 071327ec90
			
		
	
	
	071327ec90
	
	
	
		
			
			Signed-off-by: Alexander Beregalov <a.beregalov@gmail.com> Acked-by: Matthew Wilcox <willy@linux.intel.com> Acked-by: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Kyle McMartin <kyle@mcmartin.ca>
		
			
				
	
	
		
			271 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  *
 | |
|  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
 | |
|  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
 | |
|  * Copyright 1999 Hewlett Packard Co.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/traps.h>
 | |
| 
 | |
| #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
 | |
| 			 /*  dumped to the console via printk)          */
 | |
| 
 | |
| 
 | |
| /* Various important other fields */
 | |
| #define bit22set(x)		(x & 0x00000200)
 | |
| #define bits23_25set(x)		(x & 0x000001c0)
 | |
| #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
 | |
| 				/* extended opcode is 0x6a */
 | |
| 
 | |
| #define BITSSET		0x1c0	/* for identifying LDCW */
 | |
| 
 | |
| 
 | |
| DEFINE_PER_CPU(struct exception_data, exception_data);
 | |
| 
 | |
| /*
 | |
|  * parisc_acctyp(unsigned int inst) --
 | |
|  *    Given a PA-RISC memory access instruction, determine if the
 | |
|  *    the instruction would perform a memory read or memory write
 | |
|  *    operation.
 | |
|  *
 | |
|  *    This function assumes that the given instruction is a memory access
 | |
|  *    instruction (i.e. you should really only call it if you know that
 | |
|  *    the instruction has generated some sort of a memory access fault).
 | |
|  *
 | |
|  * Returns:
 | |
|  *   VM_READ  if read operation
 | |
|  *   VM_WRITE if write operation
 | |
|  *   VM_EXEC  if execute operation
 | |
|  */
 | |
| static unsigned long
 | |
| parisc_acctyp(unsigned long code, unsigned int inst)
 | |
| {
 | |
| 	if (code == 6 || code == 16)
 | |
| 	    return VM_EXEC;
 | |
| 
 | |
| 	switch (inst & 0xf0000000) {
 | |
| 	case 0x40000000: /* load */
 | |
| 	case 0x50000000: /* new load */
 | |
| 		return VM_READ;
 | |
| 
 | |
| 	case 0x60000000: /* store */
 | |
| 	case 0x70000000: /* new store */
 | |
| 		return VM_WRITE;
 | |
| 
 | |
| 	case 0x20000000: /* coproc */
 | |
| 	case 0x30000000: /* coproc2 */
 | |
| 		if (bit22set(inst))
 | |
| 			return VM_WRITE;
 | |
| 
 | |
| 	case 0x0: /* indexed/memory management */
 | |
| 		if (bit22set(inst)) {
 | |
| 			/*
 | |
| 			 * Check for the 'Graphics Flush Read' instruction.
 | |
| 			 * It resembles an FDC instruction, except for bits
 | |
| 			 * 20 and 21. Any combination other than zero will
 | |
| 			 * utilize the block mover functionality on some
 | |
| 			 * older PA-RISC platforms.  The case where a block
 | |
| 			 * move is performed from VM to graphics IO space
 | |
| 			 * should be treated as a READ.
 | |
| 			 *
 | |
| 			 * The significance of bits 20,21 in the FDC
 | |
| 			 * instruction is:
 | |
| 			 *
 | |
| 			 *   00  Flush data cache (normal instruction behavior)
 | |
| 			 *   01  Graphics flush write  (IO space -> VM)
 | |
| 			 *   10  Graphics flush read   (VM -> IO space)
 | |
| 			 *   11  Graphics flush read/write (VM <-> IO space)
 | |
| 			 */
 | |
| 			if (isGraphicsFlushRead(inst))
 | |
| 				return VM_READ;
 | |
| 			return VM_WRITE;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Check for LDCWX and LDCWS (semaphore instructions).
 | |
| 			 * If bits 23 through 25 are all 1's it is one of
 | |
| 			 * the above two instructions and is a write.
 | |
| 			 *
 | |
| 			 * Note: With the limited bits we are looking at,
 | |
| 			 * this will also catch PROBEW and PROBEWI. However,
 | |
| 			 * these should never get in here because they don't
 | |
| 			 * generate exceptions of the type:
 | |
| 			 *   Data TLB miss fault/data page fault
 | |
| 			 *   Data memory protection trap
 | |
| 			 */
 | |
| 			if (bits23_25set(inst) == BITSSET)
 | |
| 				return VM_WRITE;
 | |
| 		}
 | |
| 		return VM_READ; /* Default */
 | |
| 	}
 | |
| 	return VM_READ; /* Default */
 | |
| }
 | |
| 
 | |
| #undef bit22set
 | |
| #undef bits23_25set
 | |
| #undef isGraphicsFlushRead
 | |
| #undef BITSSET
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| /* This is the treewalk to find a vma which is the highest that has
 | |
|  * a start < addr.  We're using find_vma_prev instead right now, but
 | |
