sched/nohz: Rewrite and fix load-avg computation -- again
Thanks to Charles Wang for spotting the defects in the current code: - If we go idle during the sample window -- after sampling, we get a negative bias because we can negate our own sample. - If we wake up during the sample window we get a positive bias because we push the sample to a known active period. So rewrite the entire nohz load-avg muck once again, now adding copious documentation to the code. Reported-and-tested-by: Doug Smythies <dsmythies@telus.net> Reported-and-tested-by: Charles Wang <muming.wq@gmail.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@kernel.org Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins [ minor edits ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
		
					parent
					
						
							
								164c33c6ad
							
						
					
				
			
			
				commit
				
					
						5167e8d541
					
				
			
		
					 5 changed files with 214 additions and 76 deletions
				
			
		|  | @ -1909,6 +1909,14 @@ static inline int set_cpus_allowed_ptr(struct task_struct *p, | |||
| } | ||||
| #endif | ||||
| 
 | ||||
| #ifdef CONFIG_NO_HZ | ||||
| void calc_load_enter_idle(void); | ||||
| void calc_load_exit_idle(void); | ||||
| #else | ||||
| static inline void calc_load_enter_idle(void) { } | ||||
| static inline void calc_load_exit_idle(void) { } | ||||
| #endif /* CONFIG_NO_HZ */ | ||||
| 
 | ||||
| #ifndef CONFIG_CPUMASK_OFFSTACK | ||||
| static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) | ||||
| { | ||||
|  |  | |||
|  | @ -2161,11 +2161,73 @@ unsigned long this_cpu_load(void) | |||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Global load-average calculations | ||||
|  * | ||||
|  * We take a distributed and async approach to calculating the global load-avg | ||||
|  * in order to minimize overhead. | ||||
|  * | ||||
|  * The global load average is an exponentially decaying average of nr_running + | ||||
|  * nr_uninterruptible. | ||||
|  * | ||||
|  * Once every LOAD_FREQ: | ||||
|  * | ||||
|  *   nr_active = 0; | ||||
|  *   for_each_possible_cpu(cpu) | ||||
|  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; | ||||
|  * | ||||
|  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) | ||||
|  * | ||||
|  * Due to a number of reasons the above turns in the mess below: | ||||
|  * | ||||
|  *  - for_each_possible_cpu() is prohibitively expensive on machines with | ||||
|  *    serious number of cpus, therefore we need to take a distributed approach | ||||
|  *    to calculating nr_active. | ||||
|  * | ||||
|  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 | ||||
|  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } | ||||
|  * | ||||
|  *    So assuming nr_active := 0 when we start out -- true per definition, we | ||||
|  *    can simply take per-cpu deltas and fold those into a global accumulate | ||||
|  *    to obtain the same result. See calc_load_fold_active(). | ||||
|  * | ||||
|  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding | ||||
|  *    across the machine, we assume 10 ticks is sufficient time for every | ||||
|  *    cpu to have completed this task. | ||||
|  * | ||||
|  *    This places an upper-bound on the IRQ-off latency of the machine. Then | ||||
|  *    again, being late doesn't loose the delta, just wrecks the sample. | ||||
|  * | ||||
|  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because | ||||
|  *    this would add another cross-cpu cacheline miss and atomic operation | ||||
|  *    to the wakeup path. Instead we increment on whatever cpu the task ran | ||||
|  *    when it went into uninterruptible state and decrement on whatever cpu | ||||
|  *    did the wakeup. This means that only the sum of nr_uninterruptible over | ||||
|  *    all cpus yields the correct result. | ||||
|  * | ||||
|  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below. | ||||
|  */ | ||||
| 
 | ||||
| /* Variables and functions for calc_load */ | ||||
| static atomic_long_t calc_load_tasks; | ||||
| static unsigned long calc_load_update; | ||||
| unsigned long avenrun[3]; | ||||
| EXPORT_SYMBOL(avenrun); | ||||
| EXPORT_SYMBOL(avenrun); /* should be removed */ | ||||
| 
 | ||||
| /**
