sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs
Use a ring-buffer like multi-version object structure which allows
always having a coherent object; we use this to avoid having to
disable IRQs while reading sched_clock() and avoids a problem when
getting an NMI while changing the cyc2ns data.
                        MAINLINE   PRE        POST
    sched_clock_stable: 1          1          1
    (cold) sched_clock: 329841     331312     257223
    (cold) local_clock: 301773     310296     309889
    (warm) sched_clock: 38375      38247      25280
    (warm) local_clock: 100371     102713     85268
    (warm) rdtsc:       27340      27289      24247
    sched_clock_stable: 0          0          0
    (cold) sched_clock: 382634     372706     301224
    (cold) local_clock: 396890     399275     399870
    (warm) sched_clock: 38194      38124      25630
    (warm) local_clock: 143452     148698     129629
    (warm) rdtsc:       27345      27365      24307
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-s567in1e5ekq2nlyhn8f987r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
	
	
This commit is contained in:
		
					parent
					
						
							
								57c67da274
							
						
					
				
			
			
				commit
				
					
						20d1c86a57
					
				
			
		
					 4 changed files with 276 additions and 56 deletions
				
			
		| 
						 | 
				
			
			@ -13,7 +13,26 @@ extern int recalibrate_cpu_khz(void);
 | 
			
		|||
 | 
			
		||||
extern int no_timer_check;
 | 
			
		||||
 | 
			
		||||
DECLARE_PER_CPU(unsigned long, cyc2ns);
 | 
			
		||||
DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);
 | 
			
		||||
/*
 | 
			
		||||
 * We use the full linear equation: f(x) = a + b*x, in order to allow
 | 
			
		||||
 * a continuous function in the face of dynamic freq changes.
 | 
			
		||||
 *
 | 
			
		||||
 * Continuity means that when our frequency changes our slope (b); we want to
 | 
			
		||||
 * ensure that: f(t) == f'(t), which gives: a + b*t == a' + b'*t.
 | 
			
		||||
 *
 | 
			
		||||
 * Without an offset (a) the above would not be possible.
 | 
			
		||||
 *
 | 
			
		||||
 * See the comment near cycles_2_ns() for details on how we compute (b).
 | 
			
		||||
 */
 | 
			
		||||
struct cyc2ns_data {
 | 
			
		||||
	u32 cyc2ns_mul;
 | 
			
		||||
	u32 cyc2ns_shift;
 | 
			
		||||
	u64 cyc2ns_offset;
 | 
			
		||||
	u32 __count;
 | 
			
		||||
	/* u32 hole */
 | 
			
		||||
}; /* 24 bytes -- do not grow */
 | 
			
		||||
 | 
			
		||||
extern struct cyc2ns_data *cyc2ns_read_begin(void);
 | 
			
		||||
extern void cyc2ns_read_end(struct cyc2ns_data *);
 | 
			
		||||
 | 
			
		||||
#endif /* _ASM_X86_TIMER_H */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1883,6 +1883,8 @@ static struct pmu pmu = {
 | 
			
		|||
 | 
			
		||||
void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns_data *data;
 | 
			
		||||
 | 
			
		||||
	userpg->cap_user_time = 0;
 | 
			
		||||
	userpg->cap_user_time_zero = 0;
 | 
			
		||||
	userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
 | 
			
		||||
| 
						 | 
				
			
			@ -1891,13 +1893,17 @@ void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
 | 
			
		|||
	if (!sched_clock_stable)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	data = cyc2ns_read_begin();
 | 
			
		||||
 | 
			
		||||
	userpg->cap_user_time = 1;
 | 
			
		||||
	userpg->time_mult = this_cpu_read(cyc2ns);
 | 
			
		||||
	userpg->time_shift = CYC2NS_SCALE_FACTOR;
 | 
			
		||||
	userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
 | 
			
		||||
	userpg->time_mult = data->cyc2ns_mul;
 | 
			
		||||
	userpg->time_shift = data->cyc2ns_shift;
 | 
			
		||||
	userpg->time_offset = data->cyc2ns_offset - now;
 | 
			
		||||
 | 
			
		||||
	userpg->cap_user_time_zero = 1;
 | 
			
		||||
	userpg->time_zero = this_cpu_read(cyc2ns_offset);
 | 
			
		||||
	userpg->time_zero = data->cyc2ns_offset;
 | 
			
		||||
 | 
			
		||||
	cyc2ns_read_end(data);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,7 +39,119 @@ static int __read_mostly tsc_disabled = -1;
 | 
			
