As is pointed out in
http://www.gelato.org/community/view_linear.php?id=1_1036&from=authors&value=Ian%20Wienand#1_1039,
if single step on break instruction, the break fault has higher
priority than the single-step trap. When the break fault handler
is entered, it advances the IP by 1 instruction so break instruction
single-stepping is skipped, actually it is next instruction which
is single stepped.
This patch modifies this, it adds TIF_SINGLESTEP bit for thread
flags, and generate a fake sigtrap when single stepping break
instruction. Test case in attachment can verify this. Any comments
is welcome.
Signed-off-by: bibo, mao <bibo.mao@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This moves the ia64 implementation of machine_shutdown() from
machine_kexec.c to process.c, which is in keeping with the implelmentation
on other architectures, and seems like a much more appropriate home for it.
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Set read-only flag in the page table entries for the kernel image text
section. This will catch all instruction caused corruptions withing the
text section.
Instruction replacement via kprobes still works, since it bypasses now
dynamic address translation.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Hopefully this will make it more maintainable and less error prone.
Code makes use of search_exception_tables(). Since it calls this
function before the kernel exeception table is sorted, there is an
early call to sort_main_extable().
This way it's easy to use the already present infrastructure of fixup
sections. Also this would allows to easily convert the rest of
head[31|64].S into C code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Preset the bogomips number to the cpu capacity value reported by
store system information in SYSIB 1.2.2. This value is constant
for a particular machine model and can be used to determine
relative performance differences between machines.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This is an extension of the already existing hypfs for LPAR (DIAG 204).
Data returned by DIAG 2fc is exported using the s390_hypfs when Linux
is running under z/VM. Information about cpus and memory is provided.
Data is put into different virtual files which can be accessed from user
space. All values are represented as ASCII strings
Signed-off-by: Michael Holzheu <holzheu@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add support to boot from a named saved segment (NSS).
Signed-off-by: Hongjie Yang <hongjie@us.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Starting with the z9 the CPU Cryptographic Assist Facility comes with
an integrated Pseudo Random Number Generator. The generator creates
random numbers by an algorithm similar to the ANSI X9.17 standard.
The pseudo-random numbers can be accessed via a character device driver
node called /dev/prandom. Similar to /dev/urandom any amount of bytes
can be read from the device without blocking.
Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch adds support for clock synchronization to an external time
reference (ETR). The external time reference sends an oscillator
signal and a synchronization signal every 2^20 microseconds to keep
the TOD clocks of all connected servers in sync. For availability
two ETR units can be connected to a machine. If the clock deviates
for more than the sync-check tolerance all cpus get a machine check
that indicates that the clock is out of sync. For the lovely details
how to get the clock back in sync see the code below.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This provides a noexec protection on s390 hardware. Our hardware does
not have any bits left in the pte for a hw noexec bit, so this is a
different approach using shadow page tables and a special addressing
mode that allows separate address spaces for code and data.
As a special feature of our "secondary-space" addressing mode, separate
page tables can be specified for the translation of data addresses
(storage operands) and instruction addresses. The shadow page table is
used for the instruction addresses and the standard page table for the
data addresses.
The shadow page table is linked to the standard page table by a pointer
in page->lru.next of the struct page corresponding to the page that
contains the standard page table (since page->private is not really
private with the pte_lock and the page table pages are not in the LRU
list).
Depending on the software bits of a pte, it is either inserted into
both page tables or just into the standard (data) page table. Pages of
a vma that does not have the VM_EXEC bit set get mapped only in the
data address space. Any try to execute code on such a page will cause a
page translation exception. The standard reaction to this is a SIGSEGV
with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn)
and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the
kernel to the signal stack frame. Unfortunately, the signal return
mechanism cannot be modified to use an SA_RESTORER because the
exception unwinding code depends on the system call opcode stored
behind the signal stack frame.
This feature requires that user space is executed in secondary-space
mode and the kernel in home-space mode, which means that the addressing
modes need to be switched and that the noexec protection only works
for user space.
After switching the addressing modes, we cannot use the mvcp/mvcs
instructions anymore to copy between kernel and user space. A new
mvcos instruction has been added to the z9 EC/BC hardware which allows
to copy between arbitrary address spaces, but on older hardware the
page tables need to be walked manually.
Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch moves the config options for the s390 crypto instructions
to the standard "Hardware crypto devices" menu. In addition some
cleanup has been done: use a flag for supported keylengths, add a
warning about machien limitation, return ENOTSUPP in case the
hardware has no support, remove superfluous printks and update
email addresses.
Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
kretprobe_trampoline_holder() is in kprobes section but used to
register a kprobe in arch_init_kprobes(). Hence register_kprobe()
and therefore arch_init_kprobes() will fail.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
In case of an illegal op the die notifier gets called with DIE_TRAP
instead of DIE_BPT first.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Currently loaded DCSS segments are now listed in /proc/iomem with
their name followed by a trailing "(DCSS)".
Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
FCP dump feature detection works only if the sclp command in head.S
was succesful. Since the sclp command is skipped if diag260 works,
we don't have any dump feature detection anymore.
Bug was introduced with d57de5a367.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Change the bounce buffer logic of cpcmd. diag8 needs _real_ memory below
2GB. Therefore vmalloced data does not work. As the data might cross a
page boundary, we cannot use virt_to_page either. The solution is to use
virt_to_page only in the check for a bounce buffer.
There was a redundant check for response==NULL. response < 2GB contains
this check as well.
I also removed the rlen==0 check, since rlen=0 and response!=NULL would
be a caller bug and response==NULL is already checked.
Signed-off-by: Christian Borntraeger <cborntra@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the Remove inline declaration of efi_get_pal_addr() as it is
declared in linux/efi.h.
Signed-Off-By: Simon Horman <horms@verge.net.au>
Signed-off-by: Tony Luck <tony.luck@intel.com>
linux/uaccess.h was being included, but it seems that
really the following includes are needed.
asm/page.h: for __va() and PAGE_SHIFT
asm/uaccess.h: for copy_to_user()
I guess that linux/uaccess.h pulls in both asm/page.h and asm/uaccess.h.
I notices this while backporting the code to xen's linux-2.6.16.33,
which does not have linux/uaccess.h. I'm posting it as I think it is a
correct, though somewhat cosmetic fix.
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Fix a typo in the saved_max_pfn description in contig.c
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Set saved_max_pfn when discontig memory is in use.
This sets up saved_max_pfn when disctontig memory is in use.
This mirrors the code for contig memory.
This patch does not entirely solve the problem of making vmcore work,
however it does appear to be neccessary. Please consider applying.
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Kexec support for 2.6.20 on ia64 does not build properly using a config
made up by CONFIG_SMP=n and CONFIG_HOTPLUG_CPU=n:
Signed-off-by: Magnus Damm <magnus@valinux.co.jp>
Acked-by: Simon Horman <horms@verge.net.au>
Acked-by: Jay Lan <jlan@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
I don't know why it is working and how, but it is working. On my
Epia transition time is by default set to 100us. I'm changing it to
200us. After that I can change frequency from min (x4.0) to max (x7.5)
without lockup. Many times.
There is a paranoid check at a beginning of a patch. Probably dead
code, but I don't have better ideas for CL10000 case at the moment.
Only way to to detect broken chip seems to be looking in log for
spurious interrupts.
Signed-off-by: Rafal Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
This is bug reported by John-Marc Chandonia:
> Detected 1002.292 MHz processor.
> longhaul: VIA C3 'Nehemiah B' [C5N] CPU detected. Powersaver supported.
> longhaul: Using throttling support.
> longhaul: Invalid (reserved) FSB!
FSB is correcly guessed for 999.554 MHz CPU.
To fix this error:
- ROUNDING should be range, not mask - at it's current value it is +7 -8,
- more precise calculations inside guess_fsb - 7.5x133MHz is 1000MHz now.
Signed-off-by: Rafal Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
When calling into the EFI firmware, the parameters need to be passed on
the stack. The recent change to use -mregparm=3 breaks x86 EFI support.
This patch is needed to allow the new Intel-based Macs to suspend to ram
(efi.get_time is called during the suspend phase).
Signed-off-by: Frederic Riss <frederic.riss@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now there is no need to depend on -1 in Nehemiah tables. After
previous change code is eliminating multipliers lower then 5.0
by minmult for Nehemiah A and B.
Signed-off-by: Rafa Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
Looks like some time ago I introduced a bug to Longhaul.
I had report that 9x133Mhz CPU is seen as 5x133MHz. So I
changed multipliers table. That was a mistake. According to
documentation table was correct. So only way to avoid 5 or 9
dilema is not use MaxMHzBR for PowerSaver 1.0. One code that
works on all processors. To do it I need also separate flag for
Nehemiah C (min = x4.0) and Nehemiah (min = x5.0).
Signed-off-by: Rafa Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
This fixes the cpuinfo_cur_freq value by using the correct
find_khz_freq_from_fiddid() when the CPU uses hardware p-states.
Signed-off-by: Joachim Deguara <joachim.deguara@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Dave Jones <davej@redhat.com>
There is no need to have this option in Longhaul anymore.
