Currently the syscall_meta structures for the syscall tracepoints are
placed in the __syscall_metadata section, and at link time, the linker
makes one large array of all these syscall metadata structures. On boot
up, this array is read (much like the initcall sections) and the syscall
data is processed.
The problem is that there is no guarantee that gcc will place complex
structures nicely together in an array format. Two structures in the
same file may be placed awkwardly, because gcc has no clue that they
are suppose to be in an array.
A hack was used previous to force the alignment to 4, to pack the
structures together. But this caused alignment issues with other
architectures (sparc).
Instead of packing the structures into an array, the structures' addresses
are now put into the __syscall_metadata section. As pointers are always the
natural alignment, gcc should always pack them tightly together
(otherwise initcall, extable, etc would also fail).
By having the pointers to the structures in the section, we can still
iterate the trace_events without causing unnecessary alignment problems
with other architectures, or depending on the current behaviour of
gcc that will likely change in the future just to tick us kernel developers
off a little more.
The __syscall_metadata section is also moved into the .init.data section
as it is now only needed at boot up.
Suggested-by: David Miller <davem@davemloft.net>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Make the tracepoints more robust, making them solid enough to handle compiler
changes by not relying on anything based on compiler-specific behavior with
respect to structure alignment. Implement an approach proposed by David Miller:
use an array of const pointers to refer to the individual structures, and export
this pointer array through the linker script rather than the structures per se.
It will consume 32 extra bytes per tracepoint (24 for structure padding and 8
for the pointers), but are less likely to break due to compiler changes.
History:
commit 7e066fb8 tracepoints: add DECLARE_TRACE() and DEFINE_TRACE()
added the aligned(32) type and variable attribute to the tracepoint structures
to deal with gcc happily aligning statically defined structures on 32-byte
multiples.
One attempt was to use a 8-byte alignment for tracepoint structures by applying
both the variable and type attribute to tracepoint structures definitions and
declarations. It worked fine with gcc 4.5.1, but broke with gcc 4.4.4 and 4.4.5.
The reason is that the "aligned" attribute only specify the _minimum_ alignment
for a structure, leaving both the compiler and the linker free to align on
larger multiples. Because tracepoint.c expects the structures to be placed as an
array within each section, up-alignment cause NULL-pointer exceptions due to the
extra unexpected padding.
(this patch applies on top of -tip)
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
LKML-Reference: <20110126222622.GA10794@Krystal>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently only implemented for fair class tasks.
Add a yield_to_task method() to the fair scheduling class. allowing the
caller of yield_to() to accelerate another thread in it's thread group,
task group.
Implemented via a scheduler hint, using cfs_rq->next to encourage the
target being selected. We can rely on pick_next_entity to keep things
fair, so noone can accelerate a thread that has already used its fair
share of CPU time.
This also means callers should only call yield_to when they really
mean it. Calling it too often can result in the scheduler just
ignoring the hint.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110201095051.4ddb7738@annuminas.surriel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the buddy mechanism to implement yield_task_fair. This
allows us to skip onto the next highest priority se at every
level in the CFS tree, unless doing so would introduce gross
unfairness in CPU time distribution.
We order the buddy selection in pick_next_entity to check
yield first, then last, then next. We need next to be able
to override yield, because it is possible for the "next" and
"yield" task to be different processen in the same sub-tree
of the CFS tree. When they are, we need to go into that
sub-tree regardless of the "yield" hint, and pick the correct
entity once we get to the right level.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110201095103.3a79e92a@annuminas.surriel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Oleg reported that on architectures with
__ARCH_WANT_INTERRUPTS_ON_CTXSW the IPI from
task_oncpu_function_call() can land before perf_event_task_sched_in()
and cause interesting situations for eg. perf_install_in_context().
This patch reworks the task_oncpu_function_call() interface to give a
more usable primitive as well as rework all its users to hopefully be
more obvious as well as remove the races.
While looking at the code I also found a number of races against
perf_event_task_sched_out() which can flip contexts between tasks so
plug those too.
Reported-and-reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CHOKe ("CHOose and Kill" or "CHOose and Keep") is an alternative
packet scheduler based on the Random Exponential Drop (RED) algorithm.