		|||
 | 
			
		||||
int tsc_clocksource_reliable;
 | 
			
		||||
 | 
			
		||||
/* Accelerators for sched_clock()
 | 
			
		||||
/*
 | 
			
		||||
 * Use a ring-buffer like data structure, where a writer advances the head by
 | 
			
		||||
 * writing a new data entry and a reader advances the tail when it observes a
 | 
			
		||||
 * new entry.
 | 
			
		||||
 *
 | 
			
		||||
 * Writers are made to wait on readers until there's space to write a new
 | 
			
		||||
 * entry.
 | 
			
		||||
 *
 | 
			
		||||
 * This means that we can always use an {offset, mul} pair to compute a ns
 | 
			
		||||
 * value that is 'roughly' in the right direction, even if we're writing a new
 | 
			
		||||
 * {offset, mul} pair during the clock read.
 | 
			
		||||
 *
 | 
			
		||||
 * The down-side is that we can no longer guarantee strict monotonicity anymore
 | 
			
		||||
 * (assuming the TSC was that to begin with), because while we compute the
 | 
			
		||||
 * intersection point of the two clock slopes and make sure the time is
 | 
			
		||||
 * continuous at the point of switching; we can no longer guarantee a reader is
 | 
			
		||||
 * strictly before or after the switch point.
 | 
			
		||||
 *
 | 
			
		||||
 * It does mean a reader no longer needs to disable IRQs in order to avoid
 | 
			
		||||
 * CPU-Freq updates messing with his times, and similarly an NMI reader will
 | 
			
		||||
 * no longer run the risk of hitting half-written state.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
struct cyc2ns {
 | 
			
		||||
	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
 | 
			
		||||
	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
 | 
			
		||||
	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
 | 
			
		||||
}; /* exactly fits one cacheline */
 | 
			
		||||
 | 
			
		||||
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
 | 
			
		||||
 | 
			
		||||
struct cyc2ns_data *cyc2ns_read_begin(void)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns_data *head;
 | 
			
		||||
 | 
			
		||||
	preempt_disable();
 | 
			
		||||
 | 
			
		||||
	head = this_cpu_read(cyc2ns.head);
 | 
			
		||||
	/*
 | 
			
		||||
	 * Ensure we observe the entry when we observe the pointer to it.
 | 
			
		||||
	 * matches the wmb from cyc2ns_write_end().
 | 
			
		||||
	 */
 | 
			
		||||
	smp_read_barrier_depends();
 | 
			
		||||
	head->__count++;
 | 
			
		||||
	barrier();
 | 
			
		||||
 | 
			
		||||
	return head;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cyc2ns_read_end(struct cyc2ns_data *head)
 | 
			
		||||
{
 | 
			
		||||
	barrier();
 | 
			
		||||
	/*
 | 
			
		||||
	 * If we're the outer most nested read; update the tail pointer
 | 
			
		||||
	 * when we're done. This notifies possible pending writers
 | 
			
		||||
	 * that we've observed the head pointer and that the other
 | 
			
		||||
	 * entry is now free.
 | 
			
		||||
	 */
 | 
			
		||||
	if (!--head->__count) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * x86-TSO does not reorder writes with older reads;
 | 
			
		||||
		 * therefore once this write becomes visible to another
 | 
			
		||||
		 * cpu, we must be finished reading the cyc2ns_data.
 | 
			
		||||
		 *
 | 
			
		||||
		 * matches with cyc2ns_write_begin().
 | 
			
		||||
		 */
 | 
			
		||||
		this_cpu_write(cyc2ns.tail, head);
 | 
			
		||||
	}
 | 
			
		||||
	preempt_enable();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Begin writing a new @data entry for @cpu.
 | 
			
