drm/radeon/kms/pm: rework power management

- Separate dynpm and profile based power management methods.  You can select the pm method
  by echoing the selected method ("dynpm" or "profile") to power_method in sysfs.
- Expose basic 4 profile in profile method
  "default" - default clocks
  "auto" - select between low and high based on ac/dc state
  "low" - DC, low power mode
  "high" - AC, performance mode
  The current base profile is "default", but it should switched to "auto" once we've tested
  on more systems.  Switching the state is a matter of echoing the requested profile to
  power_profile in sysfs.  The lowest power states are selected automatically when dpms turns
  the monitors off in all states but default.
- Remove dynamic fence-based reclocking for the moment.  We can revisit this later once we
  have basic pm in.
- Move pm init/fini to modesetting path.  pm is tightly coupled with display state.  Make sure
  display side is initialized before pm.
- Add pm suspend/resume functions to make sure pm state is properly reinitialized on resume.
- Remove dynpm module option.  It's now selectable via sysfs.

Signed-off-by: Alex Deucher <alexdeucher@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
This commit is contained in:
Alex Deucher 2010-05-07 15:10:16 -04:00 committed by Dave Airlie
parent d7311171c4
commit ce8f53709b
19 changed files with 787 additions and 516 deletions

View file

@ -23,14 +23,98 @@
#include "drmP.h"
#include "radeon.h"
#include "avivod.h"
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
#endif
#include <linux/power_supply.h>
#define RADEON_IDLE_LOOP_MS 100
#define RADEON_RECLOCK_DELAY_MS 200
#define RADEON_WAIT_VBLANK_TIMEOUT 200
#define RADEON_WAIT_IDLE_TIMEOUT 200
static void radeon_pm_idle_work_handler(struct work_struct *work);
static void radeon_dynpm_idle_work_handler(struct work_struct *work);
static int radeon_debugfs_pm_init(struct radeon_device *rdev);
static bool radeon_pm_in_vbl(struct radeon_device *rdev);
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish);
static void radeon_pm_update_profile(struct radeon_device *rdev);
static void radeon_pm_set_clocks(struct radeon_device *rdev);
#define ACPI_AC_CLASS "ac_adapter"
#ifdef CONFIG_ACPI
static int radeon_acpi_event(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct radeon_device *rdev = container_of(nb, struct radeon_device, acpi_nb);
struct acpi_bus_event *entry = (struct acpi_bus_event *)data;
if (strcmp(entry->device_class, ACPI_AC_CLASS) == 0) {
if (power_supply_is_system_supplied() > 0)
DRM_INFO("pm: AC\n");
else
DRM_INFO("pm: DC\n");
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (rdev->pm.profile == PM_PROFILE_AUTO) {
mutex_lock(&rdev->pm.mutex);
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
mutex_unlock(&rdev->pm.mutex);
}
}
}
return NOTIFY_OK;
}
#endif
static void radeon_pm_update_profile(struct radeon_device *rdev)
{
switch (rdev->pm.profile) {
case PM_PROFILE_DEFAULT:
rdev->pm.profile_index = PM_PROFILE_DEFAULT_IDX;
break;
case PM_PROFILE_AUTO:
if (power_supply_is_system_supplied() > 0) {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
} else {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX;
}
break;
case PM_PROFILE_LOW:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX;
break;
case PM_PROFILE_HIGH:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
break;
}
if (rdev->pm.active_crtc_count == 0) {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_cm_idx;
} else {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_cm_idx;
}
}
static void radeon_unmap_vram_bos(struct radeon_device *rdev)
{
@ -54,40 +138,125 @@ static void radeon_unmap_vram_bos(struct radeon_device *rdev)