It was for laptop with CLE266 chipset in times, when only
ACPI C3 was used to switch frequency. Now we have native
support not only for CLE266, but CN400 too. Would be good
to have support for PN266, but I can't find datasheet for it.
Looks like BIOS for CPU's faster then 1GHz don't support
ACPI C2 nor C3.
Signed-off-by: Rafa Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
The SN Altix platform does not conform to the IOSAPIC IRQ routing model.
Add code in acpi_unregister_gsi() to check if (acpi_irq_model ==
ACPI_IRQ_MODEL_PLATFORM) and return.
Due to an oversight, this code was not added previously when
similar code was added to acpi_register_gsi().
http://marc.theaimsgroup.com/?l=linux-acpi&m=116680983430121&w=2
Signed-off-by: John Keller <jpk@sgi.com>
Acked-by: Len Brown <lenb@kernel.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes up ia64 kexec support for HP rx2620 hardware. It does
this by skipping migration of already disabled irqs. This is most likely a
problem on other ia64 platforms as well, but I've only been able to
reproduce it on one machine so far.
The full story is that handle_bad_irq() gets invoked before starting the
new kernel without this patch. This seems to happen when fixup_irqs()
calls generic_handle_irq() on already migrated (and disabled) irqs. So by
avoiding migration of disabled irqs we stay away of handle_bad_irq().
The code has been tested on three different ia64 machines, all with good
results. It is possible to trigger the same bug by offlining a processor
using echo 0 > /sys/devices/system/cpu/cpuX/online.
More detailed information is available in the following mail thread:
http://lists.osdl.org/pipermail/fastboot/2007-January/thread.html#5774
Signed-off-by: Magnus Damm <magnus@valinux.co.jp>
Acked-by: Simon Horman <horms@verge.net.au>
Acked-by: Zou, Nanhai <nanhai.zou@intel.com>
Acked-by: Jay Lan <jlan@sgi.com>
Acked-by: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add SN platform support for running with an ACPI
capable PROM that defines PCI devices in SSDT
tables. There is a SSDT table for every occupied
slot on a root bus, containing info for every
PPB and/or device on the bus. The SSDTs will be
dynamically loaded/unloaded at hotplug enable/disable.
Platform specific information that is currently
passed via a SAL call, will now be passed via the
Vendor resource in the ACPI Device object(s) defined
in each SSDT.
Signed-off-by: John Keller <jpk@sgi.com>
Cc: Greg KH <greg@kroah.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPI 3.0 incorporated the SRAT spec, upping the table version to 2,
and extending the size of the proximity domain from 1-byte to 4-bytes.
This extension was into a reserved field that firmware should
set to 0, but the HP simulator had non-zero values there
resulting in unexpected huge numbers.
So mask the domain down to 8-bits for now.
A more general fix will be to check the table version
supplied by firmware and get paranoid about reserved fields.
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
i386 srat.c broke due to re-names from ACPICA table-manager re-write.
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This reverts commit e4f0ae0ea6.
It's not wrong, but it's not right either, and everybody seems to agree
that the right fix is probably to do the ccr3 write after the ccr4 one
(and that we also should clean it up a bit). And after that we need to
really validate that all the bits that we write to ccr4 actually do
work.
The old 2.6.19 code was insane, and basically didn't change ccr4 at all
(even though it certainly looks like it was the *intent* to do so). So
let's revert the change that may fix things, just because it's not what
was actually ever tested when the code was written, even if it _was_ the
intent.
There's a discussion on http://lkml.org/lkml/2007/1/9/63 that was
started by the patch that now gets reverted, and that discussion may
well contain the proper long-term fix.
Suggested-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
a) sun4d_boot_one_cpu() should be __cpuinit (called only from
__cpuinit __cpu_up(), for one thing, leads to calls of __cpuinit
functions for another).
b) got externs in arch/sparc/kernel/smp.c to match reality.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
i386 boot/compressed/relocs checks for absolute symbols and warns about
unexpected ones. If you build with modversions, you get ~2500 warnings
about __crc_<symbol>. These suckers are really absolute symbols - we
do _not_ want to modify them on relocation.
They are generated by genksyms - EXPORT_... generates a weak alias, then
genksyms produces an ld script with __crc_<symbol> = <checksum> and it's
fed to ld to produce the final object file. Their only use is to match
kernel and module at modprobe time; they _must_ be absolute.
boot/compressed/relocs has a whitelist of known absolute symbols, but
it doesn't know about __crc_... stuff. As the result, we get shitloads
of false positives on any ld(1) version.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>