Move the calls to memcpy_fromio() up into the loop in dmi_scan_machine(), and move the signature checks back down into dmi_decode(). We need to check at 16-byte intervals but keep a 32-byte buffer for an SMBIOS entry, so shift the buffer after each iteration. Merge smbios_present() into dmi_present(), so we look for an SMBIOS signature at the beginning of the given buffer and then for a DMI signature at an offset of 16 bytes. [artem.savkov@gmail.com: use proper buf type in dmi_present()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Reported-by: Tim McGrath <tmhikaru@gmail.com> Tested-by: Tim Mcgrath <tmhikaru@gmail.com> Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: Artem Savkov <artem.savkov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			812 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			812 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#include <linux/types.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/dmi.h>
 | 
						|
#include <linux/efi.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <asm/dmi.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * DMI stands for "Desktop Management Interface".  It is part
 | 
						|
 * of and an antecedent to, SMBIOS, which stands for System
 | 
						|
 * Management BIOS.  See further: http://www.dmtf.org/standards
 | 
						|
 */
 | 
						|
static char dmi_empty_string[] = "        ";
 | 
						|
 | 
						|
static u16 __initdata dmi_ver;
 | 
						|
/*
 | 
						|
 * Catch too early calls to dmi_check_system():
 | 
						|
 */
 | 
						|
static int dmi_initialized;
 | 
						|
 | 
						|
/* DMI system identification string used during boot */
 | 
						|
static char dmi_ids_string[128] __initdata;
 | 
						|
 | 
						|
static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 | 
						|
{
 | 
						|
	const u8 *bp = ((u8 *) dm) + dm->length;
 | 
						|
 | 
						|
	if (s) {
 | 
						|
		s--;
 | 
						|
		while (s > 0 && *bp) {
 | 
						|
			bp += strlen(bp) + 1;
 | 
						|
			s--;
 | 
						|
		}
 | 
						|
 | 
						|
		if (*bp != 0) {
 | 
						|
			size_t len = strlen(bp)+1;
 | 
						|
			size_t cmp_len = len > 8 ? 8 : len;
 | 
						|
 | 
						|
			if (!memcmp(bp, dmi_empty_string, cmp_len))
 | 
						|
				return dmi_empty_string;
 | 
						|
			return bp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return "";
 | 
						|
}
 | 
						|
 | 
						|
static char * __init dmi_string(const struct dmi_header *dm, u8 s)
 | 
						|
{
 | 
						|
	const char *bp = dmi_string_nosave(dm, s);
 | 
						|
	char *str;
 | 
						|
	size_t len;
 | 
						|
 | 
						|
	if (bp == dmi_empty_string)
 | 
						|
		return dmi_empty_string;
 | 
						|
 | 
						|
	len = strlen(bp) + 1;
 | 
						|
	str = dmi_alloc(len);
 | 
						|
	if (str != NULL)
 | 
						|
		strcpy(str, bp);
 | 
						|
	else
 | 
						|
		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
 | 
						|
 | 
						|
	return str;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 | 
						|
 *	pointing to completely the wrong place for example
 | 
						|
 */
 | 
						|
static void dmi_table(u8 *buf, int len, int num,
 | 
						|
		      void (*decode)(const struct dmi_header *, void *),
 | 
						|
		      void *private_data)
 | 
						|
{
 | 
						|
	u8 *data = buf;
 | 
						|
	int i = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 *	Stop when we see all the items the table claimed to have
 | 
						|
	 *	OR we run off the end of the table (also happens)
 | 
						|
	 */
 | 
						|
