Merge branches 'gemini' and 'misc' into devel

This commit is contained in:
Russell King 2010-08-06 18:13:54 +01:00
commit 11e4afb49b
12897 changed files with 899105 additions and 551475 deletions

1
.gitignore vendored
View file

@ -28,6 +28,7 @@ modules.builtin
*.gz
*.bz2
*.lzma
*.lzo
*.patch
*.gcno

7
Documentation/.gitignore vendored Normal file
View file

@ -0,0 +1,7 @@
filesystems/dnotify_test
laptops/dslm
timers/hpet_example
vm/hugepage-mmap
vm/hugepage-shm
vm/map_hugetlb

View file

@ -32,8 +32,6 @@ DocBook/
- directory with DocBook templates etc. for kernel documentation.
HOWTO
- the process and procedures of how to do Linux kernel development.
IO-mapping.txt
- how to access I/O mapped memory from within device drivers.
IPMI.txt
- info on Linux Intelligent Platform Management Interface (IPMI) Driver.
IRQ-affinity.txt
@ -84,6 +82,8 @@ blockdev/
- info on block devices & drivers
btmrvl.txt
- info on Marvell Bluetooth driver usage.
bus-virt-phys-mapping.txt
- how to access I/O mapped memory from within device drivers.
cachetlb.txt
- describes the cache/TLB flushing interfaces Linux uses.
cdrom/
@ -168,6 +168,8 @@ initrd.txt
- how to use the RAM disk as an initial/temporary root filesystem.
input/
- info on Linux input device support.
io-mapping.txt
- description of io_mapping functions in linux/io-mapping.h
io_ordering.txt
- info on ordering I/O writes to memory-mapped addresses.
ioctl/
@ -250,6 +252,8 @@ numastat.txt
- info on how to read Numa policy hit/miss statistics in sysfs.
oops-tracing.txt
- how to decode those nasty internal kernel error dump messages.
padata.txt
- An introduction to the "padata" parallel execution API
parisc/
- directory with info on using Linux on PA-RISC architecture.
parport.txt

View file

@ -0,0 +1,31 @@
What: /sys/bus/usb/devices/.../power/level
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
the device, either "on" or "auto".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
capabilities of its driver.
During normal use, devices should be left in the "auto"
level. The "on" level is meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.
Device not capable of proper suspend and resume should be
left in the "on" level. Although the USB spec requires
devices to support suspend/resume, many of them do not.
In fact so many don't that by default, the USB core
initializes all non-hub devices in the "on" level. Some
drivers may change this setting when they are bound.
This file is deprecated and will be removed after 2010.
Use the power/control file instead; it does exactly the
same thing.

View file

@ -0,0 +1,29 @@
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
What: /sys/class/rfkill/rfkill[0-9]+/state
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Current state of the transmitter.
This file is deprecated and sheduled to be removed in 2014,
because its not possible to express the 'soft and hard block'
state of the rfkill driver.
Values: A numeric value.
0: RFKILL_STATE_SOFT_BLOCKED
transmitter is turned off by software
1: RFKILL_STATE_UNBLOCKED
transmitter is (potentially) active
2: RFKILL_STATE_HARD_BLOCKED
transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/claim
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: This file is deprecated because there no longer is a way to
claim just control over a single rfkill instance.
This file is scheduled to be removed in 2012.
Values: 0: Kernel handles events

View file

@ -0,0 +1,67 @@
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
For the deprecated /sys/class/rfkill/*/state and
/sys/class/rfkill/*/claim knobs of this interface look in
Documentation/ABI/obsolete/sysfs-class-rfkill.
What: /sys/class/rfkill
Date: 09-Jul-2007
KernelVersion: v2.6.22
Contact: linux-wireless@vger.kernel.org,
Description: The rfkill class subsystem folder.
Each registered rfkill driver is represented by an rfkillX
subfolder (X being an integer > 0).
What: /sys/class/rfkill/rfkill[0-9]+/name
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Name assigned by driver to this key (interface or driver name).
Values: arbitrary string.
What: /sys/class/rfkill/rfkill[0-9]+/type
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Driver type string ("wlan", "bluetooth", etc).
Values: See include/linux/rfkill.h.
What: /sys/class/rfkill/rfkill[0-9]+/persistent
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Whether the soft blocked state is initialised from non-volatile
storage at startup.
Values: A numeric value.
0: false
1: true
What: /sys/class/rfkill/rfkill[0-9]+/hard
Date: 12-March-2010
KernelVersion v2.6.34
Contact: linux-wireless@vger.kernel.org
Description: Current hardblock state. This file is read only.
Values: A numeric value.
0: inactive
The transmitter is (potentially) active.
1: active
The transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/soft
Date: 12-March-2010
KernelVersion v2.6.34
Contact: linux-wireless@vger.kernel.org
Description: Current softblock state. This file is read and write.
Values: A numeric value.
0: inactive
The transmitter is (potentially) active.
1: active
The transmitter is turned off by software.

View file

@ -0,0 +1,20 @@
What: /sys/kernel/debug/ec/*/{gpe,use_global_lock,io}
Date: July 2010
Contact: Thomas Renninger <trenn@suse.de>
Description:
General information like which GPE is assigned to the EC and whether
the global lock should get used.
Knowing the EC GPE one can watch the amount of HW events related to
the EC here (XY -> GPE number from /sys/kernel/debug/ec/*/gpe):
/sys/firmware/acpi/interrupts/gpeXY
The io file is binary and a userspace tool located here:
ftp://ftp.suse.com/pub/people/trenn/sources/ec/
should get used to read out the 256 Embedded Controller registers
or writing to them.
CAUTION: Do not write to the Embedded Controller if you don't know
what you are doing! Rebooting afterwards also is a good idea.
This can influence the way your machine is cooled and fans may
not get switched on again after you did a wrong write.

View file

@ -14,34 +14,6 @@ Description:
The autosuspend delay for newly-created devices is set to
the value of the usbcore.autosuspend module parameter.
What: /sys/bus/usb/devices/.../power/level
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
the device, either "on" or "auto".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
capabilities of its driver.
During normal use, devices should be left in the "auto"
level. The "on" level is meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.
Device not capable of proper suspend and resume should be
left in the "on" level. Although the USB spec requires
devices to support suspend/resume, many of them do not.
In fact so many don't that by default, the USB core
initializes all non-hub devices in the "on" level. Some
drivers may change this setting when they are bound.
What: /sys/bus/usb/devices/.../power/persist
Date: May 2007
KernelVersion: 2.6.23
@ -160,7 +132,7 @@ Description:
match the driver to the device. For example:
# echo "046d c315" > /sys/bus/usb/drivers/foo/remove_id
What: /sys/bus/usb/device/.../avoid_reset
What: /sys/bus/usb/device/.../avoid_reset_quirk
Date: December 2009
Contact: Oliver Neukum <oliver@neukum.org>
Description:

View file

@ -0,0 +1,20 @@
What: /sys/class/power/ds2760-battery.*/charge_now
Date: May 2010
KernelVersion: 2.6.35
Contact: Daniel Mack <daniel@caiaq.de>
Description:
This file is writeable and can be used to set the current
coloumb counter value inside the battery monitor chip. This
is needed for unavoidable corrections of aging batteries.
A userspace daemon can monitor the battery charging logic
and once the counter drops out of considerable bounds, take
appropriate action.
What: /sys/class/power/ds2760-battery.*/charge_full
Date: May 2010
KernelVersion: 2.6.35
Contact: Daniel Mack <daniel@caiaq.de>
Description:
This file is writeable and can be used to set the assumed
battery 'full level'. As batteries age, this value has to be
amended over time.

View file

@ -7,7 +7,7 @@ Description:
added or removed dynamically to represent hot-add/remove
operations.
Users: hotplug memory add/remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils
What: /sys/devices/system/memory/memoryX/removable
Date: June 2008
@ -19,7 +19,7 @@ Description:
identify removable sections of the memory before attempting
potentially expensive hot-remove memory operation
Users: hotplug memory remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils
What: /sys/devices/system/memory/memoryX/phys_device
Date: September 2008
@ -43,7 +43,7 @@ Date: September 2008
Contact: Badari Pulavarty <pbadari@us.ibm.com>
Description:
The file /sys/devices/system/memory/memoryX/state
is read-write. When read, it's contents show the
is read-write. When read, its contents show the
online/offline state of the memory section. When written,
root can toggle the the online/offline state of a removable
memory section (see removable file description above)
@ -58,7 +58,7 @@ Description:
by root to offline that section.
# echo offline > /sys/devices/system/memory/memory22/state
Users: hotplug memory remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils
What: /sys/devices/system/memoryX/nodeY

View file

@ -0,0 +1,7 @@
What: /sys/devices/system/node/nodeX/compact
Date: February 2010
Contact: Mel Gorman <mel@csn.ul.ie>
Description:
When this file is written to, all memory within that node
will be compacted. When it completes, memory will be freed
into blocks which have as many contiguous pages as possible

View file

@ -0,0 +1,9 @@
What: /sys/devices/platform/_UDC_/gadget/suspended
Date: April 2010
Contact: Fabien Chouteau <fabien.chouteau@barco.com>
Description:
Show the suspend state of an USB composite gadget.
1 -> suspended
0 -> resumed
(_UDC_ is the name of the USB Device Controller driver)

View file

@ -197,7 +197,7 @@ Description: These files exist in every cpu's cache index directories.
Currently, only AMD Family 10h Processors support cache index
disable, and only for their L3 caches. See the BIOS and
Kernel Developer's Guide at
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/31116-Public-GH-BKDG_3.20_2-4-09.pdf
http://support.amd.com/us/Embedded_TechDocs/31116-Public-GH-BKDG_3-28_5-28-09.pdf
for formatting information and other details on the
cache index disable.
Users: joachim.deguara@amd.com

View file

@ -0,0 +1,43 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode
Date: March 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Make it possible to switch the PicoLCD device between LCD
(firmware) and bootloader (flasher) operation modes.
Reading: returns list of available modes, the active mode being
enclosed in brackets ('[' and ']')
Writing: causes operation mode switch. Permitted values are
the non-active mode names listed when read.
Note: when switching mode the current PicoLCD HID device gets
disconnected and reconnects after above delay (see attribute
operation_mode_delay for its value).
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode_delay
Date: April 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Delay PicoLCD waits before restarting in new mode when
operation_mode has changed.
Reading/Writing: It is expressed in ms and permitted range is
0..30000ms.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/fb_update_rate
Date: March 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Make it possible to adjust defio refresh rate.
Reading: returns list of available refresh rates (expressed in Hz),
the active refresh rate being enclosed in brackets ('[' and ']')
Writing: accepts new refresh rate expressed in integer Hz
within permitted rates.
Note: As device can barely do 2 complete refreshes a second
it only makes sense to adjust this value if only one or two
tiles get changed and it's not appropriate to expect the application
to flush it's tiny changes explicitely at higher than default rate.

View file

@ -0,0 +1,29 @@
What: /sys/bus/hid/drivers/prodikeys/.../channel
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Allows control (via software) the midi channel to which
that the pc-midi keyboard will output.midi data.
Range: 0..15
Type: Read/write
What: /sys/bus/hid/drivers/prodikeys/.../sustain
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Allows control (via software) the sustain duration of a
note held by the pc-midi driver.
0 means sustain mode is disabled.
Range: 0..5000 (milliseconds)
Type: Read/write
What: /sys/bus/hid/drivers/prodikeys/.../octave
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Controls the octave shift modifier in the pc-midi driver.
The octave can be shifted via software up/down 2 octaves.
0 means the no ocatve shift.
Range: -2..2 (minus 2 to plus 2)
Type: Read/Write

View file

@ -0,0 +1,98 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_dpi
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: It is possible to switch the dpi setting of the mouse with the
press of a button.
When read, this file returns the raw number of the actual dpi
setting reported by the mouse. This number has to be further
processed to receive the real dpi value.
VALUE DPI
1 800
2 1200
3 1600
4 2000
5 2400
6 3200
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/firmware_version
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the raw integer version number of the
firmware reported by the mouse. Using the integer value eases
further usage in other programs. To receive the real version
number the decimal point has to be shifted 2 positions to the
left. E.g. a returned value of 138 means 1.38
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile holds informations like button
mappings, sensitivity, the colors of the 5 leds and light
effects.
When read, these files return the respective profile. The
returned data is 975 bytes in size.
When written, this file lets one write the respective profile
data back to the mouse. The data has to be 975 bytes long.
The mouse will reject invalid data, whereas the profile number
stored in the profile doesn't need to fit the number of the
store.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/settings
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the settings stored in the mouse.
The size of the data is 36 bytes and holds information like the
startup_profile, tcu state and calibration_data.
When written, this file lets write settings back to the mouse.
The data has to be 36 bytes long. The mouse will reject invalid
data.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/startup_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 1 to 5.
When read, this attribute returns the number of the profile
that's active when the mouse is powered on.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/tcu
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse has a "Tracking Control Unit" which lets the user
calibrate the laser power to fit the mousepad surface.
When read, this file returns the current state of the TCU,
where 0 means off and 1 means on.
Writing 0 in this file will switch the TCU off.
Writing 1 in this file will start the calibration which takes
around 6 seconds to complete and activates the TCU.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/weight
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can be equipped with one of four supplied weights
ranging from 5 to 20 grams which are recognized by the mouse
and its value can be read out. When read, this file returns the
raw value returned by the mouse which eases further processing
in other software.
The values map to the weights as follows:
VALUE WEIGHT
0 none
1 5g
2 10g
3 15g
4 20g
This file is readonly.

View file

@ -0,0 +1,15 @@
What: /sys/firmware/sfi/tables/
Date: May 2010
Contact: Len Brown <lenb@kernel.org>
Description:
SFI defines a number of small static memory tables
so the kernel can get platform information from firmware.
The tables are defined in the latest SFI specification:
http://simplefirmware.org/documentation
While the tables are used by the kernel, user-space
can observe them this way:
# cd /sys/firmware/sfi/tables
# cat $TABLENAME > $TABLENAME.bin

View file

@ -114,3 +114,18 @@ Description:
if this file contains "1", which is the default. It may be
disabled by writing "0" to this file, in which case all devices
will be suspended and resumed synchronously.
What: /sys/power/wakeup_count
Date: July 2010
Contact: Rafael J. Wysocki <rjw@sisk.pl>
Description:
The /sys/power/wakeup_count file allows user space to put the
system into a sleep state while taking into account the
concurrent arrival of wakeup events. Reading from it returns
the current number of registered wakeup events and it blocks if
some wakeup events are being processed at the time the file is
read from. Writing to it will only succeed if the current
number of wakeup events is equal to the written value and, if
successful, will make the kernel abort a subsequent transition
to a sleep state if any wakeup events are reported after the
write has returned.