 | ||||
|  * get_avenrun - get the load average array | ||||
|  * @loads:	pointer to dest load array | ||||
|  * @offset:	offset to add | ||||
|  * @shift:	shift count to shift the result left | ||||
|  * | ||||
|  * These values are estimates at best, so no need for locking. | ||||
|  */ | ||||
| void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | ||||
| { | ||||
| 	loads[0] = (avenrun[0] + offset) << shift; | ||||
| 	loads[1] = (avenrun[1] + offset) << shift; | ||||
| 	loads[2] = (avenrun[2] + offset) << shift; | ||||
| } | ||||
| 
 | ||||
| static long calc_load_fold_active(struct rq *this_rq) | ||||
| { | ||||
|  | @ -2182,6 +2244,9 @@ static long calc_load_fold_active(struct rq *this_rq) | |||
| 	return delta; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * a1 = a0 * e + a * (1 - e) | ||||
|  */ | ||||
| static unsigned long | ||||
| calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||||
| { | ||||
|  | @ -2193,30 +2258,118 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) | |||
| 
 | ||||
| #ifdef CONFIG_NO_HZ | ||||
| /*
 | ||||
|  * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | ||||
|  * Handle NO_HZ for the global load-average. | ||||
|  * | ||||
|  * Since the above described distributed algorithm to compute the global | ||||
|  * load-average relies on per-cpu sampling from the tick, it is affected by | ||||
|  * NO_HZ. | ||||
|  * | ||||
|  * The basic idea is to fold the nr_active delta into a global idle-delta upon | ||||
|  * entering NO_HZ state such that we can include this as an 'extra' cpu delta | ||||
|  * when we read the global state. | ||||
|  * | ||||
|  * Obviously reality has to ruin such a delightfully simple scheme: | ||||
|  * | ||||
|  *  - When we go NO_HZ idle during the window, we can negate our sample | ||||
|  *    contribution, causing under-accounting. | ||||
|  * | ||||
|  *    We avoid this by keeping two idle-delta counters and flipping them | ||||
|  *    when the window starts, thus separating old and new NO_HZ load. | ||||
|  * | ||||
|  *    The only trick is the slight shift in index flip for read vs write. | ||||
|  * | ||||
|  *        0s            5s            10s           15s | ||||
|  *          +10           +10           +10           +10 | ||||
|  *        |-|-----------|-|-----------|-|-----------|-| | ||||
|  *    r:0 0 1           1 0           0 1           1 0 | ||||
|  *    w:0 1 1           0 0           1 1           0 0 | ||||
|  * | ||||
|  *    This ensures we'll fold the old idle contribution in this window while | ||||
|  *    accumlating the new one. | ||||
|  * | ||||
|  *  - When we wake up from NO_HZ idle during the window, we push up our | ||||
|  *    contribution, since we effectively move our sample point to a known | ||||
|  *    busy state. | ||||
|  * | ||||
|  *    This is solved by pushing the window forward, and thus skipping the | ||||
|  *    sample, for this cpu (effectively using the idle-delta for this cpu which | ||||
|  *    was in effect at the time the window opened). This also solves the issue | ||||
|  *    of having to deal with a cpu having been in NOHZ idle for multiple | ||||
|  *    LOAD_FREQ intervals. | ||||
|  * | ||||
|  * When making the ILB scale, we should try to pull this in as well. | ||||
|  */ | ||||
| static atomic_long_t calc_load_tasks_idle; | ||||
| static atomic_long_t calc_load_idle[2]; | ||||
| static int calc_load_idx; | ||||
| 
 | ||||
| void calc_load_account_idle(struct rq *this_rq) | ||||
| static inline int calc_load_write_idx(void) | ||||
| { | ||||
| 	int idx = calc_load_idx; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * See calc_global_nohz(), if we observe the new index, we also | ||||
| 	 * need to observe the new update time. | ||||
| 	 */ | ||||
| 	smp_rmb(); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If the folding window started, make sure we start writing in the | ||||
| 	 * next idle-delta. | ||||
| 	 */ | ||||
| 	if (!time_before(jiffies, calc_load_update)) | ||||
| 		idx++; | ||||
| 
 | ||||
| 	return idx & 1; | ||||
| } | ||||
| 
 | ||||
| static inline int calc_load_read_idx(void) | ||||
| { | ||||
| 	return calc_load_idx & 1; | ||||
| } | ||||
| 
 | ||||
