | |
| 		else
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
 | |
| 	} else {
 | |
| 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
 | |
| 							type - CURSEG_HOT_NODE);
 | |
| 		else
 | |
| 			blk_addr = GET_SUM_BLOCK(sbi, segno);
 | |
| 	}
 | |
| 
 | |
| 	new = get_meta_page(sbi, blk_addr);
 | |
| 	sum = (struct f2fs_summary_block *)page_address(new);
 | |
| 
 | |
| 	if (IS_NODESEG(type)) {
 | |
| 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
 | |
| 			struct f2fs_summary *ns = &sum->entries[0];
 | |
| 			int i;
 | |
| 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
 | |
| 				ns->version = 0;
 | |
| 				ns->ofs_in_node = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (restore_node_summary(sbi, segno, sum)) {
 | |
| 				f2fs_put_page(new, 1);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* set uncompleted segment to curseg */
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 0);
 | |
| 	curseg->alloc_type = ckpt->alloc_type[type];
 | |
| 	curseg->next_blkoff = blk_off;
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	f2fs_put_page(new, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int type = CURSEG_HOT_DATA;
 | |
| 
 | |
| 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
 | |
| 		/* restore for compacted data summary */
 | |
| 		if (read_compacted_summaries(sbi))
 | |
| 			return -EINVAL;
 | |
| 		type = CURSEG_HOT_NODE;
 | |
| 	}
 | |
| 
 | |
| 	for (; type <= CURSEG_COLD_NODE; type++)
 | |
| 		if (read_normal_summaries(sbi, type))
 | |
| 			return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct f2fs_summary *summary;
 | |
| 	struct curseg_info *seg_i;
 | |
| 	int written_size = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	page = grab_meta_page(sbi, blkaddr++);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 
 | |
| 	/* Step 1: write nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 2: write sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
 | |
| 						SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	set_page_dirty(page);
 | |
| 
 | |
| 	/* Step 3: write summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blkoff;
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			blkoff = sbi->blocks_per_seg;
 | |
| 		else
 | |
| 			blkoff = curseg_blkoff(sbi, i);
 | |
| 
 | |
| 		for (j = 0; j < blkoff; j++) {
 | |
| 			if (!page) {
 | |
| 				page = grab_meta_page(sbi, blkaddr++);
 | |
| 				kaddr = (unsigned char *)page_address(page);
 | |
| 				written_size = 0;
 | |
| 			}
 | |
| 			summary = (struct f2fs_summary *)(kaddr + written_size);
 | |
| 			*summary = seg_i->sum_blk->entries[j];
 | |
| 			written_size += SUMMARY_SIZE;
 | |
| 			set_page_dirty(page);
 | |
| 
 | |
| 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
 | |
| 							SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (page)
 | |
| 		f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static void write_normal_summaries(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	int i, end;
 | |
| 	if (IS_DATASEG(type))
 | |
| 		end = type + NR_CURSEG_DATA_TYPE;
 | |
| 	else
 | |
| 		end = type + NR_CURSEG_NODE_TYPE;
 | |
| 
 | |
| 	for (i = type; i < end; i++) {
 | |
| 		struct curseg_info *sum = CURSEG_I(sbi, i);
 | |
| 		mutex_lock(&sum->curseg_mutex);
 | |
| 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
 | |
| 		mutex_unlock(&sum->curseg_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
 | |
| 		write_compacted_summaries(sbi, start_blk);
 | |
| 	else
 | |
| 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
 | |
| }
 | |
| 
 | |
| void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
 | |
| 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
 | |
| 					unsigned int val, int alloc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (type == NAT_JOURNAL) {
 | |
| 		for (i = 0; i < nats_in_cursum(sum); i++) {
 | |
| 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
 | |
| 				return i;
 | |
| 		}
 | |
| 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
 | |
| 			return update_nats_in_cursum(sum, 1);
 | |
| 	} else if (type == SIT_JOURNAL) {
 | |
| 		for (i = 0; i < sits_in_cursum(sum); i++)
 | |
| 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
 | |
| 				return i;
 | |
| 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
 | |
| 			return update_sits_in_cursum(sum, 1);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
 | |
| 	block_t blk_addr = sit_i->sit_base_addr + offset;
 | |
| 
 | |
| 	check_seg_range(sbi, segno);
 | |
| 
 | |
| 	/* calculate sit block address */
 | |
| 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 | |
| 		blk_addr += sit_i->sit_blocks;
 | |
| 
 | |
| 	return get_meta_page(sbi, blk_addr);
 | |
| }
 | |
| 
 | |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int start)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct page *src_page, *dst_page;
 | |
| 	pgoff_t src_off, dst_off;
 | |
| 	void *src_addr, *dst_addr;
 | |
| 
 | |
| 	src_off = current_sit_addr(sbi, start);
 | |
| 	dst_off = next_sit_addr(sbi, src_off);
 | |
| 
 | |
| 	/* get current sit block page without lock */
 | |
| 	src_page = get_meta_page(sbi, src_off);
 | |
| 	dst_page = grab_meta_page(sbi, dst_off);
 | |
| 	BUG_ON(PageDirty(src_page));
 | |
| 
 | |
| 	src_addr = page_address(src_page);
 | |
| 	dst_addr = page_address(dst_page);
 | |
| 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	set_page_dirty(dst_page);
 | |
| 	f2fs_put_page(src_page, 1);
 | |
| 
 | |
| 	set_to_next_sit(sit_i, start);
 | |
| 
 | |
| 	return dst_page;
 | |
| }
 | |
| 
 | |
| static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the journal area in the current summary is full of sit entries,
 | |
| 	 * all the sit entries will be flushed. Otherwise the sit entries
 | |
| 	 * are not able to replace with newly hot sit entries.
