sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs
Use a ring-buffer like multi-version object structure which allows
always having a coherent object; we use this to avoid having to
disable IRQs while reading sched_clock() and avoids a problem when
getting an NMI while changing the cyc2ns data.
                        MAINLINE   PRE        POST
    sched_clock_stable: 1          1          1
    (cold) sched_clock: 329841     331312     257223
    (cold) local_clock: 301773     310296     309889
    (warm) sched_clock: 38375      38247      25280
    (warm) local_clock: 100371     102713     85268
    (warm) rdtsc:       27340      27289      24247
    sched_clock_stable: 0          0          0
    (cold) sched_clock: 382634     372706     301224
    (cold) local_clock: 396890     399275     399870
    (warm) sched_clock: 38194      38124      25630
    (warm) local_clock: 143452     148698     129629
    (warm) rdtsc:       27345      27365      24307
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-s567in1e5ekq2nlyhn8f987r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
	
	
This commit is contained in:
		
					parent
					
						
							
								57c67da274
							
						
					
				
			
			
				commit
				
					
						20d1c86a57
					
				
			
		
					 4 changed files with 276 additions and 56 deletions
				
			
		|  | @ -13,7 +13,26 @@ extern int recalibrate_cpu_khz(void); | |||
| 
 | ||||
| extern int no_timer_check; | ||||
| 
 | ||||
| DECLARE_PER_CPU(unsigned long, cyc2ns); | ||||
| DECLARE_PER_CPU(unsigned long long, cyc2ns_offset); | ||||
| /*
 | ||||
|  * We use the full linear equation: f(x) = a + b*x, in order to allow | ||||
|  * a continuous function in the face of dynamic freq changes. | ||||
|  * | ||||
|  * Continuity means that when our frequency changes our slope (b); we want to | ||||
|  * ensure that: f(t) == f'(t), which gives: a + b*t == a' + b'*t. | ||||
|  * | ||||
|  * Without an offset (a) the above would not be possible. | ||||
|  * | ||||
|  * See the comment near cycles_2_ns() for details on how we compute (b). | ||||
|  */ | ||||
| struct cyc2ns_data { | ||||
| 	u32 cyc2ns_mul; | ||||
| 	u32 cyc2ns_shift; | ||||
| 	u64 cyc2ns_offset; | ||||
| 	u32 __count; | ||||
| 	/* u32 hole */ | ||||
| }; /* 24 bytes -- do not grow */ | ||||
| 
 | ||||
| extern struct cyc2ns_data *cyc2ns_read_begin(void); | ||||
| extern void cyc2ns_read_end(struct cyc2ns_data *); | ||||
| 
 | ||||
| #endif /* _ASM_X86_TIMER_H */ | ||||
|  |  | |||
|  | @ -1883,6 +1883,8 @@ static struct pmu pmu = { | |||
| 
 | ||||
| void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) | ||||
| { | ||||
| 	struct cyc2ns_data *data; | ||||
| 
 | ||||
| 	userpg->cap_user_time = 0; | ||||
| 	userpg->cap_user_time_zero = 0; | ||||
| 	userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc; | ||||
|  | @ -1891,13 +1893,17 @@ void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) | |||
| 	if (!sched_clock_stable) | ||||
| 		return; | ||||
| 
 | ||||
| 	data = cyc2ns_read_begin(); | ||||
| 
 | ||||
| 	userpg->cap_user_time = 1; | ||||
| 	userpg->time_mult = this_cpu_read(cyc2ns); | ||||
| 	userpg->time_shift = CYC2NS_SCALE_FACTOR; | ||||
| 	userpg->time_offset = this_cpu_read(cyc2ns_offset) - now; | ||||
| 	userpg->time_mult = data->cyc2ns_mul; | ||||
| 	userpg->time_shift = data->cyc2ns_shift; | ||||
| 	userpg->time_offset = data->cyc2ns_offset - now; | ||||
| 
 | ||||
| 	userpg->cap_user_time_zero = 1; | ||||
| 	userpg->time_zero = this_cpu_read(cyc2ns_offset); | ||||
| 	userpg->time_zero = data->cyc2ns_offset; | ||||
| 
 | ||||
| 	cyc2ns_read_end(data); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  |  | |||
|  | @ -39,7 +39,119 @@ static int __read_mostly tsc_disabled = -1; | |||
| 
 | ||||
| int tsc_clocksource_reliable; | ||||
| 
 | ||||
| /* Accelerators for sched_clock()
 | ||||
| /*
 | ||||
|  * Use a ring-buffer like data structure, where a writer advances the head by | ||||
|  * writing a new data entry and a reader advances the tail when it observes a | ||||
|  * new entry. | ||||
|  * | ||||
|  * Writers are made to wait on readers until there's space to write a new | ||||
|  * entry. | ||||
|  * | ||||
|  * This means that we can always use an {offset, mul} pair to compute a ns | ||||