View file

@ -0,0 +1,10 @@
What: /sys/class/hidraw/hidraw*/device/speed
Date: April 2010
Kernel Version: 2.6.35
Contact: linux-bluetooth@vger.kernel.org
Description:
The /sys/class/hidraw/hidraw*/device/speed file controls
reporting speed of wacom bluetooth tablet. Reading from
this file returns 1 if tablet reports in high speed mode
or 0 otherwise. Writing to this file one of these values
switches reporting speed.

View file

@ -49,7 +49,7 @@ o oprofile 0.9 # oprofiled --version
o udev 081 # udevinfo -V
o grub 0.93 # grub --version
o mcelog 0.6
o iptables 1.4.1 # iptables -V
o iptables 1.4.2 # iptables -V
Kernel compilation
@ -331,7 +331,7 @@ o <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/modules/>
Mkinitrd
--------
o <ftp://rawhide.redhat.com/pub/rawhide/SRPMS/SRPMS/>
o <https://code.launchpad.net/initrd-tools/main>
E2fsprogs
---------
@ -343,11 +343,11 @@ o <http://jfs.sourceforge.net/>
Reiserfsprogs
-------------
o <http://www.namesys.com/pub/reiserfsprogs/reiserfsprogs-3.6.3.tar.gz>
o <http://www.kernel.org/pub/linux/utils/fs/reiserfs/>
Xfsprogs
--------
o <ftp://oss.sgi.com/projects/xfs/download/>
o <ftp://oss.sgi.com/projects/xfs/>
Pcmciautils
-----------
@ -387,18 +387,18 @@ o <http://sourceforge.net/projects/fuse>
mcelog
------
o <ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/mcelog/>
o <ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/>
Networking
**********
PPP
---
o <ftp://ftp.samba.org/pub/ppp/ppp-2.4.0.tar.gz>
o <ftp://ftp.samba.org/pub/ppp/>
Isdn4k-utils
------------
o <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/isdn4k-utils.v3.1pre1.tar.gz>
o <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
NFS-utils
---------

View file

@ -639,6 +639,36 @@ is planned to completely remove virt_to_bus() and bus_to_virt() as
they are entirely deprecated. Some ports already do not provide these
as it is impossible to correctly support them.
Handling Errors
DMA address space is limited on some architectures and an allocation
failure can be determined by:
- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
- checking the returned dma_addr_t of dma_map_single and dma_map_page
by using dma_mapping_error():
dma_addr_t dma_handle;
dma_handle = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle)) {
/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/
}
Networking drivers must call dev_kfree_skb to free the socket buffer
and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
(ndo_start_xmit). This means that the socket buffer is just dropped in
the failure case.
SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
fails in the queuecommand hook. This means that the SCSI subsystem
passes the command to the driver again later.
Optimizing Unmap State Space Consumption
On many platforms, dma_unmap_{single,page}() is simply a nop.
@ -703,46 +733,29 @@ to "Closing".
1) Struct scatterlist requirements.
Struct scatterlist must contain, at a minimum, the following
members:
Don't invent the architecture specific struct scatterlist; just use
<asm-generic/scatterlist.h>. You need to enable
CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
(including software IOMMU).
struct page *page;
unsigned int offset;
unsigned int length;
2) ARCH_KMALLOC_MINALIGN
The base address is specified by a "page+offset" pair.
Architectures must ensure that kmalloc'ed buffer is
DMA-safe. Drivers and subsystems depend on it. If an architecture
isn't fully DMA-coherent (i.e. hardware doesn't ensure that data in
the CPU cache is identical to data in main memory),
ARCH_KMALLOC_MINALIGN must be set so that the memory allocator
makes sure that kmalloc'ed buffer doesn't share a cache line with
the others. See arch/arm/include/asm/cache.h as an example.
Previous versions of struct scatterlist contained a "void *address"
field that was sometimes used instead of page+offset. As of Linux
2.5., page+offset is always used, and the "address" field has been
deleted.
2) More to come...
Handling Errors
DMA address space is limited on some architectures and an allocation
failure can be determined by:
- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
- checking the returned dma_addr_t of dma_map_single and dma_map_page
by using dma_mapping_error():
dma_addr_t dma_handle;
dma_handle = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle)) {
/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/
}
Note that ARCH_KMALLOC_MINALIGN is about DMA memory alignment
constraints. You don't need to worry about the architecture data
alignment constraints (e.g. the alignment constraints about 64-bit
objects).
Closing
This document, and the API itself, would not be in it's current
This document, and the API itself, would not be in its current
form without the feedback and suggestions from numerous individuals.
We would like to specifically mention, in no particular order, the
following people:

View file

@ -14,7 +14,7 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
mac80211.xml debugobjects.xml sh.xml regulator.xml \
alsa-driver-api.xml writing-an-alsa-driver.xml \
tracepoint.xml media.xml
tracepoint.xml media.xml drm.xml
###
# The build process is as follows (targets):