	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
 | 
						|
		const struct dmi_header *dm = (const struct dmi_header *)data;
 | 
						|
 | 
						|
		/*
 | 
						|
		 *  We want to know the total length (formatted area and
 | 
						|
		 *  strings) before decoding to make sure we won't run off the
 | 
						|
		 *  table in dmi_decode or dmi_string
 | 
						|
		 */
 | 
						|
		data += dm->length;
 | 
						|
		while ((data - buf < len - 1) && (data[0] || data[1]))
 | 
						|
			data++;
 | 
						|
		if (data - buf < len - 1)
 | 
						|
			decode(dm, private_data);
 | 
						|
		data += 2;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u32 dmi_base;
 | 
						|
static u16 dmi_len;
 | 
						|
static u16 dmi_num;
 | 
						|
 | 
						|
static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 | 
						|
		void *))
 | 
						|
{
 | 
						|
	u8 *buf;
 | 
						|
 | 
						|
	buf = dmi_ioremap(dmi_base, dmi_len);
 | 
						|
	if (buf == NULL)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
 | 
						|
 | 
						|
	add_device_randomness(buf, dmi_len);
 | 
						|
 | 
						|
	dmi_iounmap(buf, dmi_len);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init dmi_checksum(const u8 *buf, u8 len)
 | 
						|
{
 | 
						|
	u8 sum = 0;
 | 
						|
	int a;
 | 
						|
 | 
						|
	for (a = 0; a < len; a++)
 | 
						|
		sum += buf[a];
 | 
						|
 | 
						|
	return sum == 0;
 | 
						|
}
 | 
						|
 | 
						|
static char *dmi_ident[DMI_STRING_MAX];
 | 
						|
static LIST_HEAD(dmi_devices);
 | 
						|
int dmi_available;
 | 
						|
 | 
						|
/*
 | 
						|
 *	Save a DMI string
 | 
						|
 */
 | 
						|
static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
 | 
						|
{
 | 
						|
	const char *d = (const char*) dm;
 | 
						|
	char *p;
 | 
						|
 | 
						|
	if (dmi_ident[slot])
 | 
						|
		return;
 | 
						|
 | 
						|
	p = dmi_string(dm, d[string]);
 | 
						|
	if (p == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	dmi_ident[slot] = p;
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
 | 
						|
{
 | 
						|
	const u8 *d = (u8*) dm + index;
 | 
						|
	char *s;
 | 
						|
	int is_ff = 1, is_00 = 1, i;
 | 
						|
 | 
						|
	if (dmi_ident[slot])
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 | 
						|
		if (d[i] != 0x00)
 | 
						|
			is_00 = 0;
 | 
						|
		if (d[i] != 0xFF)
 | 
						|
			is_ff = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_ff || is_00)
 | 
						|
		return;
 | 
						|
 | 
						|
	s = dmi_alloc(16*2+4+1);
 | 
						|
	if (!s)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 | 
						|
	 * the UUID are supposed to be little-endian encoded.  The specification
 | 
						|
	 * says that this is the defacto standard.
 | 
						|
	 */
 | 
						|
	if (dmi_ver >= 0x0206)
 | 
						|
		sprintf(s, "%pUL", d);
 | 
						|
	else
 | 
						|
		sprintf(s, "%pUB", d);
 | 
						|
 | 
						|
        dmi_ident[slot] = s;
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
 | 
						|
{
 | 
						|
	const u8 *d = (u8*) dm + index;
 | 
						|
	char *s;
 | 
						|
 | 
						|
	if (dmi_ident[slot])
 | 
						|
		return;
 | 
						|
 | 
						|
	s = dmi_alloc(4);
 | 
						|
	if (!s)
 | 
						|
		return;
 | 
						|
 | 
						|
	sprintf(s, "%u", *d & 0x7F);
 | 
						|
	dmi_ident[slot] = s;
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_one_device(int type, const char *name)
 | 
						|
{
 | 
						|
	struct dmi_device *dev;
 | 
						|
 | 
						|
	/* No duplicate device */
 | 
						|
