Suzuki Poulose reported the following recursive locking bug on s390: Here is the stack trace : (see Appendix I for more info) [<0000000000406ed6>] _spin_lock+0x52/0x94 [<0000000000103bde>] crst_table_free+0x14e/0x1a4 [<00000000001ba684>] __pmd_alloc+0x114/0x1ec [<00000000001be8d0>] handle_mm_fault+0x2cc/0xb80 [<0000000000407d62>] do_dat_exception+0x2b6/0x3a0 [<0000000000114f8c>] sysc_return+0x0/0x8 [<00000200001642b2>] 0x200001642b2 The page_table_lock is already acquired in __pmd_alloc (mm/memory.c) and it tries to populate the pud/pgd with a new pmd allocated. If another thread populates it before we get a chance, we free the pmd using pmd_free(). On s390x, pmd_free(even pud_free ) is #defined to crst_table_free(), which acquires the page_table_lock to protect the crst_table index updates. Hence this ends up in a recursive locking of the page_table_lock. The solution suggested by Dave Hansen is to use a new spin lock in the mmu context to protect the access to the crst_list and the pgtable_list. Reported-by: Suzuki Poulose <suzuki@in.ibm.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
		
			
				
	
	
		
			385 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			385 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  arch/s390/mm/vmem.c
 | 
						|
 *
 | 
						|
 *    Copyright IBM Corp. 2006
 | 
						|
 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
 | 
						|
static DEFINE_MUTEX(vmem_mutex);
 | 
						|
 | 
						|
struct memory_segment {
 | 
						|
	struct list_head list;
 | 
						|
	unsigned long start;
 | 
						|
	unsigned long size;
 | 
						|
};
 | 
						|
 | 
						|
static LIST_HEAD(mem_segs);
 | 
						|
 | 
						|
static void __ref *vmem_alloc_pages(unsigned int order)
 | 
						|
{
 | 
						|
	if (slab_is_available())
 | 
						|
		return (void *)__get_free_pages(GFP_KERNEL, order);
 | 
						|
	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static inline pud_t *vmem_pud_alloc(void)
 | 
						|
{
 | 
						|
	pud_t *pud = NULL;
 | 
						|
 | 
						|
#ifdef CONFIG_64BIT
 | 
						|
	pud = vmem_alloc_pages(2);
 | 
						|
	if (!pud)
 | 
						|
		return NULL;
 | 
						|
	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
 | 
						|
#endif
 | 
						|
	return pud;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t *vmem_pmd_alloc(void)
 | 
						|
{
 | 
						|
	pmd_t *pmd = NULL;
 | 
						|
 | 
						|
#ifdef CONFIG_64BIT
 | 
						|
	pmd = vmem_alloc_pages(2);
 | 
						|
	if (!pmd)
 | 
						|
		return NULL;
 | 
						|
	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
 | 
						|
#endif
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static pte_t __ref *vmem_pte_alloc(void)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	if (slab_is_available())
 | 
						|
		pte = (pte_t *) page_table_alloc(&init_mm);
 | 
						|
	else
 | 
						|
		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
 | 
						|
	if (!pte)
 | 
						|
		return NULL;
 | 
						|
	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
 | 
						|
		    PTRS_PER_PTE * sizeof(pte_t));
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a physical memory range to the 1:1 mapping.
 | 
						|
 */
 | 
						|
static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
 | 
						|
{
 | 
						|
	unsigned long address;
 | 
						|
	pgd_t *pg_dir;
 | 
						|
	pud_t *pu_dir;
 | 
						|
	pmd_t *pm_dir;
 | 
						|
	pte_t *pt_dir;
 | 
						|
	pte_t  pte;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	for (address = start; address < start + size; address += PAGE_SIZE) {
 | 
						|
		pg_dir = pgd_offset_k(address);
 | 
						|
		if (pgd_none(*pg_dir)) {
 | 
						|
			pu_dir = vmem_pud_alloc();
 | 
						|
			if (!pu_dir)
 | 
						|
				goto out;
 | 
						|
			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pu_dir = pud_offset(pg_dir, address);
 | 
						|
		if (pud_none(*pu_dir)) {
 | 
						|
			pm_dir = vmem_pmd_alloc();
 | 
						|
			if (!pm_dir)
 | 
						|
				goto out;
 | 
						|
			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
 | 
						|
		pm_dir = pmd_offset(pu_dir, address);
 | 
						|
 | 
						|
#ifdef __s390x__
 | 
						|
		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
 | 
						|
		    (address + HPAGE_SIZE <= start + size) &&
 | 
						|
		    (address >= HPAGE_SIZE)) {
 | 
						|
			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
 | 
						|
			pmd_val(*pm_dir) = pte_val(pte);
 | 
						|
			address += HPAGE_SIZE - PAGE_SIZE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		if (pmd_none(*pm_dir)) {
 | 
						|
			pt_dir = vmem_pte_alloc();
 | 
						|
			if (!pt_dir)
 | 
						|
				goto out;
 | 
						|
			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pt_dir = pte_offset_kernel(pm_dir, address);
 | 
						|
		*pt_dir = pte;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	flush_tlb_kernel_range(start, start + size);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove a physical memory range from the 1:1 mapping.