View file

@ -0,0 +1,839 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="drmDevelopersGuide">
<bookinfo>
<title>Linux DRM Developer's Guide</title>
<copyright>
<year>2008-2009</year>
<holder>
Intel Corporation (Jesse Barnes &lt;jesse.barnes@intel.com&gt;)
</holder>
</copyright>
<legalnotice>
<para>
The contents of this file may be used under the terms of the GNU
General Public License version 2 (the "GPL") as distributed in
the kernel source COPYING file.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<!-- Introduction -->
<chapter id="drmIntroduction">
<title>Introduction</title>
<para>
The Linux DRM layer contains code intended to support the needs
of complex graphics devices, usually containing programmable
pipelines well suited to 3D graphics acceleration. Graphics
drivers in the kernel can make use of DRM functions to make
tasks like memory management, interrupt handling and DMA easier,
and provide a uniform interface to applications.
</para>
<para>
A note on versions: this guide covers features found in the DRM
tree, including the TTM memory manager, output configuration and
mode setting, and the new vblank internals, in addition to all
the regular features found in current kernels.
</para>
<para>
[Insert diagram of typical DRM stack here]
</para>
</chapter>
<!-- Internals -->
<chapter id="drmInternals">
<title>DRM Internals</title>
<para>
This chapter documents DRM internals relevant to driver authors
and developers working to add support for the latest features to
existing drivers.
</para>
<para>
First, we'll go over some typical driver initialization
requirements, like setting up command buffers, creating an
initial output configuration, and initializing core services.
Subsequent sections will cover core internals in more detail,
providing implementation notes and examples.
</para>
<para>
The DRM layer provides several services to graphics drivers,
many of them driven by the application interfaces it provides
through libdrm, the library that wraps most of the DRM ioctls.
These include vblank event handling, memory
management, output management, framebuffer management, command
submission &amp; fencing, suspend/resume support, and DMA
services.
</para>
<para>
The core of every DRM driver is struct drm_device. Drivers
will typically statically initialize a drm_device structure,
then pass it to drm_init() at load time.
</para>
<!-- Internals: driver init -->
<sect1>
<title>Driver initialization</title>
<para>
Before calling the DRM initialization routines, the driver must
first create and fill out a struct drm_device structure.
</para>
<programlisting>
static struct drm_driver driver = {
/* don't use mtrr's here, the Xserver or user space app should
* deal with them for intel hardware.
*/
.driver_features =
DRIVER_USE_AGP | DRIVER_REQUIRE_AGP |
DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_MODESET,
.load = i915_driver_load,
.unload = i915_driver_unload,
.firstopen = i915_driver_firstopen,
.lastclose = i915_driver_lastclose,
.preclose = i915_driver_preclose,
.save = i915_save,
.restore = i915_restore,
.device_is_agp = i915_driver_device_is_agp,
.get_vblank_counter = i915_get_vblank_counter,
.enable_vblank = i915_enable_vblank,
.disable_vblank = i915_disable_vblank,
.irq_preinstall = i915_driver_irq_preinstall,
.irq_postinstall = i915_driver_irq_postinstall,
.irq_uninstall = i915_driver_irq_uninstall,
.irq_handler = i915_driver_irq_handler,
.reclaim_buffers = drm_core_reclaim_buffers,
.get_map_ofs = drm_core_get_map_ofs,
.get_reg_ofs = drm_core_get_reg_ofs,
.fb_probe = intelfb_probe,
.fb_remove = intelfb_remove,
.fb_resize = intelfb_resize,
.master_create = i915_master_create,
.master_destroy = i915_master_destroy,
#if defined(CONFIG_DEBUG_FS)
.debugfs_init = i915_debugfs_init,
.debugfs_cleanup = i915_debugfs_cleanup,
#endif
.gem_init_object = i915_gem_init_object,
.gem_free_object = i915_gem_free_object,
.gem_vm_ops = &amp;i915_gem_vm_ops,
.ioctls = i915_ioctls,
.fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release,
.ioctl = drm_ioctl,
.mmap = drm_mmap,
.poll = drm_poll,
.fasync = drm_fasync,
#ifdef CONFIG_COMPAT
.compat_ioctl = i915_compat_ioctl,
#endif
},
.pci_driver = {
.name = DRIVER_NAME,
.id_table = pciidlist,
.probe = probe,
.remove = __devexit_p(drm_cleanup_pci),
},
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
};
</programlisting>
<para>
In the example above, taken from the i915 DRM driver, the driver
sets several flags indicating what core features it supports.
We'll go over the individual callbacks in later sections. Since
flags indicate which features your driver supports to the DRM
core, you need to set most of them prior to calling drm_init(). Some,
like DRIVER_MODESET can be set later based on user supplied parameters,
but that's the exception rather than the rule.
</para>
<variablelist>
<title>Driver flags</title>
<varlistentry>
<term>DRIVER_USE_AGP</term>
<listitem><para>
Driver uses AGP interface
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_REQUIRE_AGP</term>
<listitem><para>
Driver needs AGP interface to function.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_USE_MTRR</term>
<listitem>
<para>
Driver uses MTRR interface for mapping memory. Deprecated.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PCI_DMA</term>
<listitem><para>
Driver is capable of PCI DMA. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_SG</term>
<listitem><para>
Driver can perform scatter/gather DMA. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_DMA</term>
<listitem><para>Driver supports DMA. Deprecated.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
<listitem>
<para>
DRIVER_HAVE_IRQ indicates whether the driver has a IRQ
handler, DRIVER_IRQ_SHARED indicates whether the device &amp;
handler support shared IRQs (note that this is required of
PCI drivers).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_DMA_QUEUE</term>
<listitem>
<para>
If the driver queues DMA requests and completes them
asynchronously, this flag should be set. Deprecated.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_FB_DMA</term>
<listitem>
<para>
Driver supports DMA to/from the framebuffer. Deprecated.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_MODESET</term>
<listitem>
<para>
Driver supports mode setting interfaces.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
In this specific case, the driver requires AGP and supports
IRQs. DMA, as we'll see, is handled by device specific ioctls
in this case. It also supports the kernel mode setting APIs, though
unlike in the actual i915 driver source, this example unconditionally
exports KMS capability.
</para>
</sect1>
<!-- Internals: driver load -->
<sect1>
<title>Driver load</title>
<para>
In the previous section, we saw what a typical drm_driver
structure might look like. One of the more important fields in
the structure is the hook for the load function.
</para>
<programlisting>
static struct drm_driver driver = {
...
.load = i915_driver_load,
...
};
</programlisting>
<para>
The load function has many responsibilities: allocating a driver
private structure, specifying supported performance counters,
configuring the device (e.g. mapping registers &amp; command
buffers), initializing the memory manager, and setting up the
initial output configuration.
</para>
<para>
Note that the tasks performed at driver load time must not
conflict with DRM client requirements. For instance, if user
level mode setting drivers are in use, it would be problematic
to perform output discovery &amp; configuration at load time.
Likewise, if pre-memory management aware user level drivers are
in use, memory management and command buffer setup may need to
be omitted. These requirements are driver specific, and care
needs to be taken to keep both old and new applications and
libraries working. The i915 driver supports the "modeset"
module parameter to control whether advanced features are
enabled at load time or in legacy fashion. If compatibility is
a concern (e.g. with drivers converted over to the new interfaces
from the old ones), care must be taken to prevent incompatible
device initialization and control with the currently active
userspace drivers.
</para>
<sect2>
<title>Driver private &amp; performance counters</title>
<para>
The driver private hangs off the main drm_device structure and
can be used for tracking various device specific bits of
information, like register offsets, command buffer status,
register state for suspend/resume, etc. At load time, a
driver can simply allocate one and set drm_device.dev_priv
appropriately; at unload the driver can free it and set
drm_device.dev_priv to NULL.
</para>
<para>
The DRM supports several counters which can be used for rough
performance characterization. Note that the DRM stat counter
system is not often used by applications, and supporting
additional counters is completely optional.
</para>
<para>
These interfaces are deprecated and should not be used. If performance
monitoring is desired, the developer should investigate and
potentially enhance the kernel perf and tracing infrastructure to export
GPU related performance information to performance monitoring
tools and applications.
</para>
</sect2>
<sect2>
<title>Configuring the device</title>
<para>
Obviously, device configuration will be device specific.
However, there are several common operations: finding a
device's PCI resources, mapping them, and potentially setting
up an IRQ handler.
</para>
<para>
Finding &amp; mapping resources is fairly straightforward. The
DRM wrapper functions, drm_get_resource_start() and
drm_get_resource_len() can be used to find BARs on the given
drm_device struct. Once those values have been retrieved, the
driver load function can call drm_addmap() to create a new
mapping for the BAR in question. Note you'll probably want a
drm_local_map_t in your driver private structure to track any
mappings you create.
<!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* -->
<!-- !Finclude/drm/drmP.h drm_local_map_t -->
</para>
<para>
if compatibility with other operating systems isn't a concern
(DRM drivers can run under various BSD variants and OpenSolaris),
native Linux calls can be used for the above, e.g. pci_resource_*
and iomap*/iounmap. See the Linux device driver book for more
info.
</para>
<para>
Once you have a register map, you can use the DRM_READn() and
DRM_WRITEn() macros to access the registers on your device, or
use driver specific versions to offset into your MMIO space
relative to a driver specific base pointer (see I915_READ for
example).
</para>
<para>
If your device supports interrupt generation, you may want to
setup an interrupt handler at driver load time as well. This
is done using the drm_irq_install() function. If your device
supports vertical blank interrupts, it should call
drm_vblank_init() to initialize the core vblank handling code before
enabling interrupts on your device. This ensures the vblank related
structures are allocated and allows the core to handle vblank events.
</para>
<!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
<para>
Once your interrupt handler is registered (it'll use your
drm_driver.irq_handler as the actual interrupt handling
function), you can safely enable interrupts on your device,
assuming any other state your interrupt handler uses is also
initialized.
</para>
<para>
Another task that may be necessary during configuration is
mapping the video BIOS. On many devices, the VBIOS describes
device configuration, LCD panel timings (if any), and contains
flags indicating device state. Mapping the BIOS can be done
using the pci_map_rom() call, a convenience function that
takes care of mapping the actual ROM, whether it has been
shadowed into memory (typically at address 0xc0000) or exists
on the PCI device in the ROM BAR. Note that once you've
mapped the ROM and extracted any necessary information, be
sure to unmap it; on many devices the ROM address decoder is
shared with other BARs, so leaving it mapped can cause
undesired behavior like hangs or memory corruption.
<!--!Fdrivers/pci/rom.c pci_map_rom-->
</para>
</sect2>
<sect2>
<title>Memory manager initialization</title>
<para>
In order to allocate command buffers, cursor memory, scanout
buffers, etc., as well as support the latest features provided
by packages like Mesa and the X.Org X server, your driver
should support a memory manager.
</para>
<para>
If your driver supports memory management (it should!), you'll
need to set that up at load time as well. How you initialize
it depends on which memory manager you're using, TTM or GEM.
</para>
<sect3>
<title>TTM initialization</title>
<para>
TTM (for Translation Table Manager) manages video memory and
aperture space for graphics devices. TTM supports both UMA devices
and devices with dedicated video RAM (VRAM), i.e. most discrete
graphics devices. If your device has dedicated RAM, supporting
TTM is desirable. TTM also integrates tightly with your
driver specific buffer execution function. See the radeon
driver for examples.
</para>
<para>
The core TTM structure is the ttm_bo_driver struct. It contains
several fields with function pointers for initializing the TTM,
allocating and freeing memory, waiting for command completion
and fence synchronization, and memory migration. See the
radeon_ttm.c file for an example of usage.
</para>
<para>
The ttm_global_reference structure is made up of several fields:
</para>
<programlisting>
struct ttm_global_reference {
enum ttm_global_types global_type;
size_t size;
void *object;
int (*init) (struct ttm_global_reference *);
void (*release) (struct ttm_global_reference *);
};
</programlisting>
<para>
There should be one global reference structure for your memory
manager as a whole, and there will be others for each object
created by the memory manager at runtime. Your global TTM should
have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
object should be sizeof(struct ttm_mem_global), and the init and
release hooks should point at your driver specific init and
release routines, which will probably eventually call
ttm_mem_global_init and ttm_mem_global_release respectively.
</para>
<para>
Once your global TTM accounting structure is set up and initialized
(done by calling ttm_global_item_ref on the global object you
just created), you'll need to create a buffer object TTM to
provide a pool for buffer object allocation by clients and the
kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
and its size should be sizeof(struct ttm_bo_global). Again,
driver specific init and release functions can be provided,
likely eventually calling ttm_bo_global_init and
ttm_bo_global_release, respectively. Also like the previous
object, ttm_global_item_ref is used to create an initial reference
count for the TTM, which will call your initialization function.
</para>
</sect3>
<sect3>
<title>GEM initialization</title>
<para>
GEM is an alternative to TTM, designed specifically for UMA
devices. It has simpler initialization and execution requirements
than TTM, but has no VRAM management capability. Core GEM
initialization is comprised of a basic drm_mm_init call to create
a GTT DRM MM object, which provides an address space pool for
object allocation. In a KMS configuration, the driver will
need to allocate and initialize a command ring buffer following
basic GEM initialization. Most UMA devices have a so-called
"stolen" memory region, which provides space for the initial
framebuffer and large, contiguous memory regions required by the
device. This space is not typically managed by GEM, and must
be initialized separately into its own DRM MM object.
</para>
<para>
Initialization will be driver specific, and will depend on
the architecture of the device. In the case of Intel
integrated graphics chips like 965GM, GEM initialization can
be done by calling the internal GEM init function,
i915_gem_do_init(). Since the 965GM is a UMA device
(i.e. it doesn't have dedicated VRAM), GEM will manage
making regular RAM available for GPU operations. Memory set
aside by the BIOS (called "stolen" memory by the i915
driver) will be managed by the DRM memrange allocator; the
rest of the aperture will be managed by GEM.
<programlisting>
/* Basic memrange allocator for stolen space (aka vram) */
drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size);
/* Let GEM Manage from end of prealloc space to end of aperture */
i915_gem_do_init(dev, prealloc_size, agp_size);
</programlisting>
<!--!Edrivers/char/drm/drm_memrange.c-->
</para>
<para>
Once the memory manager has been set up, we can allocate the
command buffer. In the i915 case, this is also done with a
GEM function, i915_gem_init_ringbuffer().
</para>
</sect3>
</sect2>
<sect2>
<title>Output configuration</title>
<para>
The final initialization task is output configuration. This involves
finding and initializing the CRTCs, encoders and connectors
for your device, creating an initial configuration and
registering a framebuffer console driver.
</para>
<sect3>
<title>Output discovery and initialization</title>
<para>
Several core functions exist to create CRTCs, encoders and
connectors, namely drm_crtc_init(), drm_connector_init() and
drm_encoder_init(), along with several "helper" functions to
perform common tasks.
</para>
<para>
Connectors should be registered with sysfs once they've been
detected and initialized, using the
drm_sysfs_connector_add() function. Likewise, when they're
removed from the system, they should be destroyed with
drm_sysfs_connector_remove().
</para>
<programlisting>
<![CDATA[
void intel_crt_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct intel_output *intel_output;
intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output)
return;
connector = &intel_output->base;
drm_connector_init(dev, &intel_output->base,
&intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);
drm_mode_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
/* Set up the DDC bus. */
intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
if (!intel_output->ddc_bus) {
dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
return;
}
intel_output->type = INTEL_OUTPUT_ANALOG;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
drm_sysfs_connector_add(connector);
}
]]>
</programlisting>
<para>
In the example above (again, taken from the i915 driver), a
CRT connector and encoder combination is created. A device
specific i2c bus is also created, for fetching EDID data and
performing monitor detection. Once the process is complete,
the new connector is registered with sysfs, to make its
properties available to applications.
</para>
<sect4>
<title>Helper functions and core functions</title>
<para>
Since many PC-class graphics devices have similar display output
designs, the DRM provides a set of helper functions to make
output management easier. The core helper routines handle
encoder re-routing and disabling of unused functions following
mode set. Using the helpers is optional, but recommended for
devices with PC-style architectures (i.e. a set of display planes
for feeding pixels to encoders which are in turn routed to
connectors). Devices with more complex requirements needing
finer grained management can opt to use the core callbacks
directly.
</para>
<para>
[Insert typical diagram here.] [Insert OMAP style config here.]
</para>
</sect4>
<para>
For each encoder, CRTC and connector, several functions must
be provided, depending on the object type. Encoder objects
need to provide a DPMS (basically on/off) function, mode fixup
(for converting requested modes into native hardware timings),
and prepare, set and commit functions for use by the core DRM
helper functions. Connector helpers need to provide mode fetch and
validity functions as well as an encoder matching function for
returning an ideal encoder for a given connector. The core
connector functions include a DPMS callback, (deprecated)
save/restore routines, detection, mode probing, property handling,
and cleanup functions.
</para>
<!--!Edrivers/char/drm/drm_crtc.h-->
<!--!Edrivers/char/drm/drm_crtc.c-->
<!--!Edrivers/char/drm/drm_crtc_helper.c-->
</sect3>
</sect2>
</sect1>
<!-- Internals: vblank handling -->
<sect1>
<title>VBlank event handling</title>
<para>
The DRM core exposes two vertical blank related ioctls:
DRM_IOCTL_WAIT_VBLANK and DRM_IOCTL_MODESET_CTL.
<!--!Edrivers/char/drm/drm_irq.c-->
</para>
<para>
DRM_IOCTL_WAIT_VBLANK takes a struct drm_wait_vblank structure
as its argument, and is used to block or request a signal when a
specified vblank event occurs.
</para>
<para>
DRM_IOCTL_MODESET_CTL should be called by application level
drivers before and after mode setting, since on many devices the
vertical blank counter will be reset at that time. Internally,
the DRM snapshots the last vblank count when the ioctl is called
with the _DRM_PRE_MODESET command so that the counter won't go
backwards (which is dealt with when _DRM_POST_MODESET is used).
</para>
<para>
To support the functions above, the DRM core provides several
helper functions for tracking vertical blank counters, and
requires drivers to provide several callbacks:
get_vblank_counter(), enable_vblank() and disable_vblank(). The
core uses get_vblank_counter() to keep the counter accurate
across interrupt disable periods. It should return the current
vertical blank event count, which is often tracked in a device
register. The enable and disable vblank callbacks should enable
and disable vertical blank interrupts, respectively. In the
absence of DRM clients waiting on vblank events, the core DRM
code will use the disable_vblank() function to disable
interrupts, which saves power. They'll be re-enabled again when
a client calls the vblank wait ioctl above.
</para>
<para>
Devices that don't provide a count register can simply use an
internal atomic counter incremented on every vertical blank
interrupt, and can make their enable and disable vblank
functions into no-ops.
</para>
</sect1>
<sect1>
<title>Memory management</title>
<para>
The memory manager lies at the heart of many DRM operations, and
is also required to support advanced client features like OpenGL
pbuffers. The DRM currently contains two memory managers, TTM
and GEM.
</para>
<sect2>
<title>The Translation Table Manager (TTM)</title>
<para>
TTM was developed by Tungsten Graphics, primarily by Thomas
Hellström, and is intended to be a flexible, high performance
graphics memory manager.
</para>
<para>
Drivers wishing to support TTM must fill out a drm_bo_driver
structure.
</para>
<para>
TTM design background and information belongs here.
</para>
</sect2>
<sect2>
<title>The Graphics Execution Manager (GEM)</title>
<para>
GEM is an Intel project, authored by Eric Anholt and Keith
Packard. It provides simpler interfaces than TTM, and is well
suited for UMA devices.
</para>
<para>
GEM-enabled drivers must provide gem_init_object() and
gem_free_object() callbacks to support the core memory
allocation routines. They should also provide several driver
specific ioctls to support command execution, pinning, buffer
read &amp; write, mapping, and domain ownership transfers.
</para>
<para>
On a fundamental level, GEM involves several operations: memory
allocation and freeing, command execution, and aperture management
at command execution time. Buffer object allocation is relatively
straightforward and largely provided by Linux's shmem layer, which
provides memory to back each object. When mapped into the GTT
or used in a command buffer, the backing pages for an object are
flushed to memory and marked write combined so as to be coherent
with the GPU. Likewise, when the GPU finishes rendering to an object,
if the CPU accesses it, it must be made coherent with the CPU's view
of memory, usually involving GPU cache flushing of various kinds.
This core CPU&lt;-&gt;GPU coherency management is provided by the GEM
set domain function, which evaluates an object's current domain and
performs any necessary flushing or synchronization to put the object
into the desired coherency domain (note that the object may be busy,
i.e. an active render target; in that case the set domain function
will block the client and wait for rendering to complete before
performing any necessary flushing operations).
</para>
<para>
Perhaps the most important GEM function is providing a command
execution interface to clients. Client programs construct command
buffers containing references to previously allocated memory objects
and submit them to GEM. At that point, GEM will take care to bind
all the objects into the GTT, execute the buffer, and provide
necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding
others (a fairly expensive operation), and providing relocation
support which hides fixed GTT offsets from clients. Clients must
take care not to submit command buffers that reference more objects
than can fit in the GTT or GEM will reject them and no rendering
will occur. Similarly, if several objects in the buffer require
fence registers to be allocated for correct rendering (e.g. 2D blits
on pre-965 chips), care must be taken not to require more fence
registers than are available to the client. Such resource management
should be abstracted from the client in libdrm.
</para>
</sect2>
</sect1>
<!-- Output management -->
<sect1>
<title>Output management</title>
<para>
At the core of the DRM output management code is a set of
structures representing CRTCs, encoders and connectors.
</para>
<para>
A CRTC is an abstraction representing a part of the chip that
contains a pointer to a scanout buffer. Therefore, the number
of CRTCs available determines how many independent scanout
buffers can be active at any given time. The CRTC structure
contains several fields to support this: a pointer to some video
memory, a display mode, and an (x, y) offset into the video
memory to support panning or configurations where one piece of
video memory spans multiple CRTCs.
</para>
<para>
An encoder takes pixel data from a CRTC and converts it to a
format suitable for any attached connectors. On some devices,
it may be possible to have a CRTC send data to more than one
encoder. In that case, both encoders would receive data from
the same scanout buffer, resulting in a "cloned" display
configuration across the connectors attached to each encoder.
</para>
<para>
A connector is the final destination for pixel data on a device,
and usually connects directly to an external display device like
a monitor or laptop panel. A connector can only be attached to
one encoder at a time. The connector is also the structure
where information about the attached display is kept, so it
contains fields for display data, EDID data, DPMS &amp;
connection status, and information about modes supported on the
attached displays.
</para>
<!--!Edrivers/char/drm/drm_crtc.c-->
</sect1>
<sect1>
<title>Framebuffer management</title>
<para>
In order to set a mode on a given CRTC, encoder and connector
configuration, clients need to provide a framebuffer object which
will provide a source of pixels for the CRTC to deliver to the encoder(s)
and ultimately the connector(s) in the configuration. A framebuffer
is fundamentally a driver specific memory object, made into an opaque
handle by the DRM addfb function. Once an fb has been created this
way it can be passed to the KMS mode setting routines for use in
a configuration.
</para>
</sect1>
<sect1>
<title>Command submission &amp; fencing</title>
<para>
This should cover a few device specific command submission
implementations.
</para>
</sect1>
<sect1>
<title>Suspend/resume</title>
<para>
The DRM core provides some suspend/resume code, but drivers
wanting full suspend/resume support should provide save() and
restore() functions. These will be called at suspend,
hibernate, or resume time, and should perform any state save or
restore required by your device across suspend or hibernate
states.
</para>
</sect1>
<sect1>
<title>DMA services</title>
<para>
This should cover how DMA mapping etc. is supported by the core.
These functions are deprecated and should not be used.
</para>
</sect1>
</chapter>
<!-- External interfaces -->
<chapter id="drmExternals">
<title>Userland interfaces</title>
<para>
The DRM core exports several interfaces to applications,
generally intended to be used through corresponding libdrm
wrapper functions. In addition, drivers export device specific
interfaces for use by userspace drivers &amp; device aware
applications through ioctls and sysfs files.
</para>
<para>
External interfaces include: memory mapping, context management,
DMA operations, AGP management, vblank control, fence
management, memory management, and output management.
</para>
<para>
Cover generic ioctls and sysfs layout here. Only need high
level info, since man pages will cover the rest.
</para>
</chapter>
<!-- API reference -->
<appendix id="drmDriverApi">
<title>DRM Driver API</title>
<para>
Include auto-generated API reference here (need to reference it
from paragraphs above too).
</para>
</appendix>
</book>