The core idea is:
For every packet arrival:
Calculate Qave
if (Qave < minth)
Queue the new packet
else
Select randomly a packet from the queue
if (both packets from same flow)
then Drop both the packets
else if (Qave > maxth)
Drop packet
else
Admit packet with proability p (same as RED)
See also:
Rong Pan, Balaji Prabhakar, Konstantinos Psounis, "CHOKe: a stateless active
queue management scheme for approximating fair bandwidth allocation",
Proceeding of INFOCOM'2000, March 2000.
Help from:
Eric Dumazet <eric.dumazet@gmail.com>
Patrick McHardy <kaber@trash.net>
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the trace_event structures are placed in the _ftrace_events
section, and at link time, the linker makes one large array of all
the trace_event structures. On boot up, this array is read (much like
the initcall sections) and the events are processed.
The problem is that there is no guarantee that gcc will place complex
structures nicely together in an array format. Two structures in the
same file may be placed awkwardly, because gcc has no clue that they
are suppose to be in an array.
A hack was used previous to force the alignment to 4, to pack the
structures together. But this caused alignment issues with other
architectures (sparc).
Instead of packing the structures into an array, the structures' addresses
are now put into the _ftrace_event section. As pointers are always the
natural alignment, gcc should always pack them tightly together
(otherwise initcall, extable, etc would also fail).
By having the pointers to the structures in the section, we can still
iterate the trace_events without causing unnecessary alignment problems
with other architectures, or depending on the current behaviour of
gcc that will likely change in the future just to tick us kernel developers
off a little more.
The _ftrace_event section is also moved into the .init.data section
as it is now only needed at boot up.
Suggested-by: David Miller <davem@davemloft.net>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
FMODE_EXEC is a constant type of fmode_t but was used with normal integer
constants. This results in following warnings from sparse. Fix it using
new macro __FMODE_EXEC.
fs/exec.c:116:58: warning: restricted fmode_t degrades to integer
fs/exec.c:689:58: warning: restricted fmode_t degrades to integer
fs/fcntl.c:777:9: warning: restricted fmode_t degrades to integer
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
AND-ing FMODE_* constant with normal integer results in following
sparse warnings. Fix it.
fs/open.c:662:21: warning: restricted fmode_t degrades to integer
fs/anon_inodes.c:123:34: warning: restricted fmode_t degrades to integer
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If reclaim after a failed charging was unsuccessful, the limits are
checked again, just in case they settled by means of other tasks.
This is all fine as long as every charge is of size PAGE_SIZE, because in
that case, being below the limit means having at least PAGE_SIZE bytes
available.
But with transparent huge pages, we may end up in an endless loop where
charging and reclaim fail, but we keep going because the limits are not
yet exceeded, although not allowing for a huge page.
Fix this up by explicitely checking for enough room, not just whether we
are within limits.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new 'devgroup' match to match on the device group of the
incoming and outgoing network device of a packet.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Add a dummy ip_set_get_ip6_port function that unconditionally
returns false for CONFIG_IPV6=n and convert the real function
to ipv6_skip_exthdr() to avoid pulling in the ip6_tables module
when loading ipset.
Signed-off-by: Patrick McHardy <kaber@trash.net>
This was done to resolve conflicts in the following files due
to patches in Linus's tree and in the staging-next tree:
drivers/staging/brcm80211/brcmsmac/wl_mac80211.c
drivers/staging/ste_rmi4/synaptics_i2c_rmi4.c
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch adds support for adding and removing posix clocks. The
clock lifetime cycle is patterned after usb devices. Each clock is
represented by a standard character device. In addition, the driver
may optionally implement custom character device operations.
The posix clock and timer system calls listed below now work with
dynamic posix clocks, as well as the traditional static clocks.
The following system calls are affected:
- clock_adjtime (brand new syscall)
- clock_gettime
- clock_getres
- clock_settime
- timer_create
- timer_delete
- timer_gettime
- timer_settime
[ tglx: Adapted to the posix-timer cleanup. Moved clock_posix_dynamic
to posix-clock.c and made all referenced functions static ]
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134420.164172635@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Rename register_posix_clock() to posix_timers_register_clock(). That's
what the function really does. As a side effect this cleans up the
posix_clock namespace for the upcoming dynamic posix_clock
infrastructure.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <alpine.LFD.2.00.1102021222240.31804@localhost6.localdomain6>
Extend the negative clockids which are currently used by posix cpu
timers to encode the PID with a file descriptor based type which
encodes the fd in the upper bits.