 | 
						|
 * Currently only invalidates page table entries.
 | 
						|
 */
 | 
						|
static void vmem_remove_range(unsigned long start, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long address;
 | 
						|
	pgd_t *pg_dir;
 | 
						|
	pud_t *pu_dir;
 | 
						|
	pmd_t *pm_dir;
 | 
						|
	pte_t *pt_dir;
 | 
						|
	pte_t  pte;
 | 
						|
 | 
						|
	pte_val(pte) = _PAGE_TYPE_EMPTY;
 | 
						|
	for (address = start; address < start + size; address += PAGE_SIZE) {
 | 
						|
		pg_dir = pgd_offset_k(address);
 | 
						|
		pu_dir = pud_offset(pg_dir, address);
 | 
						|
		if (pud_none(*pu_dir))
 | 
						|
			continue;
 | 
						|
		pm_dir = pmd_offset(pu_dir, address);
 | 
						|
		if (pmd_none(*pm_dir))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (pmd_huge(*pm_dir)) {
 | 
						|
			pmd_clear_kernel(pm_dir);
 | 
						|
			address += HPAGE_SIZE - PAGE_SIZE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pt_dir = pte_offset_kernel(pm_dir, address);
 | 
						|
		*pt_dir = pte;
 | 
						|
	}
 | 
						|
	flush_tlb_kernel_range(start, start + size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a backed mem_map array to the virtual mem_map array.
 | 
						|
 */
 | 
						|
int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
 | 
						|
{
 | 
						|
	unsigned long address, start_addr, end_addr;
 | 
						|
	pgd_t *pg_dir;
 | 
						|
	pud_t *pu_dir;
 | 
						|
	pmd_t *pm_dir;
 | 
						|
	pte_t *pt_dir;
 | 
						|
	pte_t  pte;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	start_addr = (unsigned long) start;
 | 
						|
	end_addr = (unsigned long) (start + nr);
 | 
						|
 | 
						|
	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
 | 
						|
		pg_dir = pgd_offset_k(address);
 | 
						|
		if (pgd_none(*pg_dir)) {
 | 
						|
			pu_dir = vmem_pud_alloc();
 | 
						|
			if (!pu_dir)
 | 
						|
				goto out;
 | 
						|
			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pu_dir = pud_offset(pg_dir, address);
 | 
						|
		if (pud_none(*pu_dir)) {
 | 
						|
			pm_dir = vmem_pmd_alloc();
 | 
						|
			if (!pm_dir)
 | 
						|
				goto out;
 | 
						|
			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pm_dir = pmd_offset(pu_dir, address);
 | 
						|
		if (pmd_none(*pm_dir)) {
 | 
						|
			pt_dir = vmem_pte_alloc();
 | 
						|
			if (!pt_dir)
 | 
						|
				goto out;
 | 
						|
			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
 | 
						|
		}
 | 
						|
 | 
						|
		pt_dir = pte_offset_kernel(pm_dir, address);
 | 
						|
		if (pte_none(*pt_dir)) {
 | 
						|
			unsigned long new_page;
 | 
						|
 | 
						|
			new_page =__pa(vmem_alloc_pages(0));
 | 
						|
			if (!new_page)
 | 
						|
				goto out;
 | 
						|
			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
 | 
						|
			*pt_dir = pte;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	memset(start, 0, nr * sizeof(struct page));
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	flush_tlb_kernel_range(start_addr, end_addr);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add memory segment to the segment list if it doesn't overlap with
 | 
						|
 * an already present segment.
 | 
						|
 */
 | 
						|
static int insert_memory_segment(struct memory_segment *seg)
 | 
						|
{
 | 
						|
	struct memory_segment *tmp;
 | 
						|
 | 
						|
	if (seg->start + seg->size > VMEM_MAX_PHYS ||
 | 
						|
	    seg->start + seg->size < seg->start)
 | 
						|
		return -ERANGE;
 | 
						|
 | 
						|
	list_for_each_entry(tmp, &mem_segs, list) {
 | 
						|
		if (seg->start >= tmp->start + tmp->size)
 | 
						|
			continue;
 | 
						|
		if (seg->start + seg->size <= tmp->start)
 | 
						|
			continue;
 | 
						|
		return -ENOSPC;
 | 
						|
	}
 | 
						|
	list_add(&seg->list, &mem_segs);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove memory segment from the segment list.