View file

@ -12,10 +12,12 @@
<othername role="mi">O. C.</othername>
<affiliation><address><email>rjkm@metzlerbros.de</email></address></affiliation>
</author>
</authorgroup>
<authorgroup>
<author>
<firstname>Mauro</firstname>
<surname>Chehab</surname>
<othername role="mi">Carvalho</othername>
<surname>Chehab</surname>
<affiliation><address><email>mchehab@redhat.com</email></address></affiliation>
<contrib>Ported document to Docbook XML.</contrib>
</author>
@ -23,12 +25,23 @@
<copyright>
<year>2002</year>
<year>2003</year>
<year>2009</year>
<holder>Convergence GmbH</holder>
</copyright>
<copyright>
<year>2009-2010</year>
<holder>Mauro Carvalho Chehab</holder>
</copyright>
<revhistory>
<!-- Put document revisions here, newest first. -->
<revision>
<revnumber>2.0.3</revnumber>
<date>2010-07-03</date>
<authorinitials>mcc</authorinitials>
<revremark>
Add some frontend capabilities flags, present on kernel, but missing at the specs.
</revremark>
</revision>
<revision>
<revnumber>2.0.2</revnumber>
<date>2009-10-25</date>
@ -63,7 +76,7 @@ Added ISDB-T test originally written by Patrick Boettcher
<title>LINUX DVB API</title>
<subtitle>Version 3</subtitle>
<subtitle>Version 5.2</subtitle>
<!-- ADD THE CHAPTERS HERE -->
<chapter id="dvb_introdution">
&sub-intro;

View file

@ -63,6 +63,7 @@ typedef enum fe_caps {
FE_CAN_8VSB = 0x200000,
FE_CAN_16VSB = 0x400000,
FE_HAS_EXTENDED_CAPS = 0x800000, /* We need more bitspace for newer APIs, indicate this. */
FE_CAN_TURBO_FEC = 0x8000000, /* frontend supports "turbo fec modulation" */
FE_CAN_2G_MODULATION = 0x10000000, /* frontend supports "2nd generation modulation" (DVB-S2) */
FE_NEEDS_BENDING = 0x20000000, /* not supported anymore, don't use (frontend requires frequency bending) */
FE_CAN_RECOVER = 0x40000000, /* frontend can recover from a cable unplug automatically */

View file

@ -64,8 +64,14 @@ a specific frontend type.</para>
FE_CAN_BANDWIDTH_AUTO = 0x40000,
FE_CAN_GUARD_INTERVAL_AUTO = 0x80000,
FE_CAN_HIERARCHY_AUTO = 0x100000,
FE_CAN_MUTE_TS = 0x80000000,
FE_CAN_CLEAN_SETUP = 0x40000000
FE_CAN_8VSB = 0x200000,
FE_CAN_16VSB = 0x400000,
FE_HAS_EXTENDED_CAPS = 0x800000,
FE_CAN_TURBO_FEC = 0x8000000,
FE_CAN_2G_MODULATION = 0x10000000,
FE_NEEDS_BENDING = 0x20000000,
FE_CAN_RECOVER = 0x40000000,
FE_CAN_MUTE_TS = 0x80000000
} fe_caps_t;
</programlisting>
</section>