	if (dmi_find_device(type, name, NULL))
 | 
						|
		return;
 | 
						|
 | 
						|
	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 | 
						|
	if (!dev) {
 | 
						|
		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	dev->type = type;
 | 
						|
	strcpy((char *)(dev + 1), name);
 | 
						|
	dev->name = (char *)(dev + 1);
 | 
						|
	dev->device_data = NULL;
 | 
						|
	list_add(&dev->list, &dmi_devices);
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_devices(const struct dmi_header *dm)
 | 
						|
{
 | 
						|
	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 | 
						|
 | 
						|
	for (i = 0; i < count; i++) {
 | 
						|
		const char *d = (char *)(dm + 1) + (i * 2);
 | 
						|
 | 
						|
		/* Skip disabled device */
 | 
						|
		if ((*d & 0x80) == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 | 
						|
{
 | 
						|
	int i, count = *(u8 *)(dm + 1);
 | 
						|
	struct dmi_device *dev;
 | 
						|
 | 
						|
	for (i = 1; i <= count; i++) {
 | 
						|
		char *devname = dmi_string(dm, i);
 | 
						|
 | 
						|
		if (devname == dmi_empty_string)
 | 
						|
			continue;
 | 
						|
 | 
						|
		dev = dmi_alloc(sizeof(*dev));
 | 
						|
		if (!dev) {
 | 
						|
			printk(KERN_ERR
 | 
						|
			   "dmi_save_oem_strings_devices: out of memory.\n");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		dev->type = DMI_DEV_TYPE_OEM_STRING;
 | 
						|
		dev->name = devname;
 | 
						|
		dev->device_data = NULL;
 | 
						|
 | 
						|
		list_add(&dev->list, &dmi_devices);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 | 
						|
{
 | 
						|
	struct dmi_device *dev;
 | 
						|
	void * data;
 | 
						|
 | 
						|
	data = dmi_alloc(dm->length);
 | 
						|
	if (data == NULL) {
 | 
						|
		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(data, dm, dm->length);
 | 
						|
 | 
						|
	dev = dmi_alloc(sizeof(*dev));
 | 
						|
	if (!dev) {
 | 
						|
		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	dev->type = DMI_DEV_TYPE_IPMI;
 | 
						|
	dev->name = "IPMI controller";
 | 
						|
	dev->device_data = data;
 | 
						|
 | 
						|
	list_add_tail(&dev->list, &dmi_devices);
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
 | 
						|
					int devfn, const char *name)
 | 
						|
{
 | 
						|
	struct dmi_dev_onboard *onboard_dev;
 | 
						|
 | 
						|
	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
 | 
						|
	if (!onboard_dev) {
 | 
						|
		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	onboard_dev->instance = instance;
 | 
						|
	onboard_dev->segment = segment;
 | 
						|
	onboard_dev->bus = bus;
 | 
						|
	onboard_dev->devfn = devfn;
 | 
						|
 | 
						|
	strcpy((char *)&onboard_dev[1], name);
 | 
						|
	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
 | 
						|
	onboard_dev->dev.name = (char *)&onboard_dev[1];
 | 
						|
	onboard_dev->dev.device_data = onboard_dev;
 | 
						|
 | 
						|
	list_add(&onboard_dev->dev.list, &dmi_devices);
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 | 
						|
{
 | 
						|
	const u8 *d = (u8*) dm + 5;
 | 
						|
 | 
						|
	/* Skip disabled device */
 | 
						|
	if ((*d & 0x80) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
 | 
						|
			     dmi_string_nosave(dm, *(d-1)));
 | 
						|
	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	Process a DMI table entry. Right now all we care about are the BIOS
 | 
						|
 *	and machine entries. For 2.5 we should pull the smbus controller info
 | 
						|
 *	out of here.