 | |
| 	 */
 | |
| 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
 | |
| 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
 | |
| 			unsigned int segno;
 | |
| 			segno = le32_to_cpu(segno_in_journal(sum, i));
 | |
| 			__mark_sit_entry_dirty(sbi, segno);
 | |
| 		}
 | |
| 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CP calls this function, which flushes SIT entries including sit_journal,
 | |
|  * and moves prefree segs to free segs.
 | |
|  */
 | |
| void flush_sit_entries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	unsigned long nsegs = TOTAL_SEGS(sbi);
 | |
| 	struct page *page = NULL;
 | |
| 	struct f2fs_sit_block *raw_sit = NULL;
 | |
| 	unsigned int start = 0, end = 0;
 | |
| 	unsigned int segno = -1;
 | |
| 	bool flushed;
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * "flushed" indicates whether sit entries in journal are flushed
 | |
| 	 * to the SIT area or not.
 | |
| 	 */
 | |
| 	flushed = flush_sits_in_journal(sbi);
 | |
| 
 | |
| 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
 | |
| 		struct seg_entry *se = get_seg_entry(sbi, segno);
 | |
| 		int sit_offset, offset;
 | |
| 
 | |
| 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
 | |
| 
 | |
| 		if (flushed)
 | |
| 			goto to_sit_page;
 | |
| 
 | |
| 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
 | |
| 		if (offset >= 0) {
 | |
| 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
 | |
| 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
 | |
| 			goto flush_done;
 | |
| 		}
 | |
| to_sit_page:
 | |
| 		if (!page || (start > segno) || (segno > end)) {
 | |
| 			if (page) {
 | |
| 				f2fs_put_page(page, 1);
 | |
| 				page = NULL;
 | |
| 			}
 | |
| 
 | |
| 			start = START_SEGNO(sit_i, segno);
 | |
| 			end = start + SIT_ENTRY_PER_BLOCK - 1;
 | |
| 
 | |
| 			/* read sit block that will be updated */
 | |
| 			page = get_next_sit_page(sbi, start);
 | |
| 			raw_sit = page_address(page);
 | |
| 		}
 | |
| 
 | |
| 		/* udpate entry in SIT block */
 | |
| 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
 | |
| flush_done:
 | |
| 		__clear_bit(segno, bitmap);
 | |
| 		sit_i->dirty_sentries--;
 | |
| 	}
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	/* writeout last modified SIT block */
 | |
| 	f2fs_put_page(page, 1);
 | |
| 
 | |
| 	set_prefree_as_free_segments(sbi);
 | |
| }
 | |
| 
 | |
| static int build_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct sit_info *sit_i;
 | |
| 	unsigned int sit_segs, start;
 | |
| 	char *src_bitmap, *dst_bitmap;
 | |
| 	unsigned int bitmap_size;
 | |
| 
 | |
| 	/* allocate memory for SIT information */
 | |
| 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
 | |
| 	if (!sit_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = sit_i;
 | |
| 
 | |
| 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
 | |
| 	if (!sit_i->sentries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
 | |
| 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->dirty_sentries_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
 | |
| 		sit_i->sentries[start].cur_valid_map
 | |
| 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 		sit_i->sentries[start].ckpt_valid_map
 | |
| 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 		if (!sit_i->sentries[start].cur_valid_map
 | |
| 				|| !sit_i->sentries[start].ckpt_valid_map)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (sbi->segs_per_sec > 1) {
 | |
| 		sit_i->sec_entries = vzalloc(sbi->total_sections *
 | |
| 					sizeof(struct sec_entry));
 | |
| 		if (!sit_i->sec_entries)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* get information related with SIT */
 | |
| 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
 | |
| 
 | |
| 	/* setup SIT bitmap from ckeckpoint pack */
 | |
| 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
 | |
| 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
 | |
| 
 | |
| 	dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!dst_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
 | |
| 
 | |
| 	/* init SIT information */
 | |
| 	sit_i->s_ops = &default_salloc_ops;
 | |
| 
 | |
| 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
 | |
| 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
 | |
| 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
 | |
| 	sit_i->sit_bitmap = dst_bitmap;
 | |
| 	sit_i->bitmap_size = bitmap_size;
 | |
| 	sit_i->dirty_sentries = 0;
 | |
| 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
 | |
| 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