View file

@ -4,7 +4,7 @@
<book id="kgdbOnLinux">
<bookinfo>
<title>Using kgdb and the kgdb Internals</title>
<title>Using kgdb, kdb and the kernel debugger internals</title>
<authorgroup>
<author>
@ -17,33 +17,8 @@
</affiliation>
</author>
</authorgroup>
<authorgroup>
<author>
<firstname>Tom</firstname>
<surname>Rini</surname>
<affiliation>
<address>
<email>trini@kernel.crashing.org</email>
</address>
</affiliation>
</author>
</authorgroup>
<authorgroup>
<author>
<firstname>Amit S.</firstname>
<surname>Kale</surname>
<affiliation>
<address>
<email>amitkale@linsyssoft.com</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2008</year>
<year>2008,2010</year>
<holder>Wind River Systems, Inc.</holder>
</copyright>
<copyright>
@ -69,41 +44,76 @@
<chapter id="Introduction">
<title>Introduction</title>
<para>
kgdb is a source level debugger for linux kernel. It is used along
with gdb to debug a linux kernel. The expectation is that gdb can
be used to "break in" to the kernel to inspect memory, variables
and look through call stack information similar to what an
application developer would use gdb for. It is possible to place
breakpoints in kernel code and perform some limited execution
stepping.
The kernel has two different debugger front ends (kdb and kgdb)
which interface to the debug core. It is possible to use either
of the debugger front ends and dynamically transition between them
if you configure the kernel properly at compile and runtime.
</para>
<para>
Two machines are required for using kgdb. One of these machines is a
development machine and the other is a test machine. The kernel
to be debugged runs on the test machine. The development machine
runs an instance of gdb against the vmlinux file which contains
the symbols (not boot image such as bzImage, zImage, uImage...).
In gdb the developer specifies the connection parameters and
connects to kgdb. The type of connection a developer makes with
gdb depends on the availability of kgdb I/O modules compiled as
builtin's or kernel modules in the test machine's kernel.
Kdb is simplistic shell-style interface which you can use on a
system console with a keyboard or serial console. You can use it
to inspect memory, registers, process lists, dmesg, and even set
breakpoints to stop in a certain location. Kdb is not a source
level debugger, although you can set breakpoints and execute some
basic kernel run control. Kdb is mainly aimed at doing some
analysis to aid in development or diagnosing kernel problems. You
can access some symbols by name in kernel built-ins or in kernel
modules if the code was built
with <symbol>CONFIG_KALLSYMS</symbol>.
</para>
<para>
Kgdb is intended to be used as a source level debugger for the
Linux kernel. It is used along with gdb to debug a Linux kernel.
The expectation is that gdb can be used to "break in" to the
kernel to inspect memory, variables and look through call stack
information similar to the way an application developer would use
gdb to debug an application. It is possible to place breakpoints
in kernel code and perform some limited execution stepping.
</para>
<para>
Two machines are required for using kgdb. One of these machines is
a development machine and the other is the target machine. The
kernel to be debugged runs on the target machine. The development
machine runs an instance of gdb against the vmlinux file which
contains the symbols (not boot image such as bzImage, zImage,
uImage...). In gdb the developer specifies the connection
parameters and connects to kgdb. The type of connection a
developer makes with gdb depends on the availability of kgdb I/O
modules compiled as built-ins or loadable kernel modules in the test
machine's kernel.
</para>
</chapter>
<chapter id="CompilingAKernel">
<title>Compiling a kernel</title>
<title>Compiling a kernel</title>
<para>
<itemizedlist>
<listitem><para>In order to enable compilation of kdb, you must first enable kgdb.</para></listitem>
<listitem><para>The kgdb test compile options are described in the kgdb test suite chapter.</para></listitem>
</itemizedlist>
</para>
<sect1 id="CompileKGDB">
<title>Kernel config options for kgdb</title>
<para>
To enable <symbol>CONFIG_KGDB</symbol> you should first turn on
"Prompt for development and/or incomplete code/drivers"
(CONFIG_EXPERIMENTAL) in "General setup", then under the
"Kernel debugging" select "KGDB: kernel debugging with remote gdb".
"Kernel debugging" select "KGDB: kernel debugger".
</para>
<para>
While it is not a hard requirement that you have symbols in your
vmlinux file, gdb tends not to be very useful without the symbolic
data, so you will want to turn
on <symbol>CONFIG_DEBUG_INFO</symbol> which is called "Compile the
kernel with debug info" in the config menu.
</para>
<para>
It is advised, but not required that you turn on the
CONFIG_FRAME_POINTER kernel option. This option inserts code to
into the compiled executable which saves the frame information in
registers or on the stack at different points which will allow a
debugger such as gdb to more accurately construct stack back traces
while debugging the kernel.
<symbol>CONFIG_FRAME_POINTER</symbol> kernel option which is called "Compile the
kernel with frame pointers" in the config menu. This option
inserts code to into the compiled executable which saves the frame
information in registers or on the stack at different points which
allows a debugger such as gdb to more accurately construct
stack back traces while debugging the kernel.
</para>
<para>
If the architecture that you are using supports the kernel option
@ -116,38 +126,160 @@
this option.
</para>
<para>
Next you should choose one of more I/O drivers to interconnect debugging
host and debugged target. Early boot debugging requires a KGDB
I/O driver that supports early debugging and the driver must be
built into the kernel directly. Kgdb I/O driver configuration
takes place via kernel or module parameters, see following
chapter.
Next you should choose one of more I/O drivers to interconnect
debugging host and debugged target. Early boot debugging requires
a KGDB I/O driver that supports early debugging and the driver
must be built into the kernel directly. Kgdb I/O driver
configuration takes place via kernel or module parameters which
you can learn more about in the in the section that describes the
parameter "kgdboc".
</para>
<para>
The kgdb test compile options are described in the kgdb test suite chapter.
<para>Here is an example set of .config symbols to enable or
disable for kgdb:
<itemizedlist>
<listitem><para># CONFIG_DEBUG_RODATA is not set</para></listitem>
<listitem><para>CONFIG_FRAME_POINTER=y</para></listitem>
<listitem><para>CONFIG_KGDB=y</para></listitem>
<listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem>
</itemizedlist>
</para>
</sect1>
<sect1 id="CompileKDB">
<title>Kernel config options for kdb</title>
<para>Kdb is quite a bit more complex than the simple gdbstub
sitting on top of the kernel's debug core. Kdb must implement a
shell, and also adds some helper functions in other parts of the
kernel, responsible for printing out interesting data such as what
you would see if you ran "lsmod", or "ps". In order to build kdb
into the kernel you follow the same steps as you would for kgdb.
</para>
<para>The main config option for kdb
is <symbol>CONFIG_KGDB_KDB</symbol> which is called "KGDB_KDB:
include kdb frontend for kgdb" in the config menu. In theory you
would have already also selected an I/O driver such as the
CONFIG_KGDB_SERIAL_CONSOLE interface if you plan on using kdb on a
serial port, when you were configuring kgdb.
</para>
<para>If you want to use a PS/2-style keyboard with kdb, you would
select CONFIG_KDB_KEYBOARD which is called "KGDB_KDB: keyboard as
input device" in the config menu. The CONFIG_KDB_KEYBOARD option
is not used for anything in the gdb interface to kgdb. The
CONFIG_KDB_KEYBOARD option only works with kdb.
</para>
<para>Here is an example set of .config symbols to enable/disable kdb:
<itemizedlist>
<listitem><para># CONFIG_DEBUG_RODATA is not set</para></listitem>
<listitem><para>CONFIG_FRAME_POINTER=y</para></listitem>
<listitem><para>CONFIG_KGDB=y</para></listitem>
<listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem>
<listitem><para>CONFIG_KGDB_KDB=y</para></listitem>
<listitem><para>CONFIG_KDB_KEYBOARD=y</para></listitem>
</itemizedlist>
</para>
</sect1>
</chapter>
<chapter id="EnableKGDB">
<title>Enable kgdb for debugging</title>
<para>
In order to use kgdb you must activate it by passing configuration
information to one of the kgdb I/O drivers. If you do not pass any
configuration information kgdb will not do anything at all. Kgdb
will only actively hook up to the kernel trap hooks if a kgdb I/O
driver is loaded and configured. If you unconfigure a kgdb I/O
driver, kgdb will unregister all the kernel hook points.
<chapter id="kgdbKernelArgs">
<title>Kernel Debugger Boot Arguments</title>
<para>This section describes the various runtime kernel
parameters that affect the configuration of the kernel debugger.
The following chapter covers using kdb and kgdb as well as
provides some examples of the configuration parameters.</para>
<sect1 id="kgdboc">
<title>Kernel parameter: kgdboc</title>
<para>The kgdboc driver was originally an abbreviation meant to
stand for "kgdb over console". Today it is the primary mechanism
to configure how to communicate from gdb to kgdb as well as the
devices you want to use to interact with the kdb shell.
</para>
<para>
All drivers can be reconfigured at run time, if
<symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol>
are enabled, by echo'ing a new config string to
<constant>/sys/module/&lt;driver&gt;/parameter/&lt;option&gt;</constant>.
The driver can be unconfigured by passing an empty string. You cannot
change the configuration while the debugger is attached. Make sure
to detach the debugger with the <constant>detach</constant> command
prior to trying unconfigure a kgdb I/O driver.
<para>For kgdb/gdb, kgdboc is designed to work with a single serial
port. It is intended to cover the circumstance where you want to
use a serial console as your primary console as well as using it to
perform kernel debugging. It is also possible to use kgdb on a
serial port which is not designated as a system console. Kgdboc
may be configured as a kernel built-in or a kernel loadable module.
You can only make use of <constant>kgdbwait</constant> and early
debugging if you build kgdboc into the kernel as a built-in.
</para>
<sect2 id="kgdbocArgs">
<title>kgdboc arguments</title>
<para>Usage: <constant>kgdboc=[kbd][[,]serial_device][,baud]</constant></para>
<sect3 id="kgdbocArgs1">
<title>Using loadable module or built-in</title>
<para>
<orderedlist>
<listitem><para>As a kernel built-in:</para>
<para>Use the kernel boot argument: <constant>kgdboc=&lt;tty-device&gt;,[baud]</constant></para></listitem>
<listitem>
<para>As a kernel loadable module:</para>
<para>Use the command: <constant>modprobe kgdboc kgdboc=&lt;tty-device&gt;,[baud]</constant></para>
<para>Here are two examples of how you might formate the kgdboc
string. The first is for an x86 target using the first serial port.
The second example is for the ARM Versatile AB using the second
serial port.
<orderedlist>
<listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem>
<listitem><para><constant>kgdboc=ttyAMA1,115200</constant></para></listitem>
</orderedlist>
</para>
</listitem>
</orderedlist></para>
</sect3>
<sect3 id="kgdbocArgs2">
<title>Configure kgdboc at runtime with sysfs</title>
<para>At run time you can enable or disable kgdboc by echoing a
parameters into the sysfs. Here are two examples:</para>
<orderedlist>
<listitem><para>Enable kgdboc on ttyS0</para>
<para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
<listitem><para>Disable kgdboc</para>
<para><constant>echo "" &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
</orderedlist>
<para>NOTE: You do not need to specify the baud if you are
configuring the console on tty which is already configured or
open.</para>
</sect3>
<sect3 id="kgdbocArgs3">
<title>More examples</title>
<para>You can configure kgdboc to use the keyboard, and or a serial device
depending on if you are using kdb and or kgdb, in one of the
following scenarios.
<orderedlist>
<listitem><para>kdb and kgdb over only a serial port</para>
<para><constant>kgdboc=&lt;serial_device&gt;[,baud]</constant></para>
<para>Example: <constant>kgdboc=ttyS0,115200</constant></para>
</listitem>
<listitem><para>kdb and kgdb with keyboard and a serial port</para>
<para><constant>kgdboc=kbd,&lt;serial_device&gt;[,baud]</constant></para>
<para>Example: <constant>kgdboc=kbd,ttyS0,115200</constant></para>
</listitem>
<listitem><para>kdb with a keyboard</para>
<para><constant>kgdboc=kbd</constant></para>
</listitem>
</orderedlist>
</para>
</sect3>
<para>NOTE: Kgdboc does not support interrupting the target via the
gdb remote protocol. You must manually send a sysrq-g unless you
have a proxy that splits console output to a terminal program.
A console proxy has a separate TCP port for the debugger and a separate
TCP port for the "human" console. The proxy can take care of sending
the sysrq-g for you.
</para>
<para>When using kgdboc with no debugger proxy, you can end up
connecting the debugger at one of two entry points. If an
exception occurs after you have loaded kgdboc, a message should
print on the console stating it is waiting for the debugger. In
this case you disconnect your terminal program and then connect the
debugger in its place. If you want to interrupt the target system
and forcibly enter a debug session you have to issue a Sysrq
sequence and then type the letter <constant>g</constant>. Then
you disconnect the terminal session and connect gdb. Your options
if you don't like this are to hack gdb to send the sysrq-g for you
as well as on the initial connect, or to use a debugger proxy that
allows an unmodified gdb to do the debugging.
</para>
</sect2>
</sect1>
<sect1 id="kgdbwait">
<title>Kernel parameter: kgdbwait</title>
<para>
@ -162,103 +294,204 @@
</para>
<para>
The kernel will stop and wait as early as the I/O driver and
architecture will allow when you use this option. If you build the
kgdb I/O driver as a kernel module kgdbwait will not do anything.
architecture allows when you use this option. If you build the
kgdb I/O driver as a loadable kernel module kgdbwait will not do
anything.
</para>
</sect1>
<sect1 id="kgdboc">
<title>Kernel parameter: kgdboc</title>
<para>
The kgdboc driver was originally an abbreviation meant to stand for
"kgdb over console". Kgdboc is designed to work with a single
serial port. It was meant to cover the circumstance
where you wanted to use a serial console as your primary console as
well as using it to perform kernel debugging. Of course you can
also use kgdboc without assigning a console to the same port.
</para>
<sect2 id="UsingKgdboc">
<title>Using kgdboc</title>
<para>
You can configure kgdboc via sysfs or a module or kernel boot line
parameter depending on if you build with CONFIG_KGDBOC as a module
or built-in.
<orderedlist>
<listitem><para>From the module load or build-in</para>
<para><constant>kgdboc=&lt;tty-device&gt;,[baud]</constant></para>
<para>
The example here would be if your console port was typically ttyS0, you would use something like <constant>kgdboc=ttyS0,115200</constant> or on the ARM Versatile AB you would likely use <constant>kgdboc=ttyAMA0,115200</constant>
</para>
</listitem>
<listitem><para>From sysfs</para>
<para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para>
</listitem>
</orderedlist>
</para>
<para>
NOTE: Kgdboc does not support interrupting the target via the
gdb remote protocol. You must manually send a sysrq-g unless you
have a proxy that splits console output to a terminal problem and
has a separate port for the debugger to connect to that sends the
sysrq-g for you.
</para>
<para>When using kgdboc with no debugger proxy, you can end up
connecting the debugger for one of two entry points. If an
exception occurs after you have loaded kgdboc a message should print
on the console stating it is waiting for the debugger. In case you
disconnect your terminal program and then connect the debugger in
its place. If you want to interrupt the target system and forcibly
enter a debug session you have to issue a Sysrq sequence and then
type the letter <constant>g</constant>. Then you disconnect the
terminal session and connect gdb. Your options if you don't like
this are to hack gdb to send the sysrq-g for you as well as on the
initial connect, or to use a debugger proxy that allows an
unmodified gdb to do the debugging.
</para>
</sect2>
</sect1>
<sect1 id="kgdbcon">
<title>Kernel parameter: kgdbcon</title>
<para>
Kgdb supports using the gdb serial protocol to send console messages
to the debugger when the debugger is connected and running. There
are two ways to activate this feature.
<orderedlist>
<listitem><para>Activate with the kernel command line option:</para>
<para><constant>kgdbcon</constant></para>
</listitem>
<listitem><para>Use sysfs before configuring an io driver</para>
<para>
<constant>echo 1 &gt; /sys/module/kgdb/parameters/kgdb_use_con</constant>
</para>
<para>
NOTE: If you do this after you configure the kgdb I/O driver, the
setting will not take effect until the next point the I/O is
reconfigured.
</para>
</listitem>
</orderedlist>
</para>
<para>
IMPORTANT NOTE: Using this option with kgdb over the console
(kgdboc) is not supported.
<sect1 id="kgdbcon">
<title>Kernel parameter: kgdbcon</title>
<para> The kgdbcon feature allows you to see printk() messages
inside gdb while gdb is connected to the kernel. Kdb does not make
use of the kgdbcon feature.
</para>
<para>Kgdb supports using the gdb serial protocol to send console
messages to the debugger when the debugger is connected and running.
There are two ways to activate this feature.
<orderedlist>
<listitem><para>Activate with the kernel command line option:</para>
<para><constant>kgdbcon</constant></para>
</listitem>
<listitem><para>Use sysfs before configuring an I/O driver</para>
<para>
<constant>echo 1 &gt; /sys/module/kgdb/parameters/kgdb_use_con</constant>
</para>
<para>
NOTE: If you do this after you configure the kgdb I/O driver, the
setting will not take effect until the next point the I/O is
reconfigured.
</para>
</listitem>
</orderedlist>
<para>IMPORTANT NOTE: You cannot use kgdboc + kgdbcon on a tty that is an
active system console. An example incorrect usage is <constant>console=ttyS0,115200 kgdboc=ttyS0 kgdbcon</constant>
</para>
<para>It is possible to use this option with kgdboc on a tty that is not a system console.
</para>
</para>
</sect1>
</chapter>
<chapter id="ConnectingGDB">
<title>Connecting gdb</title>
<chapter id="usingKDB">
<title>Using kdb</title>
<para>
</para>
<sect1 id="quickKDBserial">
<title>Quick start for kdb on a serial port</title>
<para>This is a quick example of how to use kdb.</para>
<para><orderedlist>
<listitem><para>Boot kernel with arguments:
<itemizedlist>
<listitem><para><constant>console=ttyS0,115200 kgdboc=ttyS0,115200</constant></para></listitem>
</itemizedlist></para>
<para>OR</para>
<para>Configure kgdboc after the kernel booted; assuming you are using a serial port console:
<itemizedlist>
<listitem><para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
</itemizedlist>
</para>
</listitem>
<listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para>
<itemizedlist>
<listitem><para>When logged in as root or with a super user session you can run:</para>
<para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
<listitem><para>Example using minicom 2.2</para>
<para>Press: <constant>Control-a</constant></para>
<para>Press: <constant>f</constant></para>
<para>Press: <constant>g</constant></para>
</listitem>
<listitem><para>When you have telneted to a terminal server that supports sending a remote break</para>
<para>Press: <constant>Control-]</constant></para>
<para>Type in:<constant>send break</constant></para>
<para>Press: <constant>Enter</constant></para>
<para>Press: <constant>g</constant></para>
</listitem>
</itemizedlist>
</listitem>
<listitem><para>From the kdb prompt you can run the "help" command to see a complete list of the commands that are available.</para>
<para>Some useful commands in kdb include:
<itemizedlist>
<listitem><para>lsmod -- Shows where kernel modules are loaded</para></listitem>
<listitem><para>ps -- Displays only the active processes</para></listitem>
<listitem><para>ps A -- Shows all the processes</para></listitem>
<listitem><para>summary -- Shows kernel version info and memory usage</para></listitem>
<listitem><para>bt -- Get a backtrace of the current process using dump_stack()</para></listitem>
<listitem><para>dmesg -- View the kernel syslog buffer</para></listitem>
<listitem><para>go -- Continue the system</para></listitem>
</itemizedlist>
</para>
</listitem>
<listitem>
<para>When you are done using kdb you need to consider rebooting the
system or using the "go" command to resuming normal kernel
execution. If you have paused the kernel for a lengthy period of
time, applications that rely on timely networking or anything to do
with real wall clock time could be adversely affected, so you
should take this into consideration when using the kernel
debugger.</para>
</listitem>
</orderedlist></para>
</sect1>
<sect1 id="quickKDBkeyboard">
<title>Quick start for kdb using a keyboard connected console</title>
<para>This is a quick example of how to use kdb with a keyboard.</para>
<para><orderedlist>
<listitem><para>Boot kernel with arguments:
<itemizedlist>
<listitem><para><constant>kgdboc=kbd</constant></para></listitem>
</itemizedlist></para>
<para>OR</para>
<para>Configure kgdboc after the kernel booted:
<itemizedlist>
<listitem><para><constant>echo kbd &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
</itemizedlist>
</para>
</listitem>
<listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para>
<itemizedlist>
<listitem><para>When logged in as root or with a super user session you can run:</para>
<para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
<listitem><para>Example using a laptop keyboard</para>
<para>Press and hold down: <constant>Alt</constant></para>
<para>Press and hold down: <constant>Fn</constant></para>
<para>Press and release the key with the label: <constant>SysRq</constant></para>
<para>Release: <constant>Fn</constant></para>
<para>Press and release: <constant>g</constant></para>
<para>Release: <constant>Alt</constant></para>
</listitem>
<listitem><para>Example using a PS/2 101-key keyboard</para>
<para>Press and hold down: <constant>Alt</constant></para>
<para>Press and release the key with the label: <constant>SysRq</constant></para>
<para>Press and release: <constant>g</constant></para>
<para>Release: <constant>Alt</constant></para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Now type in a kdb command such as "help", "dmesg", "bt" or "go" to continue kernel execution.</para>
</listitem>
</orderedlist></para>
</sect1>
</chapter>
<chapter id="EnableKGDB">
<title>Using kgdb / gdb</title>
<para>In order to use kgdb you must activate it by passing
configuration information to one of the kgdb I/O drivers. If you
do not pass any configuration information kgdb will not do anything
at all. Kgdb will only actively hook up to the kernel trap hooks
if a kgdb I/O driver is loaded and configured. If you unconfigure
a kgdb I/O driver, kgdb will unregister all the kernel hook points.
</para>
<para> All kgdb I/O drivers can be reconfigured at run time, if
<symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol>
are enabled, by echo'ing a new config string to
<constant>/sys/module/&lt;driver&gt;/parameter/&lt;option&gt;</constant>.
The driver can be unconfigured by passing an empty string. You cannot
change the configuration while the debugger is attached. Make sure
to detach the debugger with the <constant>detach</constant> command
prior to trying to unconfigure a kgdb I/O driver.
</para>
<sect1 id="ConnectingGDB">
<title>Connecting with gdb to a serial port</title>
<orderedlist>
<listitem><para>Configure kgdboc</para>
<para>Boot kernel with arguments:
<itemizedlist>
<listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem>
</itemizedlist></para>
<para>OR</para>
<para>Configure kgdboc after the kernel booted:
<itemizedlist>
<listitem><para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
</itemizedlist></para>
</listitem>
<listitem>
<para>Stop kernel execution (break into the debugger)</para>
<para>In order to connect to gdb via kgdboc, the kernel must
first be stopped. There are several ways to stop the kernel which
include using kgdbwait as a boot argument, via a sysrq-g, or running
the kernel until it takes an exception where it waits for the
debugger to attach.
<itemizedlist>
<listitem><para>When logged in as root or with a super user session you can run:</para>
<para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
<listitem><para>Example using minicom 2.2</para>
<para>Press: <constant>Control-a</constant></para>
<para>Press: <constant>f</constant></para>
<para>Press: <constant>g</constant></para>
</listitem>
<listitem><para>When you have telneted to a terminal server that supports sending a remote break</para>
<para>Press: <constant>Control-]</constant></para>
<para>Type in:<constant>send break</constant></para>
<para>Press: <constant>Enter</constant></para>
<para>Press: <constant>g</constant></para>
</listitem>
</itemizedlist>
</para>
</listitem>
<listitem>
<para>Connect from from gdb</para>
<para>
If you are using kgdboc, you need to have used kgdbwait as a boot
argument, issued a sysrq-g, or the system you are going to debug
has already taken an exception and is waiting for the debugger to
attach before you can connect gdb.
</para>
<para>
If you are not using different kgdb I/O driver other than kgdboc,
you should be able to connect and the target will automatically
respond.
</para>
<para>
Example (using a serial port):
Example (using a directly connected port):
</para>
<programlisting>
% gdb ./vmlinux
@ -266,7 +499,7 @@
(gdb) target remote /dev/ttyS0
</programlisting>
<para>
Example (kgdb to a terminal server on tcp port 2012):
Example (kgdb to a terminal server on TCP port 2012):
</para>
<programlisting>
% gdb ./vmlinux
@ -283,6 +516,83 @@
communications. You do this prior to issuing the <constant>target
remote</constant> command by typing in: <constant>set debug remote 1</constant>
</para>
</listitem>
</orderedlist>
<para>Remember if you continue in gdb, and need to "break in" again,
you need to issue an other sysrq-g. It is easy to create a simple
entry point by putting a breakpoint at <constant>sys_sync</constant>
and then you can run "sync" from a shell or script to break into the
debugger.</para>
</sect1>
</chapter>
<chapter id="switchKdbKgdb">
<title>kgdb and kdb interoperability</title>
<para>It is possible to transition between kdb and kgdb dynamically.
The debug core will remember which you used the last time and
automatically start in the same mode.</para>
<sect1>
<title>Switching between kdb and kgdb</title>
<sect2>
<title>Switching from kgdb to kdb</title>
<para>
There are two ways to switch from kgdb to kdb: you can use gdb to
issue a maintenance packet, or you can blindly type the command $3#33.
Whenever kernel debugger stops in kgdb mode it will print the
message <constant>KGDB or $3#33 for KDB</constant>. It is important
to note that you have to type the sequence correctly in one pass.
You cannot type a backspace or delete because kgdb will interpret
that as part of the debug stream.
<orderedlist>
<listitem><para>Change from kgdb to kdb by blindly typing:</para>
<para><constant>$3#33</constant></para></listitem>
<listitem><para>Change from kgdb to kdb with gdb</para>
<para><constant>maintenance packet 3</constant></para>
<para>NOTE: Now you must kill gdb. Typically you press control-z and
issue the command: kill -9 %</para></listitem>
</orderedlist>
</para>
</sect2>
<sect2>
<title>Change from kdb to kgdb</title>
<para>There are two ways you can change from kdb to kgdb. You can
manually enter kgdb mode by issuing the kgdb command from the kdb
shell prompt, or you can connect gdb while the kdb shell prompt is
active. The kdb shell looks for the typical first commands that gdb
would issue with the gdb remote protocol and if it sees one of those
commands it automatically changes into kgdb mode.</para>
<orderedlist>
<listitem><para>From kdb issue the command:</para>
<para><constant>kgdb</constant></para>
<para>Now disconnect your terminal program and connect gdb in its place</para></listitem>
<listitem><para>At the kdb prompt, disconnect the terminal program and connect gdb in its place.</para></listitem>
</orderedlist>
</sect2>
</sect1>
<sect1>
<title>Running kdb commands from gdb</title>
<para>It is possible to run a limited set of kdb commands from gdb,
using the gdb monitor command. You don't want to execute any of the
run control or breakpoint operations, because it can disrupt the
state of the kernel debugger. You should be using gdb for
breakpoints and run control operations if you have gdb connected.
The more useful commands to run are things like lsmod, dmesg, ps or
possibly some of the memory information commands. To see all the kdb
commands you can run <constant>monitor help</constant>.</para>
<para>Example:
<informalexample><programlisting>
(gdb) monitor ps
1 idle process (state I) and
27 sleeping system daemon (state M) processes suppressed,
use 'ps A' to see all.
Task Addr Pid Parent [*] cpu State Thread Command
0xc78291d0 1 0 0 0 S 0xc7829404 init
0xc7954150 942 1 0 0 S 0xc7954384 dropbear
0xc78789c0 944 1 0 0 S 0xc7878bf4 sh
(gdb)
</programlisting></informalexample>
</para>
</sect1>
</chapter>
<chapter id="KGDBTestSuite">
<title>kgdb Test Suite</title>
@ -309,34 +619,36 @@
</para>
</chapter>
<chapter id="CommonBackEndReq">
<title>KGDB Internals</title>
<title>Kernel Debugger Internals</title>
<sect1 id="kgdbArchitecture">
<title>Architecture Specifics</title>
<para>
Kgdb is organized into three basic components:
The kernel debugger is organized into a number of components:
<orderedlist>
<listitem><para>kgdb core</para>
<listitem><para>The debug core</para>
<para>
The kgdb core is found in kernel/kgdb.c. It contains:
The debug core is found in kernel/debugger/debug_core.c. It contains:
<itemizedlist>
<listitem><para>All the logic to implement the gdb serial protocol</para></listitem>
<listitem><para>A generic OS exception handler which includes sync'ing the processors into a stopped state on an multi cpu system.</para></listitem>
<listitem><para>A generic OS exception handler which includes
sync'ing the processors into a stopped state on an multi-CPU
system.</para></listitem>
<listitem><para>The API to talk to the kgdb I/O drivers</para></listitem>
<listitem><para>The API to make calls to the arch specific kgdb implementation</para></listitem>
<listitem><para>The API to make calls to the arch-specific kgdb implementation</para></listitem>
<listitem><para>The logic to perform safe memory reads and writes to memory while using the debugger</para></listitem>
<listitem><para>A full implementation for software breakpoints unless overridden by the arch</para></listitem>
<listitem><para>The API to invoke either the kdb or kgdb frontend to the debug core.</para></listitem>
</itemizedlist>
</para>
</listitem>
<listitem><para>kgdb arch specific implementation</para>
<listitem><para>kgdb arch-specific implementation</para>
<para>
This implementation is generally found in arch/*/kernel/kgdb.c.
As an example, arch/x86/kernel/kgdb.c contains the specifics to
implement HW breakpoint as well as the initialization to
dynamically register and unregister for the trap handlers on
this architecture. The arch specific portion implements:
this architecture. The arch-specific portion implements:
<itemizedlist>
<listitem><para>contains an arch specific trap catcher which
<listitem><para>contains an arch-specific trap catcher which
invokes kgdb_handle_exception() to start kgdb about doing its
work</para></listitem>
<listitem><para>translation to and from gdb specific packet format to pt_regs</para></listitem>
@ -347,11 +659,35 @@
</itemizedlist>
</para>
</listitem>
<listitem><para>gdbstub frontend (aka kgdb)</para>
<para>The gdbstub is located in kernel/debug/gdbstub.c. It contains:</para>
<itemizedlist>
<listitem><para>All the logic to implement the gdb serial protocol</para></listitem>
</itemizedlist>
</listitem>
<listitem><para>kdb frontend</para>
<para>The kdb debugger shell is broken down into a number of
components. The kdb core is located in kernel/debug/kdb. There
are a number of helper functions in some of the other kernel
components to make it possible for kdb to examine and report
information about the kernel without taking locks that could
cause a kernel deadlock. The kdb core contains implements the following functionality.</para>
<itemizedlist>
<listitem><para>A simple shell</para></listitem>
<listitem><para>The kdb core command set</para></listitem>
<listitem><para>A registration API to register additional kdb shell commands.</para>
<para>A good example of a self-contained kdb module is the "ftdump" command for dumping the ftrace buffer. See: kernel/trace/trace_kdb.c</para></listitem>
<listitem><para>The implementation for kdb_printf() which
emits messages directly to I/O drivers, bypassing the kernel
log.</para></listitem>
<listitem><para>SW / HW breakpoint management for the kdb shell</para></listitem>
</itemizedlist>
</listitem>
<listitem><para>kgdb I/O driver</para>
<para>
Each kgdb I/O driver has to provide an implemenation for the following:
Each kgdb I/O driver has to provide an implementation for the following:
<itemizedlist>
<listitem><para>configuration via builtin or module</para></listitem>
<listitem><para>configuration via built-in or module</para></listitem>
<listitem><para>dynamic configuration and kgdb hook registration calls</para></listitem>
<listitem><para>read and write character interface</para></listitem>
<listitem><para>A cleanup handler for unconfiguring from the kgdb core</para></listitem>
@ -416,15 +752,15 @@
underlying low level to the hardware driver having "polling hooks"
which the to which the tty driver is attached. In the initial
implementation of kgdboc it the serial_core was changed to expose a
low level uart hook for doing polled mode reading and writing of a
low level UART hook for doing polled mode reading and writing of a
single character while in an atomic context. When kgdb makes an I/O
request to the debugger, kgdboc invokes a call back in the serial
core which in turn uses the call back in the uart driver. It is
certainly possible to extend kgdboc to work with non-uart based
core which in turn uses the call back in the UART driver. It is
certainly possible to extend kgdboc to work with non-UART based
consoles in the future.
</para>
<para>
When using kgdboc with a uart, the uart driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting>
When using kgdboc with a UART, the UART driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting>
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = serial8250_get_poll_char,
.poll_put_char = serial8250_put_poll_char,
@ -434,7 +770,7 @@
<constant>#ifdef CONFIG_CONSOLE_POLL</constant>, as shown above.
Keep in mind that polling hooks have to be implemented in such a way
that they can be called from an atomic context and have to restore
the state of the uart chip on return such that the system can return
the state of the UART chip on return such that the system can return
to normal when the debugger detaches. You need to be very careful
with any kind of lock you consider, because failing here is most
going to mean pressing the reset button.
@ -453,6 +789,10 @@
<itemizedlist>
<listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem>
</itemizedlist>
In Jan 2010 this document was updated to include kdb.
<itemizedlist>
<listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem>
</itemizedlist>
</para>
</chapter>
</book>