 | 
						|
 */
 | 
						|
static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 | 
						|
{
 | 
						|
	switch(dm->type) {
 | 
						|
	case 0:		/* BIOS Information */
 | 
						|
		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 | 
						|
		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 | 
						|
		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 | 
						|
		break;
 | 
						|
	case 1:		/* System Information */
 | 
						|
		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 | 
						|
		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 | 
						|
		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 | 
						|
		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 | 
						|
		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 | 
						|
		break;
 | 
						|
	case 2:		/* Base Board Information */
 | 
						|
		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 | 
						|
		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 | 
						|
		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 | 
						|
		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 | 
						|
		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 | 
						|
		break;
 | 
						|
	case 3:		/* Chassis Information */
 | 
						|
		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 | 
						|
		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 | 
						|
		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 | 
						|
		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 | 
						|
		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 | 
						|
		break;
 | 
						|
	case 10:	/* Onboard Devices Information */
 | 
						|
		dmi_save_devices(dm);
 | 
						|
		break;
 | 
						|
	case 11:	/* OEM Strings */
 | 
						|
		dmi_save_oem_strings_devices(dm);
 | 
						|
		break;
 | 
						|
	case 38:	/* IPMI Device Information */
 | 
						|
		dmi_save_ipmi_device(dm);
 | 
						|
		break;
 | 
						|
	case 41:	/* Onboard Devices Extended Information */
 | 
						|
		dmi_save_extended_devices(dm);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init print_filtered(char *buf, size_t len, const char *info)
 | 
						|
{
 | 
						|
	int c = 0;
 | 
						|
	const char *p;
 | 
						|
 | 
						|
	if (!info)
 | 
						|
		return c;
 | 
						|
 | 
						|
	for (p = info; *p; p++)
 | 
						|
		if (isprint(*p))
 | 
						|
			c += scnprintf(buf + c, len - c, "%c", *p);
 | 
						|
		else
 | 
						|
			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
static void __init dmi_format_ids(char *buf, size_t len)
 | 
						|
{
 | 
						|
	int c = 0;
 | 
						|
	const char *board;	/* Board Name is optional */
 | 
						|
 | 
						|
	c += print_filtered(buf + c, len - c,
 | 
						|
			    dmi_get_system_info(DMI_SYS_VENDOR));
 | 
						|
	c += scnprintf(buf + c, len - c, " ");
 | 
						|
	c += print_filtered(buf + c, len - c,
 | 
						|
			    dmi_get_system_info(DMI_PRODUCT_NAME));
 | 
						|
 | 
						|
	board = dmi_get_system_info(DMI_BOARD_NAME);
 | 
						|
	if (board) {
 | 
						|
		c += scnprintf(buf + c, len - c, "/");
 | 
						|
		c += print_filtered(buf + c, len - c, board);
 | 
						|
	}
 | 
						|
	c += scnprintf(buf + c, len - c, ", BIOS ");
 | 
						|
	c += print_filtered(buf + c, len - c,
 | 
						|
			    dmi_get_system_info(DMI_BIOS_VERSION));
 | 
						|
	c += scnprintf(buf + c, len - c, " ");
 | 
						|
	c += print_filtered(buf + c, len - c,
 | 
						|
			    dmi_get_system_info(DMI_BIOS_DATE));
 | 
						|
}
 | 
						|
 | 
						|
static int __init dmi_present(const u8 *buf)
 | 
						|
{
 | 
						|
	int smbios_ver;
 | 
						|
 | 
						|
	if (memcmp(buf, "_SM_", 4) == 0 &&
 | 
						|
	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 | 
						|
		smbios_ver = (buf[6] << 8) + buf[7];
 | 
						|
 | 
						|
		/* Some BIOS report weird SMBIOS version, fix that up */
 | 
						|
		switch (smbios_ver) {
 | 
						|
		case 0x021F:
 | 
						|
		case 0x0221:
 | 
						|
			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
 | 
						|
				 smbios_ver & 0xFF, 3);
 | 
						|
			smbios_ver = 0x0203;
 | 
						|
			break;
 | 
						|
		case 0x0233:
 | 
						|
			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
 | 
						|
			smbios_ver = 0x0206;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		smbios_ver = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	buf += 16;
 | 
						|
 | 
						|
	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 | 
						|
		dmi_num = (buf[13] << 8) | buf[12];
 | 
						|
		dmi_len = (buf[7] << 8) | buf[6];
 | 
						|
		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
 | 
						|
			(buf[9] << 8) | buf[8];
 | 
						|
 | 
						|
		if (dmi_walk_early(dmi_decode) == 0) {
 | 
						|
			if (smbios_ver) {
 | 
						|
				dmi_ver = smbios_ver;
 | 
						|
				pr_info("SMBIOS %d.%d present.\n",
 | 
						|
				       dmi_ver >> 8, dmi_ver & 0xFF);
 | 
						|
			} else {
 | 
						|
				dmi_ver = (buf[14] & 0xF0) << 4 |
 | 
						|
					   (buf[14] & 0x0F);
 | 
						|
				pr_info("Legacy DMI %d.%d present.\n",
 | 
						|
				       dmi_ver >> 8, dmi_ver & 0xFF);
 | 
						|
			}
 | 
						|
			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 | 
						|
			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void __init dmi_scan_machine(void)
 | 
						|
{
 | 
						|
	char __iomem *p, *q;
 | 
						|
	char buf[32];
 | 
						|
 | 
						|
	if (efi_enabled(EFI_CONFIG_TABLES)) {
 | 
						|
		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		/* This is called as a core_initcall() because it isn't
 | 
						|
		 * needed during early boot.  This also means we can
 | 
						|
		 * iounmap the space when we're done with it.