| void calc_load_enter_idle(void) | ||||
| { | ||||
| 	struct rq *this_rq = this_rq(); | ||||
| 	long delta; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * We're going into NOHZ mode, if there's any pending delta, fold it | ||||
| 	 * into the pending idle delta. | ||||
| 	 */ | ||||
| 	delta = calc_load_fold_active(this_rq); | ||||
| 	if (delta) | ||||
| 		atomic_long_add(delta, &calc_load_tasks_idle); | ||||
| 	if (delta) { | ||||
| 		int idx = calc_load_write_idx(); | ||||
| 		atomic_long_add(delta, &calc_load_idle[idx]); | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| void calc_load_exit_idle(void) | ||||
| { | ||||
| 	struct rq *this_rq = this_rq(); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If we're still before the sample window, we're done. | ||||
| 	 */ | ||||
| 	if (time_before(jiffies, this_rq->calc_load_update)) | ||||
| 		return; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * We woke inside or after the sample window, this means we're already | ||||
| 	 * accounted through the nohz accounting, so skip the entire deal and | ||||
| 	 * sync up for the next window. | ||||
| 	 */ | ||||
| 	this_rq->calc_load_update = calc_load_update; | ||||
| 	if (time_before(jiffies, this_rq->calc_load_update + 10)) | ||||
| 		this_rq->calc_load_update += LOAD_FREQ; | ||||
| } | ||||
| 
 | ||||
| static long calc_load_fold_idle(void) | ||||
| { | ||||
| 	int idx = calc_load_read_idx(); | ||||
| 	long delta = 0; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Its got a race, we don't care... | ||||
| 	 */ | ||||
| 	if (atomic_long_read(&calc_load_tasks_idle)) | ||||
| 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | ||||
| 	if (atomic_long_read(&calc_load_idle[idx])) | ||||
| 		delta = atomic_long_xchg(&calc_load_idle[idx], 0); | ||||
| 
 | ||||
| 	return delta; | ||||
| } | ||||
|  | @ -2302,66 +2455,39 @@ static void calc_global_nohz(void) | |||
| { | ||||
| 	long delta, active, n; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If we crossed a calc_load_update boundary, make sure to fold | ||||
| 	 * any pending idle changes, the respective CPUs might have | ||||
| 	 * missed the tick driven calc_load_account_active() update | ||||
| 	 * due to NO_HZ. | ||||
| 	 */ | ||||
| 	delta = calc_load_fold_idle(); | ||||
| 	if (delta) | ||||
| 		atomic_long_add(delta, &calc_load_tasks); | ||||
| 	if (!time_before(jiffies, calc_load_update + 10)) { | ||||
| 		/*
 | ||||
| 		 * Catch-up, fold however many we are behind still | ||||
| 		 */ | ||||
| 		delta = jiffies - calc_load_update - 10; | ||||
| 		n = 1 + (delta / LOAD_FREQ); | ||||
| 
 | ||||
| 		active = atomic_long_read(&calc_load_tasks); | ||||
| 		active = active > 0 ? active * FIXED_1 : 0; | ||||
| 
 | ||||
| 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||||
| 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||||
| 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||||
| 
 | ||||
| 		calc_load_update += n * LOAD_FREQ; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * It could be the one fold was all it took, we done! | ||||
| 	 * Flip the idle index... | ||||
| 	 * | ||||
| 	 * Make sure we first write the new time then flip the index, so that | ||||
| 	 * calc_load_write_idx() will see the new time when it reads the new | ||||
| 	 * index, this avoids a double flip messing things up. | ||||
| 	 */ | ||||
| 	if (time_before(jiffies, calc_load_update + 10)) | ||||
| 		return; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Catch-up, fold however many we are behind still | ||||
| 	 */ | ||||
| 	delta = jiffies - calc_load_update - 10; | ||||
| 	n = 1 + (delta / LOAD_FREQ); | ||||
| 
 | ||||
| 	active = atomic_long_read(&calc_load_tasks); | ||||
| 	active = active > 0 ? active * FIXED_1 : 0; | ||||
| 
 | ||||
| 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||||
| 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||||
| 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||||
| 
 | ||||
| 	calc_load_update += n * LOAD_FREQ; | ||||
| } | ||||
| #else | ||||
| void calc_load_account_idle(struct rq *this_rq) | ||||
| { | ||||
| 	smp_wmb(); | ||||
| 	calc_load_idx++; | ||||
| } | ||||
| #else /* !CONFIG_NO_HZ */ | ||||
| 
 | ||||
| static inline long calc_load_fold_idle(void) | ||||
| { | ||||
| 	return 0; | ||||
| } | ||||
| static inline long calc_load_fold_idle(void) { return 0; } | ||||
| static inline void calc_global_nohz(void) { } | ||||
| 
 | ||||
| static void calc_global_nohz(void) | ||||
| { | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /**
 | ||||
|  * get_avenrun - get the load average array | ||||
|  * @loads:	pointer to dest load array | ||||
|  * @offset:	offset to add | ||||
|  * @shift:	shift count to shift the result left | ||||
|  * | ||||
|  * These values are estimates at best, so no need for locking. | ||||
|  */ | ||||
| void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | ||||
| { | ||||
| 	loads[0] = (avenrun[0] + offset) << shift; | ||||
| 	loads[1] = (avenrun[1] + offset) << shift; | ||||
| 	loads[2] = (avenrun[2] + offset) << shift; | ||||
| } | ||||
| #endif /* CONFIG_NO_HZ */ | ||||
| 
 | ||||
| /*
 | ||||
|  * calc_load - update the avenrun load estimates 10 ticks after the | ||||
|  | @ -2369,11 +2495,18 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |||
|  */ | ||||
| void calc_global_load(unsigned long ticks) | ||||
| { | ||||
| 	long active; | ||||
| 	long active, delta; | ||||
| 
 | ||||
| 	if (time_before(jiffies, calc_load_update + 10)) | ||||
| 		return; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Fold the 'old' idle-delta to include all NO_HZ cpus. | ||||
| 	 */ | ||||
| 	delta = calc_load_fold_idle(); | ||||
| 	if (delta) | ||||
| 		atomic_long_add(delta, &calc_load_tasks); | ||||
| 
 | ||||
| 	active = atomic_long_read(&calc_load_tasks); | ||||
| 	active = active > 0 ? active * FIXED_1 : 0; | ||||
| 
 | ||||
|  | @ -2384,12 +2517,7 @@ void calc_global_load(unsigned long ticks) | |||
| 	calc_load_update += LOAD_FREQ; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Account one period with whatever state we found before | ||||
| 	 * folding in the nohz state and ageing the entire idle period. | ||||
| 	 * | ||||
| 	 * This avoids loosing a sample when we go idle between  | ||||
| 	 * calc_load_account_active() (10 ticks ago) and now and thus | ||||
| 	 * under-accounting. | ||||
| 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. | ||||
| 	 */ | ||||
| 	calc_global_nohz(); | ||||
| } | ||||
|  | @ -2406,13 +2534,16 @@ static void calc_load_account_active(struct rq *this_rq) | |||
| 		return; | ||||
| 
 | ||||
| 	delta  = calc_load_fold_active(this_rq); | ||||
| 	delta += calc_load_fold_idle(); | ||||
| 	if (delta) | ||||
| 		atomic_long_add(delta, &calc_load_tasks); | ||||
| 
 | ||||
| 	this_rq->calc_load_update += LOAD_FREQ; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * End of global load-average stuff | ||||
|  */ | ||||
| 
 | ||||
| /*
 | ||||
|  * The exact cpuload at various idx values, calculated at every tick would be | ||||
|  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | ||||
|  |  | |||
|  | @ -25,7 +25,6 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl | |||
| static struct task_struct *pick_next_task_idle(struct rq *rq) | ||||
| { | ||||
| 	schedstat_inc(rq, sched_goidle); | ||||
| 	calc_load_account_idle(rq); | ||||
| 	return rq->idle; | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -942,8 +942,6 @@ static inline u64 sched_avg_period(void) | |||
| 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||||
| } | ||||
| 
 | ||||
| void calc_load_account_idle(struct rq *this_rq); | ||||
| 
 | ||||
| #ifdef CONFIG_SCHED_HRTICK | ||||
| 
 | ||||
| /*
 | ||||
|  |  | |||
|  | @ -406,6 +406,7 @@ static void tick_nohz_stop_sched_tick(struct tick_sched *ts) | |||
| 		 */ | ||||
| 		if (!ts->tick_stopped) { | ||||
| 			select_nohz_load_balancer(1); | ||||
| 			calc_load_enter_idle(); | ||||
| 
 | ||||
| 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); | ||||
| 			ts->tick_stopped = 1; | ||||
|  | @ -597,6 +598,7 @@ void tick_nohz_idle_exit(void) | |||
| 		account_idle_ticks(ticks); | ||||
| #endif | ||||
| 
 | ||||
| 	calc_load_exit_idle(); | ||||
| 	touch_softlockup_watchdog(); | ||||
| 	/*
 | ||||
| 	 * Cancel the scheduled timer and restore the tick | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Peter Zijlstra
				Peter Zijlstra