View file

@ -81,16 +81,14 @@ void (*port_disable) (struct ata_port *);
</programlisting>
<para>
Called from ata_bus_probe() and ata_bus_reset() error paths,
as well as when unregistering from the SCSI module (rmmod, hot
unplug).
Called from ata_bus_probe() error path, as well as when
unregistering from the SCSI module (rmmod, hot unplug).
This function should do whatever needs to be done to take the
port out of use. In most cases, ata_port_disable() can be used
as this hook.
</para>
<para>
Called from ata_bus_probe() on a failed probe.
Called from ata_bus_reset() on a failed bus reset.
Called from ata_scsi_release().
</para>
@ -107,10 +105,6 @@ void (*dev_config) (struct ata_port *, struct ata_device *);
issue of SET FEATURES - XFER MODE, and prior to operation.
</para>
<para>
Called by ata_device_add() after ata_dev_identify() determines
a device is present.
</para>
<para>
This entry may be specified as NULL in ata_port_operations.
</para>
@ -154,8 +148,8 @@ unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned in
<sect2><title>Taskfile read/write</title>
<programlisting>
void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
</programlisting>
<para>
@ -164,36 +158,35 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
hardware registers / DMA buffers, to obtain the current set of
taskfile register values.
Most drivers for taskfile-based hardware (PIO or MMIO) use
ata_tf_load() and ata_tf_read() for these hooks.
ata_sff_tf_load() and ata_sff_tf_read() for these hooks.
</para>
</sect2>
<sect2><title>PIO data read/write</title>
<programlisting>
void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
</programlisting>
<para>
All bmdma-style drivers must implement this hook. This is the low-level
operation that actually copies the data bytes during a PIO data
transfer.
Typically the driver
will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or
ata_mmio_data_xfer().
Typically the driver will choose one of ata_sff_data_xfer_noirq(),
ata_sff_data_xfer(), or ata_sff_data_xfer32().
</para>
</sect2>
<sect2><title>ATA command execute</title>
<programlisting>
void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
</programlisting>
<para>
causes an ATA command, previously loaded with
->tf_load(), to be initiated in hardware.
Most drivers for taskfile-based hardware use ata_exec_command()
Most drivers for taskfile-based hardware use ata_sff_exec_command()
for this hook.
</para>
@ -218,8 +211,8 @@ command.
<sect2><title>Read specific ATA shadow registers</title>
<programlisting>
u8 (*check_status)(struct ata_port *ap);
u8 (*check_altstatus)(struct ata_port *ap);
u8 (*sff_check_status)(struct ata_port *ap);
u8 (*sff_check_altstatus)(struct ata_port *ap);
</programlisting>
<para>
@ -227,20 +220,26 @@ u8 (*check_altstatus)(struct ata_port *ap);
hardware. On some hardware, reading the Status register has
the side effect of clearing the interrupt condition.
Most drivers for taskfile-based hardware use
ata_check_status() for this hook.
ata_sff_check_status() for this hook.
</para>
</sect2>
<sect2><title>Write specific ATA shadow register</title>
<programlisting>
void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);
</programlisting>
<para>
Note that because this is called from ata_device_add(), at
least a dummy function that clears device interrupts must be
provided for all drivers, even if the controller doesn't
actually have a taskfile status register.
Write the device control ATA shadow register to the hardware.
Most drivers don't need to define this.
</para>
</sect2>
<sect2><title>Select ATA device on bus</title>
<programlisting>
void (*dev_select)(struct ata_port *ap, unsigned int device);
void (*sff_dev_select)(struct ata_port *ap, unsigned int device);
</programlisting>
<para>
@ -251,9 +250,7 @@ void (*dev_select)(struct ata_port *ap, unsigned int device);
</para>
<para>
Most drivers for taskfile-based hardware use
ata_std_dev_select() for this hook. Controllers which do not
support second drives on a port (such as SATA contollers) will
use ata_noop_dev_select().
ata_sff_dev_select() for this hook.
</para>
</sect2>
@ -441,13 +438,13 @@ void (*irq_clear) (struct ata_port *);
to struct ata_host_set.
</para>
<para>
Most legacy IDE drivers use ata_interrupt() for the
Most legacy IDE drivers use ata_sff_interrupt() for the
irq_handler hook, which scans all ports in the host_set,
determines which queued command was active (if any), and calls
ata_host_intr(ap,qc).
ata_sff_host_intr(ap,qc).
</para>
<para>
Most legacy IDE drivers use ata_bmdma_irq_clear() for the
Most legacy IDE drivers use ata_sff_irq_clear() for the
irq_clear() hook, which simply clears the interrupt and error
flags in the DMA status register.
</para>
@ -490,16 +487,12 @@ void (*host_stop) (struct ata_host_set *host_set);
allocates space for a legacy IDE PRD table and returns.
</para>
<para>
->port_stop() is called after ->host_stop(). It's sole function
->port_stop() is called after ->host_stop(). Its sole function
is to release DMA/memory resources, now that they are no longer
actively being used. Many drivers also free driver-private
data from port at this time.
</para>
<para>
Many drivers use ata_port_stop() as this hook, which frees the
PRD table.
</para>
<para>
->host_stop() is called after all ->port_stop() calls
have completed. The hook must finalize hardware shutdown, release DMA
and other resources, etc.