 | 
						|
		 */
 | 
						|
		p = dmi_ioremap(efi.smbios, 32);
 | 
						|
		if (p == NULL)
 | 
						|
			goto error;
 | 
						|
		memcpy_fromio(buf, p, 32);
 | 
						|
		dmi_iounmap(p, 32);
 | 
						|
 | 
						|
		if (!dmi_present(buf)) {
 | 
						|
			dmi_available = 1;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * no iounmap() for that ioremap(); it would be a no-op, but
 | 
						|
		 * it's so early in setup that sucker gets confused into doing
 | 
						|
		 * what it shouldn't if we actually call it.
 | 
						|
		 */
 | 
						|
		p = dmi_ioremap(0xF0000, 0x10000);
 | 
						|
		if (p == NULL)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		memset(buf, 0, 16);
 | 
						|
		for (q = p; q < p + 0x10000; q += 16) {
 | 
						|
			memcpy_fromio(buf + 16, q, 16);
 | 
						|
			if (!dmi_present(buf)) {
 | 
						|
				dmi_available = 1;
 | 
						|
				dmi_iounmap(p, 0x10000);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			memcpy(buf, buf + 16, 16);
 | 
						|
		}
 | 
						|
		dmi_iounmap(p, 0x10000);
 | 
						|
	}
 | 
						|
 error:
 | 
						|
	printk(KERN_INFO "DMI not present or invalid.\n");
 | 
						|
 out:
 | 
						|
	dmi_initialized = 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
 | 
						|
 *
 | 
						|
 * Invoke dump_stack_set_arch_desc() with DMI system information so that
 | 
						|
 * DMI identifiers are printed out on task dumps.  Arch boot code should
 | 
						|
 * call this function after dmi_scan_machine() if it wants to print out DMI
 | 
						|
 * identifiers on task dumps.
 | 
						|
 */
 | 
						|
void __init dmi_set_dump_stack_arch_desc(void)
 | 
						|
{
 | 
						|
	dump_stack_set_arch_desc("%s", dmi_ids_string);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 | 
						|
 *	@dmi: pointer to the dmi_system_id structure to check
 | 
						|
 */
 | 
						|
static bool dmi_matches(const struct dmi_system_id *dmi)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 | 
						|
		int s = dmi->matches[i].slot;
 | 
						|
		if (s == DMI_NONE)
 | 
						|
			break;
 | 
						|
		if (dmi_ident[s]
 | 
						|
		    && strstr(dmi_ident[s], dmi->matches[i].substr))
 | 
						|
			continue;
 | 
						|
		/* No match */
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_is_end_of_table - check for end-of-table marker
 | 
						|
 *	@dmi: pointer to the dmi_system_id structure to check
 | 
						|
 */
 | 
						|
static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 | 
						|
{
 | 
						|
	return dmi->matches[0].slot == DMI_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_check_system - check system DMI data
 | 
						|
 *	@list: array of dmi_system_id structures to match against
 | 
						|
 *		All non-null elements of the list must match
 | 
						|
 *		their slot's (field index's) data (i.e., each
 | 
						|
 *		list string must be a substring of the specified
 | 
						|
 *		DMI slot's string data) to be considered a
 | 
						|
 *		successful match.
 | 
						|
 *
 | 
						|
 *	Walk the blacklist table running matching functions until someone
 | 
						|
 *	returns non zero or we hit the end. Callback function is called for
 | 
						|
 *	each successful match. Returns the number of matches.