 | |
| 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
 | |
| 	mutex_init(&sit_i->sentry_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 	struct free_segmap_info *free_i;
 | |
| 	unsigned int bitmap_size, sec_bitmap_size;
 | |
| 
 | |
| 	/* allocate memory for free segmap information */
 | |
| 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
 | |
| 	if (!free_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->free_info = free_i;
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
 | |
| 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_segmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
 | |
| 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_secmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set all segments as dirty temporarily */
 | |
| 	memset(free_i->free_segmap, 0xff, bitmap_size);
 | |
| 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
 | |
| 
 | |
| 	/* init free segmap information */
 | |
| 	free_i->start_segno =
 | |
| 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
 | |
| 	free_i->free_segments = 0;
 | |
| 	free_i->free_sections = 0;
 | |
| 	rwlock_init(&free_i->segmap_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array;
 | |
| 	int i;
 | |
| 
 | |
| 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->curseg_array = array;
 | |
| 
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
 | |
| 		mutex_init(&array[i].curseg_mutex);
 | |
| 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
 | |
| 		if (!array[i].sum_blk)
 | |
| 			return -ENOMEM;
 | |
| 		array[i].segno = NULL_SEGNO;
 | |
| 		array[i].next_blkoff = 0;
 | |
| 	}
 | |
| 	return restore_curseg_summaries(sbi);
 | |
| }
 | |
| 
 | |
| static void build_sit_entries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_summary_block *sum = curseg->sum_blk;
 | |
| 	unsigned int start;
 | |
| 
 | |
| 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
 | |
| 		struct seg_entry *se = &sit_i->sentries[start];
 | |
| 		struct f2fs_sit_block *sit_blk;
 | |
| 		struct f2fs_sit_entry sit;
 | |
| 		struct page *page;
 | |
| 		int i;
 | |
| 
 | |
| 		mutex_lock(&curseg->curseg_mutex);
 | |
| 		for (i = 0; i < sits_in_cursum(sum); i++) {
 | |
| 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
 | |
| 				sit = sit_in_journal(sum, i);
 | |
| 				mutex_unlock(&curseg->curseg_mutex);
 | |
| 				goto got_it;
 | |
| 			}
 | |
| 		}
 | |
| 		mutex_unlock(&curseg->curseg_mutex);
 | |
| 		page = get_current_sit_page(sbi, start);
 | |
| 		sit_blk = (struct f2fs_sit_block *)page_address(page);
 | |
| 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
 | |
| 		f2fs_put_page(page, 1);
 | |
| got_it:
 | |
| 		check_block_count(sbi, start, &sit);
 | |
| 		seg_info_from_raw_sit(se, &sit);
 | |
| 		if (sbi->segs_per_sec > 1) {
 | |
| 			struct sec_entry *e = get_sec_entry(sbi, start);
 | |
| 			e->valid_blocks += se->valid_blocks;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	unsigned int start;
 | |
| 	int type;
 | |
| 
 | |
| 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, start);
 | |
| 		if (!sentry->valid_blocks)
 | |
| 			__set_free(sbi, start);
 | |
| 	}
 | |
| 
 | |
| 	/* set use the current segments */
 | |
| 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
 | |
| 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
 | |
| 		__set_test_and_inuse(sbi, curseg_t->segno);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int segno = 0, offset = 0;
 | |
| 	unsigned short valid_blocks;
 | |
| 
 | |
| 	while (segno < TOTAL_SEGS(sbi)) {
 | |
| 		/* find dirty segment based on free segmap */
 | |
| 		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
 | |
| 		if (segno >= TOTAL_SEGS(sbi))
 | |
| 			break;
 | |
| 		offset = segno + 1;
 | |
| 		valid_blocks = get_valid_blocks(sbi, segno, 0);
 | |
| 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
 | |
| 			continue;
 | |
| 		mutex_lock(&dirty_i->seglist_lock);
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 		mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int init_victim_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
 | |
| 
 | |
| 	dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i;
 | |
| 	unsigned int bitmap_size, i;
 | |
| 
 | |
| 	/* allocate memory for dirty segments list information */
 | |
| 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
 | |
| 	if (!dirty_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->dirty_info = dirty_i;
 | |
| 	mutex_init(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
 | |
| 