View file

@ -17,6 +17,7 @@
<!ENTITY VIDIOC-DBG-G-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_G_REGISTER</constant></link>">
<!ENTITY VIDIOC-DBG-S-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_S_REGISTER</constant></link>">
<!ENTITY VIDIOC-DQBUF "<link linkend='vidioc-qbuf'><constant>VIDIOC_DQBUF</constant></link>">
<!ENTITY VIDIOC-DQEVENT "<link linkend='vidioc-dqevent'><constant>VIDIOC_DQEVENT</constant></link>">
<!ENTITY VIDIOC-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_ENCODER_CMD</constant></link>">
<!ENTITY VIDIOC-ENUMAUDIO "<link linkend='vidioc-enumaudio'><constant>VIDIOC_ENUMAUDIO</constant></link>">
<!ENTITY VIDIOC-ENUMAUDOUT "<link linkend='vidioc-enumaudioout'><constant>VIDIOC_ENUMAUDOUT</constant></link>">
@ -60,6 +61,7 @@
<!ENTITY VIDIOC-REQBUFS "<link linkend='vidioc-reqbufs'><constant>VIDIOC_REQBUFS</constant></link>">
<!ENTITY VIDIOC-STREAMOFF "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMOFF</constant></link>">
<!ENTITY VIDIOC-STREAMON "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMON</constant></link>">
<!ENTITY VIDIOC-SUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_SUBSCRIBE_EVENT</constant></link>">
<!ENTITY VIDIOC-S-AUDIO "<link linkend='vidioc-g-audio'><constant>VIDIOC_S_AUDIO</constant></link>">
<!ENTITY VIDIOC-S-AUDOUT "<link linkend='vidioc-g-audioout'><constant>VIDIOC_S_AUDOUT</constant></link>">
<!ENTITY VIDIOC-S-CROP "<link linkend='vidioc-g-crop'><constant>VIDIOC_S_CROP</constant></link>">
@ -83,6 +85,7 @@
<!ENTITY VIDIOC-TRY-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_TRY_ENCODER_CMD</constant></link>">
<!ENTITY VIDIOC-TRY-EXT-CTRLS "<link linkend='vidioc-g-ext-ctrls'><constant>VIDIOC_TRY_EXT_CTRLS</constant></link>">
<!ENTITY VIDIOC-TRY-FMT "<link linkend='vidioc-g-fmt'><constant>VIDIOC_TRY_FMT</constant></link>">
<!ENTITY VIDIOC-UNSUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_UNSUBSCRIBE_EVENT</constant></link>">
<!-- Types -->
<!ENTITY v4l2-std-id "<link linkend='v4l2-std-id'>v4l2_std_id</link>">
@ -141,6 +144,9 @@
<!ENTITY v4l2-enc-idx "struct&nbsp;<link linkend='v4l2-enc-idx'>v4l2_enc_idx</link>">
<!ENTITY v4l2-enc-idx-entry "struct&nbsp;<link linkend='v4l2-enc-idx-entry'>v4l2_enc_idx_entry</link>">
<!ENTITY v4l2-encoder-cmd "struct&nbsp;<link linkend='v4l2-encoder-cmd'>v4l2_encoder_cmd</link>">
<!ENTITY v4l2-event "struct&nbsp;<link linkend='v4l2-event'>v4l2_event</link>">
<!ENTITY v4l2-event-subscription "struct&nbsp;<link linkend='v4l2-event-subscription'>v4l2_event_subscription</link>">
<!ENTITY v4l2-event-vsync "struct&nbsp;<link linkend='v4l2-event-vsync'>v4l2_event_vsync</link>">
<!ENTITY v4l2-ext-control "struct&nbsp;<link linkend='v4l2-ext-control'>v4l2_ext_control</link>">
<!ENTITY v4l2-ext-controls "struct&nbsp;<link linkend='v4l2-ext-controls'>v4l2_ext_controls</link>">
<!ENTITY v4l2-fmtdesc "struct&nbsp;<link linkend='v4l2-fmtdesc'>v4l2_fmtdesc</link>">
@ -200,6 +206,7 @@
<!ENTITY sub-controls SYSTEM "v4l/controls.xml">
<!ENTITY sub-dev-capture SYSTEM "v4l/dev-capture.xml">
<!ENTITY sub-dev-codec SYSTEM "v4l/dev-codec.xml">
<!ENTITY sub-dev-event SYSTEM "v4l/dev-event.xml">
<!ENTITY sub-dev-effect SYSTEM "v4l/dev-effect.xml">
<!ENTITY sub-dev-osd SYSTEM "v4l/dev-osd.xml">
<!ENTITY sub-dev-output SYSTEM "v4l/dev-output.xml">
@ -211,6 +218,7 @@
<!ENTITY sub-dev-teletext SYSTEM "v4l/dev-teletext.xml">
<!ENTITY sub-driver SYSTEM "v4l/driver.xml">
<!ENTITY sub-libv4l SYSTEM "v4l/libv4l.xml">
<!ENTITY sub-lirc_device_interface SYSTEM "v4l/lirc_device_interface.xml">
<!ENTITY sub-remote_controllers SYSTEM "v4l/remote_controllers.xml">
<!ENTITY sub-fdl-appendix SYSTEM "v4l/fdl-appendix.xml">
<!ENTITY sub-close SYSTEM "v4l/func-close.xml">
@ -292,6 +300,8 @@
<!ENTITY sub-v4l2grab-c SYSTEM "v4l/v4l2grab.c.xml">
<!ENTITY sub-videodev2-h SYSTEM "v4l/videodev2.h.xml">
<!ENTITY sub-v4l2 SYSTEM "v4l/v4l2.xml">
<!ENTITY sub-dqevent SYSTEM "v4l/vidioc-dqevent.xml">
<!ENTITY sub-subscribe-event SYSTEM "v4l/vidioc-subscribe-event.xml">
<!ENTITY sub-intro SYSTEM "dvb/intro.xml">
<!ENTITY sub-frontend SYSTEM "dvb/frontend.xml">
<!ENTITY sub-dvbproperty SYSTEM "dvb/dvbproperty.xml">
@ -381,3 +391,5 @@
<!ENTITY reqbufs SYSTEM "v4l/vidioc-reqbufs.xml">
<!ENTITY s-hw-freq-seek SYSTEM "v4l/vidioc-s-hw-freq-seek.xml">
<!ENTITY streamon SYSTEM "v4l/vidioc-streamon.xml">
<!ENTITY dqevent SYSTEM "v4l/vidioc-dqevent.xml">
<!ENTITY subscribe_event SYSTEM "v4l/vidioc-subscribe-event.xml">

View file

@ -28,7 +28,7 @@
<title>LINUX MEDIA INFRASTRUCTURE API</title>
<copyright>
<year>2009</year>
<year>2009-2010</year>
<holder>LinuxTV Developers</holder>
</copyright>
@ -61,7 +61,7 @@ Foundation. A copy of the license is included in the chapter entitled
in fact it covers several different video standards including
DVB-T, DVB-S, DVB-C and ATSC. The API is currently being updated
to documment support also for DVB-S2, ISDB-T and ISDB-S.</para>
<para>The third part covers other API's used by all media infrastructure devices</para>
<para>The third part covers Remote Controller API</para>
<para>For additional information and for the latest development code,
see: <ulink url="http://linuxtv.org">http://linuxtv.org</ulink>.</para>
<para>For discussing improvements, reporting troubles, sending new drivers, etc, please mail to: <ulink url="http://vger.kernel.org/vger-lists.html#linux-media">Linux Media Mailing List (LMML).</ulink>.</para>
@ -86,7 +86,7 @@ Foundation. A copy of the license is included in the chapter entitled
</author>
</authorgroup>
<copyright>
<year>2009</year>
<year>2009-2010</year>
<holder>Mauro Carvalho Chehab</holder>
</copyright>
@ -101,7 +101,7 @@ Foundation. A copy of the license is included in the chapter entitled
</revhistory>
</partinfo>
<title>Other API's used by media infrastructure drivers</title>
<title>Remote Controller API</title>
<chapter id="remote_controllers">
&sub-remote_controllers;
</chapter>

View file

@ -269,7 +269,7 @@ static void board_hwcontrol(struct mtd_info *mtd, int cmd)
information about the device.
</para>
<programlisting>
int __init board_init (void)
static int __init board_init (void)
{
struct nand_chip *this;
int err = 0;

View file

@ -393,7 +393,7 @@
</para>
<para>
For documentation see
<ulink url='http://www.torque.net/sg/sdebug26.html'>http://www.torque.net/sg/sdebug26.html</ulink>
<ulink url='http://sg.danny.cz/sg/sdebug26.html'>http://sg.danny.cz/sg/sdebug26.html</ulink>
</para>
<!-- !Edrivers/scsi/scsi_debug.c -->
</sect2>

View file

@ -19,13 +19,17 @@
</authorgroup>
<copyright>
<year>2008</year>
<year>2008-2010</year>
<holder>Paul Mundt</holder>
</copyright>
<copyright>
<year>2008</year>
<year>2008-2010</year>
<holder>Renesas Technology Corp.</holder>
</copyright>
<copyright>
<year>2010</year>
<holder>Renesas Electronics Corp.</holder>
</copyright>
<legalnotice>
<para>
@ -77,7 +81,7 @@
</chapter>
<chapter id="clk">
<title>Clock Framework Extensions</title>
!Iarch/sh/include/asm/clock.h
!Iinclude/linux/sh_clk.h
</chapter>
<chapter id="mach">
<title>Machine Specific Interfaces</title>

View file

@ -16,6 +16,15 @@
</address>
</affiliation>
</author>
<author>
<firstname>William</firstname>
<surname>Cohen</surname>
<affiliation>
<address>
<email>wcohen@redhat.com</email>
</address>
</affiliation>
</author>
</authorgroup>
<legalnotice>
@ -91,4 +100,8 @@
!Iinclude/trace/events/signal.h
</chapter>
<chapter id="block">
<title>Block IO</title>
!Iinclude/trace/events/block.h
</chapter>
</book>

View file

@ -1091,8 +1091,9 @@ signed 64-bit integer. Output devices should not send a buffer out
until the time in the timestamp field has arrived. I would like to
follow SGI's lead, and adopt a multimedia timestamping system like
their UST (Unadjusted System Time). See
http://reality.sgi.com/cpirazzi_engr/lg/time/intro.html. [This link is
no longer valid.] UST uses timestamps that are 64-bit signed integers
http://web.archive.org/web/*/http://reality.sgi.com
/cpirazzi_engr/lg/time/intro.html.
UST uses timestamps that are 64-bit signed integers
(not struct timeval's) and given in nanosecond units. The UST clock
starts at zero when the system is booted and runs continuously and
uniformly. It takes a little over 292 years for UST to overflow. There
@ -2332,15 +2333,26 @@ more information.</para>
</listitem>
</orderedlist>
</section>
</section>
<section>
<title>V4L2 in Linux 2.6.34</title>
<orderedlist>
<listitem>
<para>Added
<constant>V4L2_CID_IRIS_ABSOLUTE</constant> and
<constant>V4L2_CID_IRIS_RELATIVE</constant> controls to the
<link linkend="camera-controls">Camera controls class</link>.
</para>
</listitem>
</orderedlist>
</section>
<section id="other">
<title>Relation of V4L2 to other Linux multimedia APIs</title>
<section id="other">
<title>Relation of V4L2 to other Linux multimedia APIs</title>
<section id="xvideo">
<title>X Video Extension</title>
<section id="xvideo">
<title>X Video Extension</title>
<para>The X Video Extension (abbreviated XVideo or just Xv) is
<para>The X Video Extension (abbreviated XVideo or just Xv) is
an extension of the X Window system, implemented for example by the
XFree86 project. Its scope is similar to V4L2, an API to video capture
and output devices for X clients. Xv allows applications to display
@ -2351,7 +2363,7 @@ capture or output still images in XPixmaps<footnote>
extension available across many operating systems and
architectures.</para>
<para>Because the driver is embedded into the X server Xv has a
<para>Because the driver is embedded into the X server Xv has a
number of advantages over the V4L2 <link linkend="overlay">video
overlay interface</link>. The driver can easily determine the overlay
target, &ie; visible graphics memory or off-screen buffers for a
@ -2360,16 +2372,16 @@ overlay, scaling or color-keying, or the clipping functions of the
video capture hardware, always in sync with drawing operations or
windows moving or changing their stacking order.</para>
<para>To combine the advantages of Xv and V4L a special Xv
<para>To combine the advantages of Xv and V4L a special Xv
driver exists in XFree86 and XOrg, just programming any overlay capable
Video4Linux device it finds. To enable it
<filename>/etc/X11/XF86Config</filename> must contain these lines:</para>
<para><screen>
<para><screen>
Section "Module"
Load "v4l"
EndSection</screen></para>
<para>As of XFree86 4.2 this driver still supports only V4L
<para>As of XFree86 4.2 this driver still supports only V4L
ioctls, however it should work just fine with all V4L2 devices through
the V4L2 backward-compatibility layer. Since V4L2 permits multiple
opens it is possible (if supported by the V4L2 driver) to capture
@ -2377,83 +2389,84 @@ video while an X client requested video overlay. Restrictions of
simultaneous capturing and overlay are discussed in <xref
linkend="overlay" /> apply.</para>
<para>Only marginally related to V4L2, XFree86 extended Xv to
<para>Only marginally related to V4L2, XFree86 extended Xv to
support hardware YUV to RGB conversion and scaling for faster video
playback, and added an interface to MPEG-2 decoding hardware. This API
is useful to display images captured with V4L2 devices.</para>
</section>
</section>
<section>
<title>Digital Video</title>
<section>
<title>Digital Video</title>
<para>V4L2 does not support digital terrestrial, cable or
<para>V4L2 does not support digital terrestrial, cable or
satellite broadcast. A separate project aiming at digital receivers
exists. You can find its homepage at <ulink
url="http://linuxtv.org">http://linuxtv.org</ulink>. The Linux DVB API
has no connection to the V4L2 API except that drivers for hybrid
hardware may support both.</para>
</section>
<section>
<title>Audio Interfaces</title>
<para>[to do - OSS/ALSA]</para>
</section>
</section>
<section>
<title>Audio Interfaces</title>
<section id="experimental">
<title>Experimental API Elements</title>
<para>[to do - OSS/ALSA]</para>
</section>
</section>
<section id="experimental">
<title>Experimental API Elements</title>
<para>The following V4L2 API elements are currently experimental
<para>The following V4L2 API elements are currently experimental
and may change in the future.</para>
<itemizedlist>
<listitem>
<para>Video Output Overlay (OSD) Interface, <xref
<itemizedlist>
<listitem>
<para>Video Output Overlay (OSD) Interface, <xref
linkend="osd" />.</para>
</listitem>
</listitem>
<listitem>
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
&v4l2-buf-type;, <xref linkend="v4l2-buf-type" />.</para>
</listitem>
<listitem>
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
</listitem>
<listitem>
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
&VIDIOC-QUERYCAP; ioctl, <xref linkend="device-capabilities" />.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENUM-FRAMESIZES; and
</listitem>
<listitem>
<para>&VIDIOC-ENUM-FRAMESIZES; and
&VIDIOC-ENUM-FRAMEINTERVALS; ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
</listitem>
<listitem>
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
</listitem>
</itemizedlist>
</section>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
</listitem>
</itemizedlist>
</section>
<section id="obsolete">
<title>Obsolete API Elements</title>
<section id="obsolete">
<title>Obsolete API Elements</title>
<para>The following V4L2 API elements were superseded by new
<para>The following V4L2 API elements were superseded by new
interfaces and should not be implemented in new drivers.</para>
<itemizedlist>
<listitem>
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
<itemizedlist>
<listitem>
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
<constant>VIDIOC_S_MPEGCOMP</constant> ioctls. Use Extended Controls,
<xref linkend="extended-controls" />.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
</section>
</section>
<!--

