mremap: enforce rmap src/dst vma ordering in case of vma_merge() succeeding in copy_vma()

migrate was doing an rmap_walk with speculative lock-less access on
pagetables.  That could lead it to not serializing properly against mremap
PT locks.  But a second problem remains in the order of vmas in the
same_anon_vma list used by the rmap_walk.

If vma_merge succeeds in copy_vma, the src vma could be placed after the
dst vma in the same_anon_vma list.  That could still lead to migrate
missing some pte.

This patch adds an anon_vma_moveto_tail() function to force the dst vma at
the end of the list before mremap starts to solve the problem.

If the mremap is very large and there are a lots of parents or childs
sharing the anon_vma root lock, this should still scale better than taking
the anon_vma root lock around every pte copy practically for the whole
duration of mremap.

Update: Hugh noticed special care is needed in the error path where
move_page_tables goes in the reverse direction, a second
anon_vma_moveto_tail() call is needed in the error path.

This program exercises the anon_vma_moveto_tail:

===

int main()
{
	static struct timeval oldstamp, newstamp;
	long diffsec;
	char *p, *p2, *p3, *p4;
	if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
		perror("memalign"), exit(1);
	if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
		perror("memalign"), exit(1);
	if (posix_memalign((void **)&p3, 2*1024*1024, SIZE))
		perror("memalign"), exit(1);

	memset(p, 0xff, SIZE);
	printf("%p\n", p);
	memset(p2, 0xff, SIZE);
	memset(p3, 0x77, 4096);
	if (memcmp(p, p2, SIZE))
		printf("error\n");
	p4 = mremap(p+SIZE/2, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
	if (p4 != p3)
		perror("mremap"), exit(1);
	p4 = mremap(p4, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p+SIZE/2);
	if (p4 != p+SIZE/2)
		perror("mremap"), exit(1);
	if (memcmp(p, p2, SIZE))
		printf("error\n");
	printf("ok\n");

	return 0;
}
===

$ perf probe -a anon_vma_moveto_tail
Add new event:
  probe:anon_vma_moveto_tail (on anon_vma_moveto_tail)

You can now use it on all perf tools, such as:

        perf record -e probe:anon_vma_moveto_tail -aR sleep 1

$ perf record -e probe:anon_vma_moveto_tail -aR ./anon_vma_moveto_tail
0x7f2ca2800000
ok
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.043 MB perf.data (~1860 samples) ]
$ perf report --stdio
   100.00%  anon_vma_moveto  [kernel.kallsyms]  [k] anon_vma_moveto_tail

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Nai Xia <nai.xia@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pawel Sikora <pluto@agmk.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Andrea Arcangeli 2012-01-10 15:08:05 -08:00 committed by Linus Torvalds
parent df0a6daa01
commit 948f017b09
4 changed files with 76 additions and 3 deletions

View file

@ -271,6 +271,51 @@ int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
return -ENOMEM;
}
/*
* Some rmap walk that needs to find all ptes/hugepmds without false
* negatives (like migrate and split_huge_page) running concurrent
* with operations that copy or move pagetables (like mremap() and
* fork()) to be safe. They depend on the anon_vma "same_anon_vma"
* list to be in a certain order: the dst_vma must be placed after the
* src_vma in the list. This is always guaranteed by fork() but
* mremap() needs to call this function to enforce it in case the
* dst_vma isn't newly allocated and chained with the anon_vma_clone()
* function but just an extension of a pre-existing vma through
* vma_merge.
*
* NOTE: the same_anon_vma list can still be changed by other
* processes while mremap runs because mremap doesn't hold the
* anon_vma mutex to prevent modifications to the list while it
* runs. All we need to enforce is that the relative order of this
* process vmas isn't changing (we don't care about other vmas
* order). Each vma corresponds to an anon_vma_chain structure so
* there's no risk that other processes calling anon_vma_moveto_tail()
* and changing the same_anon_vma list under mremap() will screw with
* the relative order of this process vmas in the list, because we
* they can't alter the order of any vma that belongs to this
* process. And there can't be another anon_vma_moveto_tail() running
* concurrently with mremap() coming from this process because we hold
* the mmap_sem for the whole mremap(). fork() ordering dependency
* also shouldn't be affected because fork() only cares that the
* parent vmas are placed in the list before the child vmas and
* anon_vma_moveto_tail() won't reorder vmas from either the fork()
* parent or child.
*/
void anon_vma_moveto_tail(struct vm_area_struct *dst)
{
struct anon_vma_chain *pavc;
struct anon_vma *root = NULL;
list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = pavc->anon_vma;
VM_BUG_ON(pavc->vma != dst);
root = lock_anon_vma_root(root, anon_vma);
list_del(&pavc->same_anon_vma);
list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
}
unlock_anon_vma_root(root);
}
/*
* Attach vma to its own anon_vma, as well as to the anon_vmas that
* the corresponding VMA in the parent process is attached to.