|  * value that is 'roughly' in the right direction, even if we're writing a new | ||||
|  * {offset, mul} pair during the clock read. | ||||
|  * | ||||
|  * The down-side is that we can no longer guarantee strict monotonicity anymore | ||||
|  * (assuming the TSC was that to begin with), because while we compute the | ||||
|  * intersection point of the two clock slopes and make sure the time is | ||||
|  * continuous at the point of switching; we can no longer guarantee a reader is | ||||
|  * strictly before or after the switch point. | ||||
|  * | ||||
|  * It does mean a reader no longer needs to disable IRQs in order to avoid | ||||
|  * CPU-Freq updates messing with his times, and similarly an NMI reader will | ||||
|  * no longer run the risk of hitting half-written state. | ||||
|  */ | ||||
| 
 | ||||
| struct cyc2ns { | ||||
| 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */ | ||||
| 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */ | ||||
| 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */ | ||||
| }; /* exactly fits one cacheline */ | ||||
| 
 | ||||
| static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); | ||||
| 
 | ||||
| struct cyc2ns_data *cyc2ns_read_begin(void) | ||||
| { | ||||
| 	struct cyc2ns_data *head; | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 
 | ||||
| 	head = this_cpu_read(cyc2ns.head); | ||||
| 	/*
 | ||||
| 	 * Ensure we observe the entry when we observe the pointer to it. | ||||
| 	 * matches the wmb from cyc2ns_write_end(). | ||||
| 	 */ | ||||
| 	smp_read_barrier_depends(); | ||||
| 	head->__count++; | ||||
| 	barrier(); | ||||
| 
 | ||||
| 	return head; | ||||
| } | ||||
| 
 | ||||
| void cyc2ns_read_end(struct cyc2ns_data *head) | ||||
| { | ||||
| 	barrier(); | ||||
| 	/*
 | ||||
| 	 * If we're the outer most nested read; update the tail pointer | ||||
| 	 * when we're done. This notifies possible pending writers | ||||
| 	 * that we've observed the head pointer and that the other | ||||
| 	 * entry is now free. | ||||
| 	 */ | ||||
| 	if (!--head->__count) { | ||||
| 		/*
 | ||||
| 		 * x86-TSO does not reorder writes with older reads; | ||||
| 		 * therefore once this write becomes visible to another | ||||
| 		 * cpu, we must be finished reading the cyc2ns_data. | ||||
| 		 * | ||||
| 		 * matches with cyc2ns_write_begin(). | ||||
| 		 */ | ||||
| 		this_cpu_write(cyc2ns.tail, head); | ||||
| 	} | ||||
| 	preempt_enable(); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Begin writing a new @data entry for @cpu. | ||||
|  * | ||||
|  * Assumes some sort of write side lock; currently 'provided' by the assumption | ||||
|  * that cpufreq will call its notifiers sequentially. | ||||
|  */ | ||||
| static struct cyc2ns_data *cyc2ns_write_begin(int cpu) | ||||
| { | ||||
| 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||||
| 	struct cyc2ns_data *data = c2n->data; | ||||
| 
 | ||||
| 	if (data == c2n->head) | ||||
| 		data++; | ||||
| 
 | ||||
| 	/* XXX send an IPI to @cpu in order to guarantee a read? */ | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * When we observe the tail write from cyc2ns_read_end(), | ||||
| 	 * the cpu must be done with that entry and its safe | ||||
| 	 * to start writing to it. | ||||
| 	 */ | ||||
| 	while (c2n->tail == data) | ||||
| 		cpu_relax(); | ||||
| 
 | ||||
| 	return data; | ||||
| } | ||||
| 
 | ||||
| static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) | ||||
| { | ||||
| 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Ensure the @data writes are visible before we publish the | ||||
| 	 * entry. Matches the data-depencency in cyc2ns_read_begin(). | ||||
| 	 */ | ||||
| 	smp_wmb(); | ||||
| 
 | ||||
| 	ACCESS_ONCE(c2n->head) = data; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Accelerators for sched_clock() | ||||
|  * convert from cycles(64bits) => nanoseconds (64bits) | ||||
|  *  basic equation: | ||||
|  *              ns = cycles / (freq / ns_per_sec) | ||||
|  | @ -61,49 +173,106 @@ int tsc_clocksource_reliable; | |||
|  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||||
|  */ | ||||
| 
 | ||||
| DEFINE_PER_CPU(unsigned long, cyc2ns); | ||||
| DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); | ||||
| 
 | ||||
| #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||||
| 