		||||
 *
 | 
			
		||||
 * Assumes some sort of write side lock; currently 'provided' by the assumption
 | 
			
		||||
 * that cpufreq will call its notifiers sequentially.
 | 
			
		||||
 */
 | 
			
		||||
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 | 
			
		||||
	struct cyc2ns_data *data = c2n->data;
 | 
			
		||||
 | 
			
		||||
	if (data == c2n->head)
 | 
			
		||||
		data++;
 | 
			
		||||
 | 
			
		||||
	/* XXX send an IPI to @cpu in order to guarantee a read? */
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * When we observe the tail write from cyc2ns_read_end(),
 | 
			
		||||
	 * the cpu must be done with that entry and its safe
 | 
			
		||||
	 * to start writing to it.
 | 
			
		||||
	 */
 | 
			
		||||
	while (c2n->tail == data)
 | 
			
		||||
		cpu_relax();
 | 
			
		||||
 | 
			
		||||
	return data;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Ensure the @data writes are visible before we publish the
 | 
			
		||||
	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 | 
			
		||||
	 */
 | 
			
		||||
	smp_wmb();
 | 
			
		||||
 | 
			
		||||
	ACCESS_ONCE(c2n->head) = data;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Accelerators for sched_clock()
 | 
			
		||||
 * convert from cycles(64bits) => nanoseconds (64bits)
 | 
			
		||||
 *  basic equation:
 | 
			
		||||
 *              ns = cycles / (freq / ns_per_sec)
 | 
			
		||||
| 
						 | 
				
			
			@ -61,49 +173,106 @@ int tsc_clocksource_reliable;
 | 
			
		|||
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
DEFINE_PER_CPU(unsigned long, cyc2ns);
 | 
			
		||||
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 | 
			
		||||
 | 
			
		||||
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
 | 
			
		||||
 | 
			
		||||
static void cyc2ns_data_init(struct cyc2ns_data *data)
 | 
			
		||||
{
 | 
			
		||||
	data->cyc2ns_mul = 1U << CYC2NS_SCALE_FACTOR;
 | 
			
		||||
	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 | 
			
		||||
	data->cyc2ns_offset = 0;
 | 
			
		||||
	data->__count = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void cyc2ns_init(int cpu)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 | 
			
		||||
 | 
			
		||||
	cyc2ns_data_init(&c2n->data[0]);
 | 
			
		||||
	cyc2ns_data_init(&c2n->data[1]);
 | 
			
		||||
 | 
			
		||||
	c2n->head = c2n->data;
 | 
			
		||||
	c2n->tail = c2n->data;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long long ns = this_cpu_read(cyc2ns_offset);
 | 
			
		||||
	ns += mul_u64_u32_shr(cyc, this_cpu_read(cyc2ns), CYC2NS_SCALE_FACTOR);
 | 
			
		||||
	struct cyc2ns_data *data, *tail;
 | 
			
		||||
	unsigned long long ns;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * See cyc2ns_read_*() for details; replicated in order to avoid
 | 
			
		||||
	 * an extra few instructions that came with the abstraction.
 | 
			
		||||
	 * Notable, it allows us to only do the __count and tail update
 | 
			
		||||
	 * dance when its actually needed.
 | 
			
		||||
	 */
 | 
			
		||||
 | 
			
		||||
	preempt_disable();
 | 
			
		||||
	data = this_cpu_read(cyc2ns.head);
 | 
			
		||||
	tail = this_cpu_read(cyc2ns.tail);
 | 
			
		||||
 | 
			
		||||
	if (likely(data == tail)) {
 | 
			
		||||
		ns = data->cyc2ns_offset;
 | 
			
		||||
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 | 
			
		||||
	} else {
 | 
			
		||||
		data->__count++;
 | 
			
		||||
 | 
			
		||||
		barrier();
 | 
			
		||||
 | 
			
		||||
		ns = data->cyc2ns_offset;
 | 
			
		||||
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 | 
			
		||||
 | 
			
		||||
		barrier();
 | 
			
		||||
 | 
			
		||||
		if (!--data->__count)
 | 
			
		||||
			this_cpu_write(cyc2ns.tail, data);
 | 
			
		||||
	}
 | 
			
		||||
	preempt_enable();
 | 
			
		||||
 | 
			
		||||
	return ns;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* XXX surely we already have this someplace in the kernel?! */
 | 
			
