Commit graph

3 commits

Author SHA1 Message Date
Vineet Gupta
2576c28e3f ARC: add smp barriers around atomics per Documentation/atomic_ops.txt
- arch_spin_lock/unlock were lacking the ACQUIRE/RELEASE barriers
   Since ARCv2 only provides load/load, store/store and all/all, we need
   the full barrier

 - LLOCK/SCOND based atomics, bitops, cmpxchg, which return modified
   values were lacking the explicit smp barriers.

 - Non LLOCK/SCOND varaints don't need the explicit barriers since that
   is implicity provided by the spin locks used to implement the
   critical section (the spin lock barriers in turn are also fixed in
   this commit as explained above

Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-06-25 06:00:16 +05:30
Vineet Gupta
6c00350b57 ARC: Workaround spinlock livelock in SMP SystemC simulation
Some ARC SMP systems lack native atomic R-M-W (LLOCK/SCOND) insns and
can only use atomic EX insn (reg with mem) to build higher level R-M-W
primitives. This includes a SystemC based SMP simulation model.

So rwlocks need to use a protecting spinlock for atomic cmp-n-exchange
operation to update reader(s)/writer count.

The spinlock operation itself looks as follows:

	mov reg, 1		; 1=locked, 0=unlocked
retry:
	EX reg, [lock]		; load existing, store 1, atomically
	BREQ reg, 1, rety	; if already locked, retry

In single-threaded simulation, SystemC alternates between the 2 cores
with "N" insn each based scheduling. Additionally for insn with global
side effect, such as EX writing to shared mem, a core switch is
enforced too.

Given that, 2 cores doing a repeated EX on same location, Linux often
got into a livelock e.g. when both cores were fiddling with tasklist
lock (gdbserver / hackbench) for read/write respectively as the
sequence diagram below shows:

           core1                                   core2
         --------                                --------
1. spin lock [EX r=0, w=1] - LOCKED
2. rwlock(Read)            - LOCKED
3. spin unlock  [ST 0]     - UNLOCKED
                                         spin lock [EX r=0,w=1] - LOCKED
                      -- resched core 1----

5. spin lock [EX r=1] - ALREADY-LOCKED

                      -- resched core 2----
6.                                       rwlock(Write) - READER-LOCKED
7.                                       spin unlock [ST 0]
8.                                       rwlock failed, retry again

9.                                       spin lock  [EX r=0, w=1]
                      -- resched core 1----

10  spinlock locked in #9, retry #5
11. spin lock [EX gets 1]
                      -- resched core 2----
...
...

The fix was to unlock using the EX insn too (step 7), to trigger another
SystemC scheduling pass which would let core1 proceed, eliding the
livelock.

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-09-27 16:28:48 +05:30
Vineet Gupta
6e35fa2d43 ARC: Spinlock/rwlock/mutex primitives
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2013-02-11 20:00:35 +05:30