 | ||||
| static void cyc2ns_data_init(struct cyc2ns_data *data) | ||||
| { | ||||
| 	data->cyc2ns_mul = 1U << CYC2NS_SCALE_FACTOR; | ||||
| 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; | ||||
| 	data->cyc2ns_offset = 0; | ||||
| 	data->__count = 0; | ||||
| } | ||||
| 
 | ||||
| static void cyc2ns_init(int cpu) | ||||
| { | ||||
| 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||||
| 
 | ||||
| 	cyc2ns_data_init(&c2n->data[0]); | ||||
| 	cyc2ns_data_init(&c2n->data[1]); | ||||
| 
 | ||||
| 	c2n->head = c2n->data; | ||||
| 	c2n->tail = c2n->data; | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||||
| { | ||||
| 	unsigned long long ns = this_cpu_read(cyc2ns_offset); | ||||
| 	ns += mul_u64_u32_shr(cyc, this_cpu_read(cyc2ns), CYC2NS_SCALE_FACTOR); | ||||
| 	struct cyc2ns_data *data, *tail; | ||||
| 	unsigned long long ns; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * See cyc2ns_read_*() for details; replicated in order to avoid | ||||
| 	 * an extra few instructions that came with the abstraction. | ||||
| 	 * Notable, it allows us to only do the __count and tail update | ||||
| 	 * dance when its actually needed. | ||||
| 	 */ | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 	data = this_cpu_read(cyc2ns.head); | ||||
| 	tail = this_cpu_read(cyc2ns.tail); | ||||
| 
 | ||||
| 	if (likely(data == tail)) { | ||||
| 		ns = data->cyc2ns_offset; | ||||
| 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||||
| 	} else { | ||||
| 		data->__count++; | ||||
| 
 | ||||
| 		barrier(); | ||||
| 
 | ||||
| 		ns = data->cyc2ns_offset; | ||||
| 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||||
| 
 | ||||
| 		barrier(); | ||||
| 
 | ||||
| 		if (!--data->__count) | ||||
| 			this_cpu_write(cyc2ns.tail, data); | ||||
| 	} | ||||
| 	preempt_enable(); | ||||
| 
 | ||||
| 	return ns; | ||||
| } | ||||
| 
 | ||||
| /* XXX surely we already have this someplace in the kernel?! */ | ||||
| #define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d)) | ||||
| 
 | ||||
| static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | ||||
| { | ||||
| 	unsigned long long tsc_now, ns_now, *offset; | ||||
| 	unsigned long flags, *scale; | ||||
| 	unsigned long long tsc_now, ns_now; | ||||
| 	struct cyc2ns_data *data; | ||||
| 	unsigned long flags; | ||||
| 
 | ||||
| 	local_irq_save(flags); | ||||
| 	sched_clock_idle_sleep_event(); | ||||
| 
 | ||||
| 	scale = &per_cpu(cyc2ns, cpu); | ||||
| 	offset = &per_cpu(cyc2ns_offset, cpu); | ||||
| 	if (!cpu_khz) | ||||
| 		goto done; | ||||
| 
 | ||||
| 	data = cyc2ns_write_begin(cpu); | ||||
| 
 | ||||
| 	rdtscll(tsc_now); | ||||
| 	ns_now = cycles_2_ns(tsc_now); | ||||
| 
 | ||||
| 	if (cpu_khz) { | ||||
| 		*scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) + | ||||
| 				cpu_khz / 2) / cpu_khz; | ||||
| 		*offset = ns_now - mult_frac(tsc_now, *scale, | ||||
| 					     (1UL << CYC2NS_SCALE_FACTOR)); | ||||
| 	} | ||||
| 	/*
 | ||||
| 	 * Compute a new multiplier as per the above comment and ensure our | ||||
| 	 * time function is continuous; see the comment near struct | ||||
| 	 * cyc2ns_data. | ||||
| 	 */ | ||||
| 	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz); | ||||
| 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; | ||||
| 	data->cyc2ns_offset = ns_now - | ||||
| 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||||
| 
 | ||||
| 	cyc2ns_write_end(cpu, data); | ||||
| 
 | ||||
| done: | ||||
| 	sched_clock_idle_wakeup_event(0); | ||||
| 	local_irq_restore(flags); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Scheduler clock - returns current time in nanosec units. | ||||
|  */ | ||||
| u64 native_sched_clock(void) | ||||
| { | ||||
| 	u64 this_offset; | ||||
| 	u64 tsc_now; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Fall back to jiffies if there's no TSC available: | ||||
|  | @ -119,10 +288,10 @@ u64 native_sched_clock(void) | |||
| 	} | ||||
| 
 | ||||
| 	/* read the Time Stamp Counter: */ | ||||
| 	rdtscll(this_offset); | ||||
| 	rdtscll(tsc_now); | ||||
| 
 | ||||
| 	/* return the value in ns */ | ||||
| 	return cycles_2_ns(this_offset); | ||||
| 	return cycles_2_ns(tsc_now); | ||||
| } | ||||
| 
 | ||||
| /* We need to define a real function for sched_clock, to override the
 | ||||