|  * we might want to use this at some point in the future.  Probably
 | |
|  * not, but I want it committed to CVS so I don't lose it :-)
 | |
|  */
 | |
| 			while (tree != vm_avl_empty) {
 | |
| 				if (tree->vm_start > addr) {
 | |
| 					tree = tree->vm_avl_left;
 | |
| 				} else {
 | |
| 					prev = tree;
 | |
| 					if (prev->vm_next == NULL)
 | |
| 						break;
 | |
| 					if (prev->vm_next->vm_start > addr)
 | |
| 						break;
 | |
| 					tree = tree->vm_avl_right;
 | |
| 				}
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| int fixup_exception(struct pt_regs *regs)
 | |
| {
 | |
| 	const struct exception_table_entry *fix;
 | |
| 
 | |
| 	fix = search_exception_tables(regs->iaoq[0]);
 | |
| 	if (fix) {
 | |
| 		struct exception_data *d;
 | |
| 		d = &__get_cpu_var(exception_data);
 | |
| 		d->fault_ip = regs->iaoq[0];
 | |
| 		d->fault_space = regs->isr;
 | |
| 		d->fault_addr = regs->ior;
 | |
| 
 | |
| 		regs->iaoq[0] = ((fix->fixup) & ~3);
 | |
| 		/*
 | |
| 		 * NOTE: In some cases the faulting instruction
 | |
| 		 * may be in the delay slot of a branch. We
 | |
| 		 * don't want to take the branch, so we don't
 | |
| 		 * increment iaoq[1], instead we set it to be
 | |
| 		 * iaoq[0]+4, and clear the B bit in the PSW
 | |
| 		 */
 | |
| 		regs->iaoq[1] = regs->iaoq[0] + 4;
 | |
| 		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void do_page_fault(struct pt_regs *regs, unsigned long code,
 | |
| 			      unsigned long address)
 | |
| {
 | |
| 	struct vm_area_struct *vma, *prev_vma;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	unsigned long acc_type;
 | |
| 	int fault;
 | |
| 
 | |
| 	if (in_atomic() || !mm)
 | |
| 		goto no_context;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	vma = find_vma_prev(mm, address, &prev_vma);
 | |
| 	if (!vma || address < vma->vm_start)
 | |
| 		goto check_expansion;
 | |
| /*
 | |
|  * Ok, we have a good vm_area for this memory access. We still need to
 | |
|  * check the access permissions.
 | |
|  */
 | |
| 
 | |
| good_area:
 | |
| 
 | |
| 	acc_type = parisc_acctyp(code,regs->iir);
 | |
| 
 | |
| 	if ((vma->vm_flags & acc_type) != acc_type)
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault, make
 | |
| 	 * sure we exit gracefully rather than endlessly redo the
 | |
| 	 * fault.
 | |
| 	 */
 | |
| 
 | |
| 	fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) ? FAULT_FLAG_WRITE : 0);
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR)) {
 | |
| 		/*
 | |
| 		 * We hit a shared mapping outside of the file, or some
 | |
| 		 * other thing happened to us that made us unable to
 | |
| 		 * handle the page fault gracefully.
 | |
| 		 */
 | |
| 		if (fault & VM_FAULT_OOM)
 | |
| 			goto out_of_memory;
 | |
| 		else if (fault & VM_FAULT_SIGBUS)
 | |
| 			goto bad_area;
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (fault & VM_FAULT_MAJOR)
 | |
| 		current->maj_flt++;
 | |
| 	else
 | |
| 		current->min_flt++;
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return;
 | |
| 
 | |
| check_expansion:
 | |
| 	vma = prev_vma;
 | |
| 	if (vma && (expand_stack(vma, address) == 0))
 | |
| 		goto good_area;
 | |
| 
 | |
| /*
 | |
|  * Something tried to access memory that isn't in our memory map..
 | |
|  */
 | |
| bad_area:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 		struct siginfo si;
 | |
| 
 | |
| #ifdef PRINT_USER_FAULTS
 | |
| 		printk(KERN_DEBUG "\n");
 | |
| 		printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
 | |
| 		    task_pid_nr(tsk), tsk->comm, code, address);
 | |
| 		if (vma) {
 | |
| 			printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
 | |
| 					vma->vm_start, vma->vm_end);
 | |
| 		}
 | |
| 		show_regs(regs);
 | |
| #endif
 | |
| 		/* FIXME: actually we need to get the signo and code correct */
 | |
| 		si.si_signo = SIGSEGV;
 | |
| 		si.si_errno = 0;
 | |
| 		si.si_code = SEGV_MAPERR;
 | |
| 		si.si_addr = (void __user *) address;
 | |
| 		force_sig_info(SIGSEGV, &si, current);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| no_context:
 | |
| 
 | |
| 	if (!user_mode(regs) && fixup_exception(regs)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
 | |
| 
 | |
|   out_of_memory:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	printk(KERN_CRIT "VM: killing process %s\n", current->comm);
 | |
| 	if (user_mode(regs))
 | |
| 		do_group_exit(SIGKILL);
 | |
| 	goto no_context;
 | |
| }
 |