Originally-from: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134420.062860200@linutronix.de>
A new syscall is introduced that allows tuning of a POSIX clock. The
new call, clock_adjtime, takes two parameters, the clock ID and a
pointer to a struct timex. Any ADJTIMEX(2) operation may be requested
via this system call, but various POSIX clocks may or may not support
tuning.
[ tglx: Adapted to the posix-timer cleanup series. Avoid copy_to_user
in the error case ]
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134419.869804645@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a new mode bit into the timex structure. When set, the bit
instructs the kernel to add the given time value to the current time.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134320.688829863@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This adds a kernel-internal timekeeping interface to add or subtract
a fixed amount from CLOCK_REALTIME. This makes it so kernel users or
interfaces trying to do so do not have to read the time, then add an
offset and then call settimeofday(), which adds some extra error in
comparision to just simply adding the offset in the kernel timekeeping
core.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134419.584311693@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
All functions are accessed via clock_posix_cpu now. So make them static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134419.389755466@linutronix.de>
The res member of kclock is only used by mmtimer.c, but even there it
contains redundant information. Remove the field and fixup mmtimer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134418.808714587@linutronix.de>
Use the new kclock decoding function in clock_settime and cleanup all
kclocks which use the default functions. Rename the misnomed
common_clock_set() to posix_clock_realtime_set().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134418.518851246@linutronix.de>
posix timers were the last users of the legacy arg0-3 members of
restart_block. Remove the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134418.326209775@linutronix.de>
Use the new kclock decoding function in clock_nanosleep and cleanup all
kclocks which use the default functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134418.034175556@linutronix.de>
The CLOCK_DISPATCH() macro is a horrible magic. We call common
functions if a function pointer is not set. That's just backwards.
To support dynamic file decriptor based clocks we need to cleanup that
dispatch logic.
Create a k_clock struct clock_posix_cpu which has all the
posix-cpu-timer functions filled in. After the cleanup the functions
can be made static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134417.841974553@linutronix.de>
Both settimeofday() and clock_settime() promise with a 'const'
attribute not to alter the arguments passed in. This patch adds the
missing 'const' attribute into the various kernel functions
implementing these calls.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134417.545698637@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'intel/drm-intel-fixes' of /ssd/git/drm-next:
drm/i915: Only bind to function 0 of the PCI device
drm/i915: Suppress spurious vblank interrupts
drm: Avoid leak of adjusted mode along quick set_mode paths
drm: Simplify and defend later checks when disabling a crtc
drm: Don't switch fb when disabling an output
drm/i915: Reset crtc after resume
drm/i915/crt: Force the initial probe after reset
drm/i915: Reset state after a GPU reset or resume
drm: Add an interface to reset the device
drm/i915/sdvo: If at first we don't succeed in reading the response, wait
These variables are unused as a result of the recent netns work.
Signed-off-by: Simon Horman <horms@verge.net.au>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Hans Schillstrom <hans@schillstrom.com>
Tested-by: Hans Schillstrom <hans@schillstrom.com>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The only user for this hook was selinux. sysctl routes every call
through /proc/sys/. Selinux and other security modules use the file
system checks for sysctl too, so no need for this hook any more.
Signed-off-by: Lucian Adrian Grijincu <lucian.grijincu@gmail.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
SELinux would like to implement a new labeling behavior of newly created
inodes. We currently label new inodes based on the parent and the creating
process. This new behavior would also take into account the name of the
new object when deciding the new label. This is not the (supposed) full path,
just the last component of the path.
This is very useful because creating /etc/shadow is different than creating
/etc/passwd but the kernel hooks are unable to differentiate these
operations. We currently require that userspace realize it is doing some
difficult operation like that and than userspace jumps through SELinux hoops
to get things set up correctly. This patch does not implement new
behavior, that is obviously contained in a seperate SELinux patch, but it
does pass the needed name down to the correct LSM hook. If no such name
exists it is fine to pass NULL.
Signed-off-by: Eric Paris <eparis@redhat.com>
For the following rule:
iptables -I PREROUTING -t raw -j CT --ctevents assured
The event delivered looks like the following:
[UPDATE] tcp 6 src=192.168.0.2 dst=192.168.1.2 sport=37041 dport=80 src=192.168.1.2 dst=192.168.1.100 sport=80 dport=37041 [ASSURED]
Note that the TCP protocol state is not included. For that reason
the CT event filtering is not very useful for conntrackd.
To resolve this issue, instead of conditionally setting the CT events
bits based on the ctmask, we always set them and perform the filtering
in the late stage, just before the delivery.