 | 
						|
 */
 | 
						|
static void remove_memory_segment(struct memory_segment *seg)
 | 
						|
{
 | 
						|
	list_del(&seg->list);
 | 
						|
}
 | 
						|
 | 
						|
static void __remove_shared_memory(struct memory_segment *seg)
 | 
						|
{
 | 
						|
	remove_memory_segment(seg);
 | 
						|
	vmem_remove_range(seg->start, seg->size);
 | 
						|
}
 | 
						|
 | 
						|
int vmem_remove_mapping(unsigned long start, unsigned long size)
 | 
						|
{
 | 
						|
	struct memory_segment *seg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	mutex_lock(&vmem_mutex);
 | 
						|
 | 
						|
	ret = -ENOENT;
 | 
						|
	list_for_each_entry(seg, &mem_segs, list) {
 | 
						|
		if (seg->start == start && seg->size == size)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (seg->start != start || seg->size != size)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	__remove_shared_memory(seg);
 | 
						|
	kfree(seg);
 | 
						|
out:
 | 
						|
	mutex_unlock(&vmem_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int vmem_add_mapping(unsigned long start, unsigned long size)
 | 
						|
{
 | 
						|
	struct memory_segment *seg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	mutex_lock(&vmem_mutex);
 | 
						|
	ret = -ENOMEM;
 | 
						|
	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
 | 
						|
	if (!seg)
 | 
						|
		goto out;
 | 
						|
	seg->start = start;
 | 
						|
	seg->size = size;
 | 
						|
 | 
						|
	ret = insert_memory_segment(seg);
 | 
						|
	if (ret)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	ret = vmem_add_mem(start, size, 0);
 | 
						|
	if (ret)
 | 
						|
		goto out_remove;
 | 
						|
	goto out;
 | 
						|
 | 
						|
out_remove:
 | 
						|
	__remove_shared_memory(seg);
 | 
						|
out_free:
 | 
						|
	kfree(seg);
 | 
						|
out:
 | 
						|
	mutex_unlock(&vmem_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * map whole physical memory to virtual memory (identity mapping)
 | 
						|
 * we reserve enough space in the vmalloc area for vmemmap to hotplug
 | 
						|
 * additional memory segments.
 | 
						|
 */
 | 
						|
void __init vmem_map_init(void)
 | 
						|
{
 | 
						|
	unsigned long ro_start, ro_end;
 | 
						|
	unsigned long start, end;
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock_init(&init_mm.context.list_lock);
 | 
						|
	INIT_LIST_HEAD(&init_mm.context.crst_list);
 | 
						|
	INIT_LIST_HEAD(&init_mm.context.pgtable_list);
 | 
						|
	init_mm.context.noexec = 0;
 | 
						|
	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
 | 
						|
	ro_end = PFN_ALIGN((unsigned long)&_eshared);
 | 
						|
	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
 | 
						|
		start = memory_chunk[i].addr;
 | 
						|
		end = memory_chunk[i].addr + memory_chunk[i].size;
 | 
						|
		if (start >= ro_end || end <= ro_start)
 | 
						|
			vmem_add_mem(start, end - start, 0);
 | 
						|
		else if (start >= ro_start && end <= ro_end)
 | 
						|
			vmem_add_mem(start, end - start, 1);
 | 
						|
		else if (start >= ro_start) {
 | 
						|
			vmem_add_mem(start, ro_end - start, 1);
 | 
						|
			vmem_add_mem(ro_end, end - ro_end, 0);
 | 
						|
		} else if (end < ro_end) {
 | 
						|
			vmem_add_mem(start, ro_start - start, 0);
 | 
						|
			vmem_add_mem(ro_start, end - ro_start, 1);
 | 
						|
		} else {
 | 
						|
			vmem_add_mem(start, ro_start - start, 0);
 | 
						|
			vmem_add_mem(ro_start, ro_end - ro_start, 1);
 | 
						|
			vmem_add_mem(ro_end, end - ro_end, 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert memory chunk array to a memory segment list so there is a single
 | 
						|
 * list that contains both r/w memory and shared memory segments.
 | 
						|
 */
 | 
						|
static int __init vmem_convert_memory_chunk(void)
 | 
						|
{
 | 
						|
	struct memory_segment *seg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	mutex_lock(&vmem_mutex);
 | 
						|
	for (i = 0; i < MEMORY_CHUNKS; i++) {
 | 
						|
		if (!memory_chunk[i].size)
 | 
						|
			continue;
 | 
						|
		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
 | 
						|
		if (!seg)
 | 
						|
			panic("Out of memory...\n");
 | 
						|
		seg->start = memory_chunk[i].addr;
 | 
						|
		seg->size = memory_chunk[i].size;
 | 
						|
		insert_memory_segment(seg);
 | 
						|
	}
 | 
						|
	mutex_unlock(&vmem_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
core_initcall(vmem_convert_memory_chunk);
 |