		||||
#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
 | 
			
		||||
 | 
			
		||||
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long long tsc_now, ns_now, *offset;
 | 
			
		||||
	unsigned long flags, *scale;
 | 
			
		||||
	unsigned long long tsc_now, ns_now;
 | 
			
		||||
	struct cyc2ns_data *data;
 | 
			
		||||
	unsigned long flags;
 | 
			
		||||
 | 
			
		||||
	local_irq_save(flags);
 | 
			
		||||
	sched_clock_idle_sleep_event();
 | 
			
		||||
 | 
			
		||||
	scale = &per_cpu(cyc2ns, cpu);
 | 
			
		||||
	offset = &per_cpu(cyc2ns_offset, cpu);
 | 
			
		||||
	if (!cpu_khz)
 | 
			
		||||
		goto done;
 | 
			
		||||
 | 
			
		||||
	data = cyc2ns_write_begin(cpu);
 | 
			
		||||
 | 
			
		||||
	rdtscll(tsc_now);
 | 
			
		||||
	ns_now = cycles_2_ns(tsc_now);
 | 
			
		||||
 | 
			
		||||
	if (cpu_khz) {
 | 
			
		||||
		*scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
 | 
			
		||||
				cpu_khz / 2) / cpu_khz;
 | 
			
		||||
		*offset = ns_now - mult_frac(tsc_now, *scale,
 | 
			
		||||
					     (1UL << CYC2NS_SCALE_FACTOR));
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
	 * Compute a new multiplier as per the above comment and ensure our
 | 
			
		||||
	 * time function is continuous; see the comment near struct
 | 
			
		||||
	 * cyc2ns_data.
 | 
			
		||||
	 */
 | 
			
		||||
	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
 | 
			
		||||
	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 | 
			
		||||
	data->cyc2ns_offset = ns_now -
 | 
			
		||||
		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 | 
			
		||||
 | 
			
		||||
	cyc2ns_write_end(cpu, data);
 | 
			
		||||
 | 
			
		||||
done:
 | 
			
		||||
	sched_clock_idle_wakeup_event(0);
 | 
			
		||||
	local_irq_restore(flags);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Scheduler clock - returns current time in nanosec units.
 | 
			
		||||
 */
 | 
			
		||||
u64 native_sched_clock(void)
 | 
			
		||||
{
 | 
			
		||||
	u64 this_offset;
 | 
			
		||||
	u64 tsc_now;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Fall back to jiffies if there's no TSC available:
 | 
			
		||||
| 
						 | 
				
			
			@ -119,10 +288,10 @@ u64 native_sched_clock(void)
 | 
			
		|||
	}
 | 
			
		||||
 | 
			
		||||
	/* read the Time Stamp Counter: */
 | 
			
		||||
	rdtscll(this_offset);
 | 
			
		||||
	rdtscll(tsc_now);
 | 
			
		||||
 | 
			
		||||
	/* return the value in ns */
 | 
			
		||||
	return cycles_2_ns(this_offset);
 | 
			
		||||
	return cycles_2_ns(tsc_now);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* We need to define a real function for sched_clock, to override the
 | 
			
		||||
| 
						 | 
				
			
			@ -678,11 +847,21 @@ void tsc_restore_sched_clock_state(void)
 | 
			
		|||
 | 
			
		||||
	local_irq_save(flags);
 | 
			
		||||
 | 
			
		||||
	__this_cpu_write(cyc2ns_offset, 0);
 | 
			
		||||
	/*
 | 
			
		||||
	 * We're comming out of suspend, there's no concurrency yet; don't
 | 
			
		||||
	 * bother being nice about the RCU stuff, just write to both
 | 
			
		||||
	 * data fields.
 | 
			
		||||
	 */
 | 
			
		||||
 | 
			
		||||
	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 | 
			
		||||
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 | 
			
		||||
 | 
			
		||||
	offset = cyc2ns_suspend - sched_clock();
 | 
			
		||||
 | 
			
		||||
	for_each_possible_cpu(cpu)
 | 
			
		||||
		per_cpu(cyc2ns_offset, cpu) = offset;
 | 
			
		||||
	for_each_possible_cpu(cpu) {
 | 
			
		||||
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 | 
			
		||||
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	local_irq_restore(flags);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1005,8 +1184,10 @@ void __init tsc_init(void)
 | 
			