ttm_bo_unmap_virtual(&rdev->r600_blit.shader_obj->tbo);
}
static void radeon_pm_set_clocks(struct radeon_device *rdev, int static_switch)
static void radeon_sync_with_vblank(struct radeon_device *rdev)
{
if (rdev->pm.active_crtcs) {
rdev->pm.vblank_sync = false;
wait_event_timeout(
rdev->irq.vblank_queue, rdev->pm.vblank_sync,
msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT));
}
}
static void radeon_set_power_state(struct radeon_device *rdev)
{
u32 sclk, mclk;
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
if (radeon_gui_idle(rdev)) {
sclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk;
if (sclk > rdev->clock.default_sclk)
sclk = rdev->clock.default_sclk;
mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk;
if (mclk > rdev->clock.default_mclk)
mclk = rdev->clock.default_mclk;
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
radeon_sync_with_vblank(rdev);
if (!radeon_pm_in_vbl(rdev))
return;
radeon_pm_prepare(rdev);
/* set engine clock */
if (sclk != rdev->pm.current_sclk) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_engine_clock(rdev, sclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_sclk = sclk;
DRM_INFO("Setting: e: %d\n", sclk);
}
/* set memory clock */
if (rdev->asic->set_memory_clock && (mclk != rdev->pm.current_mclk)) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_memory_clock(rdev, mclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_mclk = mclk;
DRM_INFO("Setting: m: %d\n", mclk);
}
radeon_pm_finish(rdev);
} else {
/* set engine clock */
if (sclk != rdev->pm.current_sclk) {
radeon_sync_with_vblank(rdev);
radeon_pm_prepare(rdev);
radeon_set_engine_clock(rdev, sclk);
radeon_pm_finish(rdev);
rdev->pm.current_sclk = sclk;
DRM_INFO("Setting: e: %d\n", sclk);
}
/* set memory clock */
if (rdev->asic->set_memory_clock && (mclk != rdev->pm.current_mclk)) {
radeon_sync_with_vblank(rdev);
radeon_pm_prepare(rdev);
radeon_set_memory_clock(rdev, mclk);
radeon_pm_finish(rdev);
rdev->pm.current_mclk = mclk;
DRM_INFO("Setting: m: %d\n", mclk);
}
}
rdev->pm.current_power_state_index = rdev->pm.requested_power_state_index;
rdev->pm.current_clock_mode_index = rdev->pm.requested_clock_mode_index;
} else
DRM_INFO("pm: GUI not idle!!!\n");
}
static void radeon_pm_set_clocks(struct radeon_device *rdev)
{
int i;
if (rdev->pm.state != PM_STATE_DISABLED)
radeon_get_power_state(rdev, rdev->pm.planned_action);
mutex_lock(&rdev->ddev->struct_mutex);
mutex_lock(&rdev->vram_mutex);
mutex_lock(&rdev->cp.mutex);
/* gui idle int has issues on older chips it seems */
if (rdev->family >= CHIP_R600) {
/* wait for GPU idle */
rdev->pm.gui_idle = false;
rdev->irq.gui_idle = true;
radeon_irq_set(rdev);
wait_event_interruptible_timeout(
rdev->irq.idle_queue, rdev->pm.gui_idle,
msecs_to_jiffies(RADEON_WAIT_IDLE_TIMEOUT));
rdev->irq.gui_idle = false;
radeon_irq_set(rdev);
if (rdev->irq.installed) {
/* wait for GPU idle */
rdev->pm.gui_idle = false;
rdev->irq.gui_idle = true;
radeon_irq_set(rdev);
wait_event_interruptible_timeout(
rdev->irq.idle_queue, rdev->pm.gui_idle,
msecs_to_jiffies(RADEON_WAIT_IDLE_TIMEOUT));
rdev->irq.gui_idle = false;
radeon_irq_set(rdev);
}
} else {
struct radeon_fence *fence;
radeon_ring_alloc(rdev, 64);
radeon_fence_create(rdev, &fence);
radeon_fence_emit(rdev, fence);
radeon_ring_commit(rdev);
radeon_fence_wait(fence, false);
radeon_fence_unref(&fence);
if (rdev->cp.ready) {
struct radeon_fence *fence;
radeon_ring_alloc(rdev, 64);
radeon_fence_create(rdev, &fence);
radeon_fence_emit(rdev, fence);
radeon_ring_commit(rdev);
radeon_fence_wait(fence, false);
radeon_fence_unref(&fence);
}
}
radeon_unmap_vram_bos(rdev);
if (!static_switch) {
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.active_crtcs & (1 << i)) {
rdev->pm.req_vblank |= (1 << i);
@ -96,9 +265,9 @@ static void radeon_pm_set_clocks(struct radeon_device *rdev, int static_switch)
}
}
radeon_set_power_state(rdev, static_switch);
radeon_set_power_state(rdev);
if (!static_switch) {
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.req_vblank & (1 << i)) {
rdev->pm.req_vblank &= ~(1 << i);
@ -112,230 +281,195 @@ static void radeon_pm_set_clocks(struct radeon_device *rdev, int static_switch)
if (rdev->pm.active_crtc_count)
radeon_bandwidth_update(rdev);
rdev->pm.planned_action = PM_ACTION_NONE;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
mutex_unlock(&rdev->cp.mutex);
mutex_unlock(&rdev->vram_mutex);
mutex_unlock(&rdev->ddev->struct_mutex);
}
static ssize_t radeon_get_power_state_static(struct device *dev,
struct device_attribute *attr,
char *buf)
static ssize_t radeon_get_pm_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int cp = rdev->pm.profile;
return snprintf(buf, PAGE_SIZE, "%d.%d\n", rdev->pm.current_power_state_index,
rdev->pm.current_clock_mode_index);
return snprintf(buf, PAGE_SIZE, "%s\n",
(cp == PM_PROFILE_AUTO) ? "auto" :
(cp == PM_PROFILE_LOW) ? "low" :
(cp == PM_PROFILE_HIGH) ? "high" : "default");
}
static ssize_t radeon_set_power_state_static(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
static ssize_t radeon_set_pm_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int ps, cm;
if (sscanf(buf, "%u.%u", &ps, &cm) != 2) {
DRM_ERROR("Invalid power state!\n");
return count;
}
mutex_lock(&rdev->pm.mutex);
if ((ps >= 0) && (ps < rdev->pm.num_power_states) &&
(cm >= 0) && (cm < rdev->pm.power_state[ps].num_clock_modes)) {
if ((rdev->pm.active_crtc_count > 0) &&
(rdev->pm.power_state[ps].clock_info[cm].flags & RADEON_PM_MODE_NO_DISPLAY)) {
DRM_ERROR("Invalid power state for display: %d.%d\n", ps, cm);
} else if ((rdev->pm.active_crtc_count > 1) &&
(rdev->pm.power_state[ps].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)) {
DRM_ERROR("Invalid power state for multi-head: %d.%d\n", ps, cm);
} else {
/* disable dynpm */
rdev->pm.state = PM_STATE_DISABLED;
rdev->pm.planned_action = PM_ACTION_NONE;
rdev->pm.requested_power_state_index = ps;
rdev->pm.requested_clock_mode_index = cm;
radeon_pm_set_clocks(rdev, true);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (strncmp("default", buf, strlen("default")) == 0)
rdev->pm.profile = PM_PROFILE_DEFAULT;
else if (strncmp("auto", buf, strlen("auto")) == 0)
rdev->pm.profile = PM_PROFILE_AUTO;
else if (strncmp("low", buf, strlen("low")) == 0)
rdev->pm.profile = PM_PROFILE_LOW;
else if (strncmp("high", buf, strlen("high")) == 0)
rdev->pm.profile = PM_PROFILE_HIGH;
else {
DRM_ERROR("invalid power profile!\n");
goto fail;
}
} else
DRM_ERROR("Invalid power state: %d.%d\n\n", ps, cm);
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
}
fail:
mutex_unlock(&rdev->pm.mutex);
return count;
}
static ssize_t radeon_get_dynpm(struct device *dev,
struct device_attribute *attr,
char *buf)
static ssize_t radeon_get_pm_method(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int pm = rdev->pm.pm_method;
return snprintf(buf, PAGE_SIZE, "%s\n",
(rdev->pm.state == PM_STATE_DISABLED) ? "disabled" : "enabled");
(pm == PM_METHOD_DYNPM) ? "dynpm" : "profile");
}
static ssize_t radeon_set_dynpm(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
static ssize_t radeon_set_pm_method(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int tmp = simple_strtoul(buf, NULL, 10);
if (tmp == 0) {
/* update power mode info */
radeon_pm_compute_clocks(rdev);
/* disable dynpm */
if (strncmp("dynpm", buf, strlen("dynpm")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.state = PM_STATE_DISABLED;
rdev->pm.planned_action = PM_ACTION_NONE;
rdev->pm.pm_method = PM_METHOD_DYNPM;
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
mutex_unlock(&rdev->pm.mutex);
DRM_INFO("radeon: dynamic power management disabled\n");
} else if (tmp == 1) {
if (rdev->pm.num_power_states > 1) {
/* enable dynpm */
mutex_lock(&rdev->pm.mutex);
rdev->pm.state = PM_STATE_PAUSED;
rdev->pm.planned_action = PM_ACTION_DEFAULT;
radeon_get_power_state(rdev, rdev->pm.planned_action);
mutex_unlock(&rdev->pm.mutex);
/* update power mode info */
radeon_pm_compute_clocks(rdev);
DRM_INFO("radeon: dynamic power management enabled\n");
} else
DRM_ERROR("dynpm not valid on this system\n");
} else
DRM_ERROR("Invalid setting: %d\n", tmp);
} else if (strncmp("profile", buf, strlen("profile")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.pm_method = PM_METHOD_PROFILE;
/* disable dynpm */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
mutex_unlock(&rdev->pm.mutex);
} else {
DRM_ERROR("invalid power method!\n");
goto fail;
}
radeon_pm_compute_clocks(rdev);
fail:
return count;
}
static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR, radeon_get_power_state_static, radeon_set_power_state_static);
static DEVICE_ATTR(dynpm, S_IRUGO | S_IWUSR, radeon_get_dynpm, radeon_set_dynpm);
static DEVICE_ATTR(power_profile, S_IRUGO | S_IWUSR, radeon_get_pm_profile, radeon_set_pm_profile);
static DEVICE_ATTR(power_method, S_IRUGO | S_IWUSR, radeon_get_pm_method, radeon_set_pm_method);
static const char *pm_state_names[4] = {
"PM_STATE_DISABLED",
"PM_STATE_MINIMUM",
"PM_STATE_PAUSED",
"PM_STATE_ACTIVE"
};
static const char *pm_state_types[5] = {
"",
"Powersave",
"Battery",
"Balanced",
"Performance",
};
static void radeon_print_power_mode_info(struct radeon_device *rdev)
void radeon_pm_suspend(struct radeon_device *rdev)
{
int i, j;
bool is_default;
DRM_INFO("%d Power State(s)\n", rdev->pm.num_power_states);
for (i = 0; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.default_power_state_index == i)
is_default = true;
else
is_default = false;
DRM_INFO("State %d %s %s\n", i,
pm_state_types[rdev->pm.power_state[i].type],
is_default ? "(default)" : "");
if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP))
DRM_INFO("\t%d PCIE Lanes\n", rdev->pm.power_state[i].pcie_lanes);
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
DRM_INFO("\tSingle display only\n");
DRM_INFO("\t%d Clock Mode(s)\n", rdev->pm.power_state[i].num_clock_modes);
for (j = 0; j < rdev->pm.power_state[i].num_clock_modes; j++) {
if (rdev->flags & RADEON_IS_IGP)
DRM_INFO("\t\t%d engine: %d\n",
j,
rdev->pm.power_state[i].clock_info[j].sclk * 10);
else
DRM_INFO("\t\t%d engine/memory: %d/%d\n",
j,
rdev->pm.power_state[i].clock_info[j].sclk * 10,
rdev->pm.power_state[i].clock_info[j].mclk * 10);
if (rdev->pm.power_state[i].clock_info[j].flags & RADEON_PM_MODE_NO_DISPLAY)
DRM_INFO("\t\tNo display only\n");
}
}
mutex_lock(&rdev->pm.mutex);
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
rdev->pm.current_power_state_index = -1;
rdev->pm.current_clock_mode_index = -1;
rdev->pm.current_sclk = 0;
rdev->pm.current_mclk = 0;
mutex_unlock(&rdev->pm.mutex);
}
void radeon_sync_with_vblank(struct radeon_device *rdev)
void radeon_pm_resume(struct radeon_device *rdev)
{
if (rdev->pm.active_crtcs) {
rdev->pm.vblank_sync = false;
wait_event_timeout(
rdev->irq.vblank_queue, rdev->pm.vblank_sync,
msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT));
}
radeon_pm_compute_clocks(rdev);
}
int radeon_pm_init(struct radeon_device *rdev)
{
rdev->pm.state = PM_STATE_DISABLED;
rdev->pm.planned_action = PM_ACTION_NONE;
rdev->pm.can_upclock = true;
rdev->pm.can_downclock = true;
/* default to profile method */
rdev->pm.pm_method = PM_METHOD_PROFILE;
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
rdev->pm.current_sclk = 0;
rdev->pm.current_mclk = 0;
if (rdev->bios) {
if (rdev->is_atom_bios)
radeon_atombios_get_power_modes(rdev);
else
radeon_combios_get_power_modes(rdev);
radeon_print_power_mode_info(rdev);
radeon_pm_init_profile(rdev);
rdev->pm.current_power_state_index = -1;
rdev->pm.current_clock_mode_index = -1;
}
if (radeon_debugfs_pm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for PM!\n");
if (rdev->pm.num_power_states > 1) {
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.profile = PM_PROFILE_DEFAULT;
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
mutex_unlock(&rdev->pm.mutex);
}
/* where's the best place to put these? */
device_create_file(rdev->dev, &dev_attr_power_profile);
device_create_file(rdev->dev, &dev_attr_power_method);
#ifdef CONFIG_ACPI
rdev->acpi_nb.notifier_call = radeon_acpi_event;
register_acpi_notifier(&rdev->acpi_nb);
#endif
INIT_DELAYED_WORK(&rdev->pm.dynpm_idle_work, radeon_dynpm_idle_work_handler);
if (radeon_debugfs_pm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for PM!\n");
}
DRM_INFO("radeon: power management initialized\n");
}
/* where's the best place to put this? */
device_create_file(rdev->dev, &dev_attr_power_state);
device_create_file(rdev->dev, &dev_attr_dynpm);
INIT_DELAYED_WORK(&rdev->pm.idle_work, radeon_pm_idle_work_handler);
if ((radeon_dynpm != -1 && radeon_dynpm) && (rdev->pm.num_power_states > 1)) {
rdev->pm.state = PM_STATE_PAUSED;
DRM_INFO("radeon: dynamic power management enabled\n");
}
DRM_INFO("radeon: power management initialized\n");
return 0;
}
void radeon_pm_fini(struct radeon_device *rdev)
{
if (rdev->pm.state != PM_STATE_DISABLED) {
/* cancel work */
cancel_delayed_work_sync(&rdev->pm.idle_work);
/* reset default clocks */
rdev->pm.state = PM_STATE_DISABLED;
rdev->pm.planned_action = PM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev, true);
} else if ((rdev->pm.current_power_state_index !=
rdev->pm.default_power_state_index) ||
(rdev->pm.current_clock_mode_index != 0)) {
rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.requested_clock_mode_index = 0;
if (rdev->pm.num_power_states > 1) {
mutex_lock(&rdev->pm.mutex);
radeon_pm_set_clocks(rdev, true);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
rdev->pm.profile = PM_PROFILE_DEFAULT;
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
/* cancel work */
cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
/* reset default clocks */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev);
}
mutex_unlock(&rdev->pm.mutex);
}
device_remove_file(rdev->dev, &dev_attr_power_state);
device_remove_file(rdev->dev, &dev_attr_dynpm);
device_remove_file(rdev->dev, &dev_attr_power_profile);
device_remove_file(rdev->dev, &dev_attr_power_method);
#ifdef CONFIG_ACPI
unregister_acpi_notifier(&rdev->acpi_nb);
#endif
}
if (rdev->pm.i2c_bus)
radeon_i2c_destroy(rdev->pm.i2c_bus);
@ -347,6 +481,9 @@ void radeon_pm_compute_clocks(struct radeon_device *rdev)
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
if (rdev->pm.num_power_states < 2)
return;
mutex_lock(&rdev->pm.mutex);
rdev->pm.active_crtcs = 0;
@ -360,55 +497,56 @@ void radeon_pm_compute_clocks(struct radeon_device *rdev)
}
}
if (rdev->pm.state == PM_STATE_DISABLED) {
mutex_unlock(&rdev->pm.mutex);
return;
}
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state != DYNPM_STATE_DISABLED) {
if (rdev->pm.active_crtc_count > 1) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
/* Note, radeon_pm_set_clocks is called with static_switch set
* to true since we always want to statically set the clocks,
* not wait for vbl.