|  | @ -678,11 +847,21 @@ void tsc_restore_sched_clock_state(void) | |||
| 
 | ||||
| 	local_irq_save(flags); | ||||
| 
 | ||||
| 	__this_cpu_write(cyc2ns_offset, 0); | ||||
| 	/*
 | ||||
| 	 * We're comming out of suspend, there's no concurrency yet; don't | ||||
| 	 * bother being nice about the RCU stuff, just write to both | ||||
| 	 * data fields. | ||||
| 	 */ | ||||
| 
 | ||||
| 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); | ||||
| 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); | ||||
| 
 | ||||
| 	offset = cyc2ns_suspend - sched_clock(); | ||||
| 
 | ||||
| 	for_each_possible_cpu(cpu) | ||||
| 		per_cpu(cyc2ns_offset, cpu) = offset; | ||||
| 	for_each_possible_cpu(cpu) { | ||||
| 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; | ||||
| 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; | ||||
| 	} | ||||
| 
 | ||||
| 	local_irq_restore(flags); | ||||
| } | ||||
|  | @ -1005,8 +1184,10 @@ void __init tsc_init(void) | |||
| 	 * speed as the bootup CPU. (cpufreq notifiers will fix this | ||||
| 	 * up if their speed diverges) | ||||
| 	 */ | ||||
| 	for_each_possible_cpu(cpu) | ||||
| 	for_each_possible_cpu(cpu) { | ||||
| 		cyc2ns_init(cpu); | ||||
| 		set_cyc2ns_scale(cpu_khz, cpu); | ||||
| 	} | ||||
| 
 | ||||
| 	if (tsc_disabled > 0) | ||||
| 		return; | ||||
|  |  | |||
|  | @ -433,15 +433,49 @@ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp) | |||
| 	return; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative | ||||
|  * number, not an absolute. It converts a duration in cycles to a duration in | ||||
|  * ns. | ||||
|  */ | ||||
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||||
| { | ||||
| 	struct cyc2ns_data *data = cyc2ns_read_begin(); | ||||
| 	unsigned long long ns; | ||||
| 
 | ||||
| 	ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); | ||||
| 
 | ||||
| 	cyc2ns_read_end(data); | ||||
| 	return ns; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * The reverse of the above; converts a duration in ns to a duration in cycles. | ||||
|  */  | ||||
| static inline unsigned long long ns_2_cycles(unsigned long long ns) | ||||
| { | ||||
| 	struct cyc2ns_data *data = cyc2ns_read_begin(); | ||||
| 	unsigned long long cyc; | ||||
| 
 | ||||
| 	cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul; | ||||
| 
 | ||||
| 	cyc2ns_read_end(data); | ||||
| 	return cyc; | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long cycles_2_us(unsigned long long cyc) | ||||
| { | ||||
| 	unsigned long long ns; | ||||
| 	unsigned long us; | ||||
| 	int cpu = smp_processor_id(); | ||||
| 	return cycles_2_ns(cyc) / NSEC_PER_USEC; | ||||
| } | ||||
| 
 | ||||
| 	ns =  (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR; | ||||
| 	us = ns / 1000; | ||||
| 	return us; | ||||
| static inline cycles_t sec_2_cycles(unsigned long sec) | ||||
| { | ||||
| 	return ns_2_cycles(sec * NSEC_PER_SEC); | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long long usec_2_cycles(unsigned long usec) | ||||
| { | ||||
| 	return ns_2_cycles(usec * NSEC_PER_USEC); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  | @ -668,16 +702,6 @@ static int wait_completion(struct bau_desc *bau_desc, | |||
| 								bcp, try); | ||||
| } | ||||
| 
 | ||||
| static inline cycles_t sec_2_cycles(unsigned long sec) | ||||
| { | ||||
| 	unsigned long ns; | ||||
| 	cycles_t cyc; | ||||
| 
 | ||||
| 	ns = sec * 1000000000; | ||||
| 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||||
| 	return cyc; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Our retries are blocked by all destination sw ack resources being | ||||
|  * in use, and a timeout is pending. In that case hardware immediately | ||||
|  | @ -1327,16 +1351,6 @@ static void ptc_seq_stop(struct seq_file *file, void *data) | |||
| { | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long long usec_2_cycles(unsigned long microsec) | ||||
| { | ||||
| 	unsigned long ns; | ||||
| 	unsigned long long cyc; | ||||
| 
 | ||||
| 	ns = microsec * 1000; | ||||
| 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||||
| 	return cyc; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Display the statistics thru /proc/sgi_uv/ptc_statistics | ||||
|  * 'data' points to the cpu number | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Peter Zijlstra
				Peter Zijlstra