		|||
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
 | 
			
		||||
	 * up if their speed diverges)
 | 
			
		||||
	 */
 | 
			
		||||
	for_each_possible_cpu(cpu)
 | 
			
		||||
	for_each_possible_cpu(cpu) {
 | 
			
		||||
		cyc2ns_init(cpu);
 | 
			
		||||
		set_cyc2ns_scale(cpu_khz, cpu);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (tsc_disabled > 0)
 | 
			
		||||
		return;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -433,15 +433,49 @@ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 | 
			
		|||
	return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 | 
			
		||||
 * number, not an absolute. It converts a duration in cycles to a duration in
 | 
			
		||||
 * ns.
 | 
			
		||||
 */
 | 
			
		||||
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns_data *data = cyc2ns_read_begin();
 | 
			
		||||
	unsigned long long ns;
 | 
			
		||||
 | 
			
		||||
	ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 | 
			
		||||
 | 
			
		||||
	cyc2ns_read_end(data);
 | 
			
		||||
	return ns;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The reverse of the above; converts a duration in ns to a duration in cycles.
 | 
			
		||||
 */ 
 | 
			
		||||
static inline unsigned long long ns_2_cycles(unsigned long long ns)
 | 
			
		||||
{
 | 
			
		||||
	struct cyc2ns_data *data = cyc2ns_read_begin();
 | 
			
		||||
	unsigned long long cyc;
 | 
			
		||||
 | 
			
		||||
	cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
 | 
			
		||||
 | 
			
		||||
	cyc2ns_read_end(data);
 | 
			
		||||
	return cyc;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline unsigned long cycles_2_us(unsigned long long cyc)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long long ns;
 | 
			
		||||
	unsigned long us;
 | 
			
		||||
	int cpu = smp_processor_id();
 | 
			
		||||
	return cycles_2_ns(cyc) / NSEC_PER_USEC;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
	ns =  (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
 | 
			
		||||
	us = ns / 1000;
 | 
			
		||||
	return us;
 | 
			
		||||
static inline cycles_t sec_2_cycles(unsigned long sec)
 | 
			
		||||
{
 | 
			
		||||
	return ns_2_cycles(sec * NSEC_PER_SEC);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline unsigned long long usec_2_cycles(unsigned long usec)
 | 
			
		||||
{
 | 
			
		||||
	return ns_2_cycles(usec * NSEC_PER_USEC);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			@ -668,16 +702,6 @@ static int wait_completion(struct bau_desc *bau_desc,
 | 
			
		|||
								bcp, try);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline cycles_t sec_2_cycles(unsigned long sec)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long ns;
 | 
			
		||||
	cycles_t cyc;
 | 
			
		||||
 | 
			
		||||
	ns = sec * 1000000000;
 | 
			
		||||
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
 | 
			
		||||
	return cyc;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Our retries are blocked by all destination sw ack resources being
 | 
			
		||||
 * in use, and a timeout is pending. In that case hardware immediately
 | 
			
		||||
| 
						 | 
				
			
			@ -1327,16 +1351,6 @@ static void ptc_seq_stop(struct seq_file *file, void *data)
 | 
			
		|||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline unsigned long long usec_2_cycles(unsigned long microsec)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long ns;
 | 
			
		||||
	unsigned long long cyc;
 | 
			
		||||
 | 
			
		||||
	ns = microsec * 1000;
 | 
			
		||||
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
 | 
			
		||||
	return cyc;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Display the statistics thru /proc/sgi_uv/ptc_statistics
 | 
			
		||||
 * 'data' points to the cpu number
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue