Merge branch 'master' into for-next

Sync with Linus' tree to be able to apply pending patches that
are based on newer code already present upstream.
This commit is contained in:
Jiri Kosina 2011-07-11 14:15:48 +02:00
commit b7e9c223be
993 changed files with 34561 additions and 5907 deletions

View file

@ -223,9 +223,10 @@ When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
task groups and modify their CPU share using the "cgroups" pseudo filesystem.
# mkdir /dev/cpuctl
# mount -t cgroup -ocpu none /dev/cpuctl
# cd /dev/cpuctl
# mount -t tmpfs cgroup_root /sys/fs/cgroup
# mkdir /sys/fs/cgroup/cpu
# mount -t cgroup -ocpu none /sys/fs/cgroup/cpu
# cd /sys/fs/cgroup/cpu
# mkdir multimedia # create "multimedia" group of tasks
# mkdir browser # create "browser" group of tasks

View file

@ -129,9 +129,8 @@ priority!
Enabling CONFIG_RT_GROUP_SCHED lets you explicitly allocate real
CPU bandwidth to task groups.
This uses the /cgroup virtual file system and
"/cgroup/<cgroup>/cpu.rt_runtime_us" to control the CPU time reserved for each
control group.
This uses the cgroup virtual file system and "<cgroup>/cpu.rt_runtime_us"
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
Documentation/cgroups/cgroups.txt as well.
@ -150,7 +149,7 @@ For now, this can be simplified to just the following (but see Future plans):
===============
There is work in progress to make the scheduling period for each group
("/cgroup/<cgroup>/cpu.rt_period_us") configurable as well.
("<cgroup>/cpu.rt_period_us") configurable as well.
The constraint on the period is that a subgroup must have a smaller or
equal period to its parent. But realistically its not very useful _yet_