 | 
						|
 */
 | 
						|
int dmi_check_system(const struct dmi_system_id *list)
 | 
						|
{
 | 
						|
	int count = 0;
 | 
						|
	const struct dmi_system_id *d;
 | 
						|
 | 
						|
	for (d = list; !dmi_is_end_of_table(d); d++)
 | 
						|
		if (dmi_matches(d)) {
 | 
						|
			count++;
 | 
						|
			if (d->callback && d->callback(d))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_check_system);
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 | 
						|
 *	@list: array of dmi_system_id structures to match against
 | 
						|
 *		All non-null elements of the list must match
 | 
						|
 *		their slot's (field index's) data (i.e., each
 | 
						|
 *		list string must be a substring of the specified
 | 
						|
 *		DMI slot's string data) to be considered a
 | 
						|
 *		successful match.
 | 
						|
 *
 | 
						|
 *	Walk the blacklist table until the first match is found.  Return the
 | 
						|
 *	pointer to the matching entry or NULL if there's no match.
 | 
						|
 */
 | 
						|
const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 | 
						|
{
 | 
						|
	const struct dmi_system_id *d;
 | 
						|
 | 
						|
	for (d = list; !dmi_is_end_of_table(d); d++)
 | 
						|
		if (dmi_matches(d))
 | 
						|
			return d;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_first_match);
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_get_system_info - return DMI data value
 | 
						|
 *	@field: data index (see enum dmi_field)
 | 
						|
 *
 | 
						|
 *	Returns one DMI data value, can be used to perform
 | 
						|
 *	complex DMI data checks.
 | 
						|
 */
 | 
						|
const char *dmi_get_system_info(int field)
 | 
						|
{
 | 
						|
	return dmi_ident[field];
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_get_system_info);
 | 
						|
 | 
						|
/**
 | 
						|
 * dmi_name_in_serial - Check if string is in the DMI product serial information
 | 
						|
 * @str: string to check for
 | 
						|
 */
 | 
						|
int dmi_name_in_serial(const char *str)
 | 
						|
{
 | 
						|
	int f = DMI_PRODUCT_SERIAL;
 | 
						|
	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 | 
						|
 *	@str: 	Case sensitive Name
 | 
						|
 */
 | 
						|
int dmi_name_in_vendors(const char *str)
 | 
						|
{
 | 
						|
	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 | 
						|
	int i;
 | 
						|
	for (i = 0; fields[i] != DMI_NONE; i++) {
 | 
						|
		int f = fields[i];
 | 
						|
		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_name_in_vendors);
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_find_device - find onboard device by type/name
 | 
						|
 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 | 
						|
 *	@name: device name string or %NULL to match all
 | 
						|
 *	@from: previous device found in search, or %NULL for new search.
 | 
						|
 *
 | 
						|
 *	Iterates through the list of known onboard devices. If a device is
 | 
						|
 *	found with a matching @vendor and @device, a pointer to its device
 | 
						|
 *	structure is returned.  Otherwise, %NULL is returned.
 | 
						|
 *	A new search is initiated by passing %NULL as the @from argument.
 | 
						|
 *	If @from is not %NULL, searches continue from next device.
 | 
						|
 */
 | 
						|
const struct dmi_device * dmi_find_device(int type, const char *name,
 | 
						|
				    const struct dmi_device *from)
 | 
						|
{
 | 
						|
	const struct list_head *head = from ? &from->list : &dmi_devices;
 | 
						|
	struct list_head *d;
 | 
						|
 | 
						|
	for(d = head->next; d != &dmi_devices; d = d->next) {
 | 
						|
		const struct dmi_device *dev =
 | 
						|
			list_entry(d, struct dmi_device, list);
 | 
						|
 | 
						|
		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 | 
						|
		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 | 
						|
			return dev;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_find_device);
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_get_date - parse a DMI date
 | 
						|
 *	@field:	data index (see enum dmi_field)
 | 
						|
 *	@yearp: optional out parameter for the year
 | 
						|
 *	@monthp: optional out parameter for the month
 | 
						|
 *	@dayp: optional out parameter for the day
 | 
						|
 *
 | 
						|
 *	The date field is assumed to be in the form resembling
 | 
						|
 *	[mm[/dd]]/yy[yy] and the result is stored in the out
 | 
						|
 *	parameters any or all of which can be omitted.