Thus, the event delivered looks like the following:
[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.0.2 dst=192.168.1.2 sport=37041 dport=80 src=192.168.1.2 dst=192.168.1.100 sport=80 dport=37041 [ASSURED]
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The patch adds the combined module of the "SET" target and "set" match
to netfilter. Both the previous and the current revisions are supported.
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The module implements the list:set type support in two flavours:
without and with timeout. The sets has two sides: for the userspace,
they store the names of other (non list:set type of) sets: one can add,
delete and test set names. For the kernel, it forms an ordered union of
the member sets: the members sets are tried in order when elements are
added, deleted and tested and the process stops at the first success.
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The module implements the hash:ip type support in four flavours:
for IPv4 or IPv6, both without and with timeout support.
All the hash types are based on the "array hash" or ahash structure
and functions as a good compromise between minimal memory footprint
and speed. The hashing uses arrays to resolve clashes. The hash table
is resized (doubled) when searching becomes too long. Resizing can be
triggered by userspace add commands only and those are serialized by
the nfnl mutex. During resizing the set is read-locked, so the only
possible concurrent operations are the kernel side readers. Those are
protected by RCU locking.
Because of the four flavours and the other hash types, the functions
are implemented in general forms in the ip_set_ahash.h header file
and the real functions are generated before compiling by macro expansion.
Thus the dereferencing of low-level functions and void pointer arguments
could be avoided: the low-level functions are inlined, the function
arguments are pointers of type-specific structures.
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The module implements the bitmap:ip set type in two flavours, without
and with timeout support. In this kind of set one can store IPv4
addresses (or network addresses) from a given range.
In order not to waste memory, the timeout version does not rely on
the kernel timer for every element to be timed out but on garbage
collection. All set types use this mechanism.
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The patch adds the IP set core support to the kernel.
The IP set core implements a netlink (nfnetlink) based protocol by which
one can create, destroy, flush, rename, swap, list, save, restore sets,
and add, delete, test elements from userspace. For simplicity (and backward
compatibilty and for not to force ip(6)tables to be linked with a netlink
library) reasons a small getsockopt-based protocol is also kept in order
to communicate with the ip(6)tables match and target.
The netlink protocol passes all u16, etc values in network order with
NLA_F_NET_BYTEORDER flag. The protocol enforces the proper use of the
NLA_F_NESTED and NLA_F_NET_BYTEORDER flags.
For other kernel subsystems (netfilter match and target) the API contains
the functions to add, delete and test elements in sets and the required calls
to get/put refereces to the sets before those operations can be performed.
The set types (which are implemented in independent modules) are stored
in a simple RCU protected list. A set type may have variants: for example
without timeout or with timeout support, for IPv4 or for IPv6. The sets
(i.e. the pointers to the sets) are stored in an array. The sets are
identified by their index in the array, which makes possible easy and
fast swapping of sets. The array is protected indirectly by the nfnl
mutex from nfnetlink. The content of the sets are protected by the rwlock
of the set.
There are functional differences between the add/del/test functions
for the kernel and userspace:
- kernel add/del/test: works on the current packet (i.e. one element)
- kernel test: may trigger an "add" operation in order to fill
out unspecified parts of the element from the packet (like MAC address)
- userspace add/del: works on the netlink message and thus possibly
on multiple elements from the IPSET_ATTR_ADT container attribute.
- userspace add: may trigger resizing of a set
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The patch adds the NFNL_SUBSYS_IPSET id and NLA_PUT_NET* macros to the
vanilla kernel.
Signed-off-by: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
All users of old style get/setkeycode methids have been converted so
it is time to retire them.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Both fib_trie and fib_hash have a local implementation of
fib_table_select_default(). This is completely unnecessary
code duplication.
Since we now remember the fib_table and the head of the fib
alias list of the default route, we can implement one single
generic version of this routine.
Looking at the fib_hash implementation you may get the impression
that it's possible for there to be multiple top-level routes in
the table for the default route. The truth is, it isn't, the
insert code will only allow one entry to exist in the zero
prefix hash table, because all keys evaluate to zero and all
keys in a hash table must be unique.
Signed-off-by: David S. Miller <davem@davemloft.net>
This will be used later to implement fib_select_default() in a
completely generic manner, instead of the current situation where the
default route is re-looked up in the TRIE/HASH table and then the
available aliases are analyzed.
Signed-off-by: David S. Miller <davem@davemloft.net>