*/
if (rdev->pm.active_crtc_count > 1) {
if (rdev->pm.state == PM_STATE_ACTIVE) {
cancel_delayed_work(&rdev->pm.idle_work);
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
rdev->pm.state = PM_STATE_PAUSED;
rdev->pm.planned_action = PM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev, true);
DRM_DEBUG("radeon: dynamic power management deactivated\n");
}
} else if (rdev->pm.active_crtc_count == 1) {
/* TODO: Increase clocks if needed for current mode */
DRM_DEBUG("radeon: dynamic power management deactivated\n");
}
} else if (rdev->pm.active_crtc_count == 1) {
/* TODO: Increase clocks if needed for current mode */
if (rdev->pm.dynpm_state == DYNPM_STATE_MINIMUM) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
if (rdev->pm.state == PM_STATE_MINIMUM) {
rdev->pm.state = PM_STATE_ACTIVE;
rdev->pm.planned_action = PM_ACTION_UPCLOCK;
radeon_pm_set_clocks(rdev, true);
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
} else if (rdev->pm.dynpm_state == DYNPM_STATE_PAUSED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
DRM_DEBUG("radeon: dynamic power management activated\n");
}
} else { /* count == 0 */
if (rdev->pm.dynpm_state != DYNPM_STATE_MINIMUM) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
queue_delayed_work(rdev->wq, &rdev->pm.idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
} else if (rdev->pm.state == PM_STATE_PAUSED) {
rdev->pm.state = PM_STATE_ACTIVE;
queue_delayed_work(rdev->wq, &rdev->pm.idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
DRM_DEBUG("radeon: dynamic power management activated\n");
}
} else { /* count == 0 */
if (rdev->pm.state != PM_STATE_MINIMUM) {
cancel_delayed_work(&rdev->pm.idle_work);
rdev->pm.state = PM_STATE_MINIMUM;
rdev->pm.planned_action = PM_ACTION_MINIMUM;
radeon_pm_set_clocks(rdev, true);
rdev->pm.dynpm_state = DYNPM_STATE_MINIMUM;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_MINIMUM;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
}
}
mutex_unlock(&rdev->pm.mutex);
}
bool radeon_pm_in_vbl(struct radeon_device *rdev)
static bool radeon_pm_in_vbl(struct radeon_device *rdev)
{
u32 stat_crtc = 0, vbl = 0, position = 0;
bool in_vbl = true;
@ -480,7 +618,7 @@ bool radeon_pm_in_vbl(struct radeon_device *rdev)
return in_vbl;
}
bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
{
u32 stat_crtc = 0;
bool in_vbl = radeon_pm_in_vbl(rdev);
@ -491,16 +629,16 @@ bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
return in_vbl;
}
static void radeon_pm_idle_work_handler(struct work_struct *work)
static void radeon_dynpm_idle_work_handler(struct work_struct *work)
{
struct radeon_device *rdev;
int resched;
rdev = container_of(work, struct radeon_device,
pm.idle_work.work);
pm.dynpm_idle_work.work);
resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.state == PM_STATE_ACTIVE) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
unsigned long irq_flags;
int not_processed = 0;
@ -516,23 +654,23 @@ static void radeon_pm_idle_work_handler(struct work_struct *work)
read_unlock_irqrestore(&rdev->fence_drv.lock, irq_flags);
if (not_processed >= 3) { /* should upclock */
if (rdev->pm.planned_action == PM_ACTION_DOWNCLOCK) {
rdev->pm.planned_action = PM_ACTION_NONE;
} else if (rdev->pm.planned_action == PM_ACTION_NONE &&
rdev->pm.can_upclock) {
rdev->pm.planned_action =
PM_ACTION_UPCLOCK;
rdev->pm.action_timeout = jiffies +
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_DOWNCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_upclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_UPCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
} else if (not_processed == 0) { /* should downclock */
if (rdev->pm.planned_action == PM_ACTION_UPCLOCK) {
rdev->pm.planned_action = PM_ACTION_NONE;
} else if (rdev->pm.planned_action == PM_ACTION_NONE &&
rdev->pm.can_downclock) {
rdev->pm.planned_action =
PM_ACTION_DOWNCLOCK;
rdev->pm.action_timeout = jiffies +
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_UPCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_downclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_DOWNCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
}
@ -540,15 +678,16 @@ static void radeon_pm_idle_work_handler(struct work_struct *work)
/* Note, radeon_pm_set_clocks is called with static_switch set
* to false since we want to wait for vbl to avoid flicker.
*/
if (rdev->pm.planned_action != PM_ACTION_NONE &&
jiffies > rdev->pm.action_timeout) {
radeon_pm_set_clocks(rdev, false);
if (rdev->pm.dynpm_planned_action != DYNPM_ACTION_NONE &&
jiffies > rdev->pm.dynpm_action_timeout) {
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
mutex_unlock(&rdev->pm.mutex);
ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
queue_delayed_work(rdev->wq, &rdev->pm.idle_work,
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
@ -563,7 +702,6 @@ static int radeon_debugfs_pm_info(struct seq_file *m, void *data)
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
seq_printf(m, "state: %s\n", pm_state_names[rdev->pm.state]);
seq_printf(m, "default engine clock: %u0 kHz\n", rdev->clock.default_sclk);
seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev));
seq_printf(m, "default memory clock: %u0 kHz\n", rdev->clock.default_mclk);