 | 
						|
 *
 | 
						|
 *	If the field doesn't exist, all out parameters are set to zero
 | 
						|
 *	and false is returned.  Otherwise, true is returned with any
 | 
						|
 *	invalid part of date set to zero.
 | 
						|
 *
 | 
						|
 *	On return, year, month and day are guaranteed to be in the
 | 
						|
 *	range of [0,9999], [0,12] and [0,31] respectively.
 | 
						|
 */
 | 
						|
bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
 | 
						|
{
 | 
						|
	int year = 0, month = 0, day = 0;
 | 
						|
	bool exists;
 | 
						|
	const char *s, *y;
 | 
						|
	char *e;
 | 
						|
 | 
						|
	s = dmi_get_system_info(field);
 | 
						|
	exists = s;
 | 
						|
	if (!exists)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine year first.  We assume the date string resembles
 | 
						|
	 * mm/dd/yy[yy] but the original code extracted only the year
 | 
						|
	 * from the end.  Keep the behavior in the spirit of no
 | 
						|
	 * surprises.
 | 
						|
	 */
 | 
						|
	y = strrchr(s, '/');
 | 
						|
	if (!y)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	y++;
 | 
						|
	year = simple_strtoul(y, &e, 10);
 | 
						|
	if (y != e && year < 100) {	/* 2-digit year */
 | 
						|
		year += 1900;
 | 
						|
		if (year < 1996)	/* no dates < spec 1.0 */
 | 
						|
			year += 100;
 | 
						|
	}
 | 
						|
	if (year > 9999)		/* year should fit in %04d */
 | 
						|
		year = 0;
 | 
						|
 | 
						|
	/* parse the mm and dd */
 | 
						|
	month = simple_strtoul(s, &e, 10);
 | 
						|
	if (s == e || *e != '/' || !month || month > 12) {
 | 
						|
		month = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	s = e + 1;
 | 
						|
	day = simple_strtoul(s, &e, 10);
 | 
						|
	if (s == y || s == e || *e != '/' || day > 31)
 | 
						|
		day = 0;
 | 
						|
out:
 | 
						|
	if (yearp)
 | 
						|
		*yearp = year;
 | 
						|
	if (monthp)
 | 
						|
		*monthp = month;
 | 
						|
	if (dayp)
 | 
						|
		*dayp = day;
 | 
						|
	return exists;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(dmi_get_date);
 | 
						|
 | 
						|
/**
 | 
						|
 *	dmi_walk - Walk the DMI table and get called back for every record
 | 
						|
 *	@decode: Callback function
 | 
						|
 *	@private_data: Private data to be passed to the callback function
 | 
						|
 *
 | 
						|
 *	Returns -1 when the DMI table can't be reached, 0 on success.
 | 
						|
 */
 | 
						|
int dmi_walk(void (*decode)(const struct dmi_header *, void *),
 | 
						|
	     void *private_data)
 | 
						|
{
 | 
						|
	u8 *buf;
 | 
						|
 | 
						|
	if (!dmi_available)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	buf = ioremap(dmi_base, dmi_len);
 | 
						|
	if (buf == NULL)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
 | 
						|
 | 
						|
	iounmap(buf);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(dmi_walk);
 | 
						|
 | 
						|
/**
 | 
						|
 * dmi_match - compare a string to the dmi field (if exists)
 | 
						|
 * @f: DMI field identifier
 | 
						|
 * @str: string to compare the DMI field to
 | 
						|
 *
 | 
						|
 * Returns true if the requested field equals to the str (including NULL).
 | 
						|
 */
 | 
						|
bool dmi_match(enum dmi_field f, const char *str)
 | 
						|
{
 | 
						|
	const char *info = dmi_get_system_info(f);
 | 
						|
 | 
						|
	if (info == NULL || str == NULL)
 | 
						|
		return info == str;
 | 
						|
 | 
						|
	return !strcmp(info, str);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(dmi_match);
 |