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
 | |
| 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 		if (!dirty_i->dirty_segmap[i])
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	init_dirty_segmap(sbi);
 | |
| 	return init_victim_segmap(sbi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update min, max modified time for cost-benefit GC algorithm
 | |
|  */
 | |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	sit_i->min_mtime = LLONG_MAX;
 | |
| 
 | |
| 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
 | |
| 		unsigned int i;
 | |
| 		unsigned long long mtime = 0;
 | |
| 
 | |
| 		for (i = 0; i < sbi->segs_per_sec; i++)
 | |
| 			mtime += get_seg_entry(sbi, segno + i)->mtime;
 | |
| 
 | |
| 		mtime = div_u64(mtime, sbi->segs_per_sec);
 | |
| 
 | |
| 		if (sit_i->min_mtime > mtime)
 | |
| 			sit_i->min_mtime = mtime;
 | |
| 	}
 | |
| 	sit_i->max_mtime = get_mtime(sbi);
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| int build_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_sm_info *sm_info;
 | |
| 	int err;
 | |
| 
 | |
| 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
 | |
| 	if (!sm_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* init sm info */
 | |
| 	sbi->sm_info = sm_info;
 | |
| 	INIT_LIST_HEAD(&sm_info->wblist_head);
 | |
| 	spin_lock_init(&sm_info->wblist_lock);
 | |
| 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
 | |
| 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
 | |
| 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
 | |
| 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
 | |
| 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
 | |
| 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
 | |
| 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
 | |
| 
 | |
| 	err = build_sit_info(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_free_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_curseg(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* reinit free segmap based on SIT */
 | |
| 	build_sit_entries(sbi);
 | |
| 
 | |
| 	init_free_segmap(sbi);
 | |
| 	err = build_dirty_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	init_min_max_mtime(sbi);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	kfree(dirty_i->dirty_segmap[dirty_type]);
 | |
| 	dirty_i->nr_dirty[dirty_type] = 0;
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| void reset_victim_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
 | |
| 	memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
 | |
| }
 | |
| 
 | |
| static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	kfree(dirty_i->victim_segmap[FG_GC]);
 | |
| 	kfree(dirty_i->victim_segmap[BG_GC]);
 | |
| }
 | |
| 
 | |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!dirty_i)
 | |
| 		return;
 | |
| 
 | |
| 	/* discard pre-free/dirty segments list */
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++)
 | |
| 		discard_dirty_segmap(sbi, i);
 | |
| 
 | |
| 	destroy_victim_segmap(sbi);
 | |
| 	SM_I(sbi)->dirty_info = NULL;
 | |
| 	kfree(dirty_i);
 | |
| }
 | |
| 
 | |
| static void destroy_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array = SM_I(sbi)->curseg_array;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!array)
 | |
| 		return;
 | |
| 	SM_I(sbi)->curseg_array = NULL;
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++)
 | |
| 		kfree(array[i].sum_blk);
 | |
| 	kfree(array);
 | |
| }
 | |
| 
 | |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
 | |
| 	if (!free_i)
 | |
| 		return;
 | |
| 	SM_I(sbi)->free_info = NULL;
 | |
| 	kfree(free_i->free_segmap);
 | |
| 	kfree(free_i->free_secmap);
 | |
| 	kfree(free_i);
 | |
| }
 | |
| 
 | |
| static void destroy_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int start;
 | |
| 
 | |
| 	if (!sit_i)
 | |
| 		return;
 | |
| 
 | |
| 	if (sit_i->sentries) {
 | |
| 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
 | |
| 			kfree(sit_i->sentries[start].cur_valid_map);
 | |
| 			kfree(sit_i->sentries[start].ckpt_valid_map);
 | |
| 		}
 | |
| 	}
 | |
| 	vfree(sit_i->sentries);
 | |
| 	vfree(sit_i->sec_entries);
 | |
| 	kfree(sit_i->dirty_sentries_bitmap);
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = NULL;
 | |
| 	kfree(sit_i->sit_bitmap);
 | |
| 	kfree(sit_i);
 | |
| }
 | |
| 
 | |
| void destroy_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 	destroy_dirty_segmap(sbi);
 | |
| 	destroy_curseg(sbi);
 | |
| 	destroy_free_segmap(sbi);
 | |
| 	destroy_sit_info(sbi);
 | |
| 	sbi->sm_info = NULL;
 | |
| 	kfree(sm_info);
 | |
| }
 |