View file

@ -266,6 +266,12 @@ minimum value disables backlight compensation.</entry>
<entry>boolean</entry>
<entry>Chroma automatic gain control.</entry>
</row>
<row>
<entry><constant>V4L2_CID_CHROMA_GAIN</constant></entry>
<entry>integer</entry>
<entry>Adjusts the Chroma gain control (for use when chroma AGC
is disabled).</entry>
</row>
<row>
<entry><constant>V4L2_CID_COLOR_KILLER</constant></entry>
<entry>boolean</entry>
@ -277,8 +283,15 @@ minimum value disables backlight compensation.</entry>
<entry>Selects a color effect. Possible values for
<constant>enum v4l2_colorfx</constant> are:
<constant>V4L2_COLORFX_NONE</constant> (0),
<constant>V4L2_COLORFX_BW</constant> (1) and
<constant>V4L2_COLORFX_SEPIA</constant> (2).</entry>
<constant>V4L2_COLORFX_BW</constant> (1),
<constant>V4L2_COLORFX_SEPIA</constant> (2),
<constant>V4L2_COLORFX_NEGATIVE</constant> (3),
<constant>V4L2_COLORFX_EMBOSS</constant> (4),
<constant>V4L2_COLORFX_SKETCH</constant> (5),
<constant>V4L2_COLORFX_SKY_BLUE</constant> (6),
<constant>V4L2_COLORFX_GRASS_GREEN</constant> (7),
<constant>V4L2_COLORFX_SKIN_WHITEN</constant> (8) and
<constant>V4L2_COLORFX_VIVID</constant> (9).</entry>
</row>
<row>
<entry><constant>V4L2_CID_ROTATE</constant></entry>
@ -1824,6 +1837,25 @@ wide-angle direction. The zoom speed unit is driver-specific.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_IRIS_ABSOLUTE</constant>&nbsp;</entry>
<entry>integer</entry>
</row><row><entry spanname="descr">This control sets the
camera's aperture to the specified value. The unit is undefined.
Larger values open the iris wider, smaller values close it.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_IRIS_RELATIVE</constant>&nbsp;</entry>
<entry>integer</entry>
</row><row><entry spanname="descr">This control modifies the
camera's aperture by the specified amount. The unit is undefined.
Positive values open the iris one step further, negative values close
it one step further. This is a write-only control.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_PRIVACY</constant>&nbsp;</entry>
<entry>boolean</entry>

View file

@ -0,0 +1,31 @@
<title>Event Interface</title>
<para>The V4L2 event interface provides means for user to get
immediately notified on certain conditions taking place on a device.
This might include start of frame or loss of signal events, for
example.
</para>
<para>To receive events, the events the user is interested in first must
be subscribed using the &VIDIOC-SUBSCRIBE-EVENT; ioctl. Once an event is
subscribed, the events of subscribed types are dequeueable using the
&VIDIOC-DQEVENT; ioctl. Events may be unsubscribed using
VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may
be used to unsubscribe all the events the driver supports.</para>
<para>The event subscriptions and event queues are specific to file
handles. Subscribing an event on one file handle does not affect
other file handles.
</para>
<para>The information on dequeueable events is obtained by using select or
poll system calls on video devices. The V4L2 events use POLLPRI events on
poll system call and exceptions on select system call. </para>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->

View file

@ -2,7 +2,7 @@
The GNU Free Documentation License 1.1 in DocBook
Markup by Eric Baudais <baudais@okstate.edu>
Maintained by the GNOME Documentation Project
http://developer.gnome.org/projects/gdp
http://live.gnome.org/DocumentationProject
Version: 1.0.1
Last Modified: Nov 16, 2000
-->

View file

@ -701,6 +701,16 @@ buffer cannot be on both queues at the same time, the
They can be both cleared however, then the buffer is in "dequeued"
state, in the application domain to say so.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
<entry>0x0040</entry>
<entry>When this flag is set, the buffer has been dequeued
successfully, although the data might have been corrupted.
This is recoverable, streaming may continue as normal and
the buffer may be reused normally.
Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
ioctl is called.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
<entry>0x0008</entry>
@ -918,8 +928,8 @@ order</emphasis>.</para>
<para>When the driver provides or accepts images field by field
rather than interleaved, it is also important applications understand
how the fields combine to frames. We distinguish between top and
bottom fields, the <emphasis>spatial order</emphasis>: The first line
how the fields combine to frames. We distinguish between top (aka odd) and
bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
of the top field is the first line of an interlaced frame, the first
line of the bottom field is the second line of that frame.</para>
@ -972,12 +982,12 @@ between <constant>V4L2_FIELD_TOP</constant> and
<row>
<entry><constant>V4L2_FIELD_TOP</constant></entry>
<entry>2</entry>
<entry>Images consist of the top field only.</entry>
<entry>Images consist of the top (aka odd) field only.</entry>
</row>
<row>
<entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
<entry>3</entry>
<entry>Images consist of the bottom field only.
<entry>Images consist of the bottom (aka even) field only.
Applications may wish to prevent a device from capturing interlaced
images because they will have "comb" or "feathering" artefacts around
moving objects.</entry>

View file

@ -0,0 +1,235 @@
<section id="lirc_dev">
<title>LIRC Device Interface</title>
<section id="lirc_dev_intro">
<title>Introduction</title>
<para>The LIRC device interface is a bi-directional interface for
transporting raw IR data between userspace and kernelspace. Fundamentally,
it is just a chardev (/dev/lircX, for X = 0, 1, 2, ...), with a number
of standard struct file_operations defined on it. With respect to
transporting raw IR data to and fro, the essential fops are read, write
and ioctl.</para>
<para>Example dmesg output upon a driver registering w/LIRC:</para>
<blockquote>
<para>$ dmesg |grep lirc_dev</para>
<para>lirc_dev: IR Remote Control driver registered, major 248</para>
<para>rc rc0: lirc_dev: driver ir-lirc-codec (mceusb) registered at minor = 0</para>
</blockquote>
<para>What you should see for a chardev:</para>
<blockquote>
<para>$ ls -l /dev/lirc*</para>
<para>crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0</para>
</blockquote>
</section>
<section id="lirc_read">
<title>LIRC read fop</title>
<para>The lircd userspace daemon reads raw IR data from the LIRC chardev. The
exact format of the data depends on what modes a driver supports, and what
mode has been selected. lircd obtains supported modes and sets the active mode
via the ioctl interface, detailed at <xref linkend="lirc_ioctl"/>. The generally
preferred mode is LIRC_MODE_MODE2, in which packets containing an int value
describing an IR signal are read from the chardev.</para>
<para>See also <ulink url="http://www.lirc.org/html/technical.html">http://www.lirc.org/html/technical.html</ulink> for more info.</para>
</section>
<section id="lirc_write">
<title>LIRC write fop</title>
<para>The data written to the chardev is a pulse/space sequence of integer
values. Pulses and spaces are only marked implicitly by their position. The
data must start and end with a pulse, therefore, the data must always include
an unevent number of samples. The write function must block until the data has
been transmitted by the hardware.</para>
</section>
<section id="lirc_ioctl">
<title>LIRC ioctl fop</title>
<para>The LIRC device's ioctl definition is bound by the ioctl function
definition of struct file_operations, leaving us with an unsigned int
for the ioctl command and an unsigned long for the arg. For the purposes
of ioctl portability across 32-bit and 64-bit, these values are capped
to their 32-bit sizes.</para>
<para>The following ioctls can be used to change specific hardware settings.
In general each driver should have a default set of settings. The driver
implementation is expected to re-apply the default settings when the device
is closed by user-space, so that every application opening the device can rely
on working with the default settings initially.</para>
<variablelist>
<varlistentry>
<term>LIRC_GET_FEATURES</term>
<listitem>
<para>Obviously, get the underlying hardware device's features. If a driver
does not announce support of certain features, calling of the corresponding
ioctls is undefined.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_SEND_MODE</term>
<listitem>
<para>Get supported transmit mode. Only LIRC_MODE_PULSE is supported by lircd.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_REC_MODE</term>
<listitem>
<para>Get supported receive modes. Only LIRC_MODE_MODE2 and LIRC_MODE_LIRCCODE
are supported by lircd.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_SEND_CARRIER</term>
<listitem>
<para>Get carrier frequency (in Hz) currently used for transmit.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_REC_CARRIER</term>
<listitem>
<para>Get carrier frequency (in Hz) currently used for IR reception.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_{G,S}ET_{SEND,REC}_DUTY_CYCLE</term>
<listitem>
<para>Get/set the duty cycle (from 0 to 100) of the carrier signal. Currently,
no special meaning is defined for 0 or 100, but this could be used to switch
off carrier generation in the future, so these values should be reserved.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_REC_RESOLUTION</term>
<listitem>
<para>Some receiver have maximum resolution which is defined by internal
sample rate or data format limitations. E.g. it's common that signals can
only be reported in 50 microsecond steps. This integer value is used by
lircd to automatically adjust the aeps tolerance value in the lircd
config file.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_M{IN,AX}_TIMEOUT</term>
<listitem>
<para>Some devices have internal timers that can be used to detect when
there's no IR activity for a long time. This can help lircd in detecting
that a IR signal is finished and can speed up the decoding process.
Returns an integer value with the minimum/maximum timeout that can be
set. Some devices have a fixed timeout, in that case both ioctls will
return the same value even though the timeout cannot be changed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_M{IN,AX}_FILTER_{PULSE,SPACE}</term>
<listitem>
<para>Some devices are able to filter out spikes in the incoming signal
using given filter rules. These ioctls return the hardware capabilities
that describe the bounds of the possible filters. Filter settings depend
on the IR protocols that are expected. lircd derives the settings from
all protocols definitions found in its config file.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_GET_LENGTH</term>
<listitem>
<para>Retrieves the code length in bits (only for LIRC_MODE_LIRCCODE).
Reads on the device must be done in blocks matching the bit count.
The bit could should be rounded up so that it matches full bytes.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_{SEND,REC}_MODE</term>
<listitem>
<para>Set send/receive mode. Largely obsolete for send, as only
LIRC_MODE_PULSE is supported.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_{SEND,REC}_CARRIER</term>
<listitem>
<para>Set send/receive carrier (in Hz).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_TRANSMITTER_MASK</term>
<listitem>
<para>This enables the given set of transmitters. The first transmitter
is encoded by the least significant bit, etc. When an invalid bit mask
is given, i.e. a bit is set, even though the device does not have so many
transitters, then this ioctl returns the number of available transitters
and does nothing otherwise.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_REC_TIMEOUT</term>
<listitem>
<para>Sets the integer value for IR inactivity timeout (cf.
LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT). A value of 0 (if
supported by the hardware) disables all hardware timeouts and data should
be reported as soon as possible. If the exact value cannot be set, then
the next possible value _greater_ than the given value should be set.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_REC_TIMEOUT_REPORTS</term>
<listitem>
<para>Enable (1) or disable (0) timeout reports in LIRC_MODE_MODE2. By
default, timeout reports should be turned off.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_REC_FILTER_{,PULSE,SPACE}</term>
<listitem>
<para>Pulses/spaces shorter than this are filtered out by hardware. If
filters cannot be set independently for pulse/space, the corresponding
ioctls must return an error and LIRC_SET_REC_FILTER shall be used instead.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_MEASURE_CARRIER_MODE</term>
<listitem>
<para>Enable (1)/disable (0) measure mode. If enabled, from the next key
press on, the driver will send LIRC_MODE2_FREQUENCY packets. By default
this should be turned off.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SET_REC_{DUTY_CYCLE,CARRIER}_RANGE</term>
<listitem>
<para>To set a range use LIRC_SET_REC_DUTY_CYCLE_RANGE/LIRC_SET_REC_CARRIER_RANGE
with the lower bound first and later LIRC_SET_REC_DUTY_CYCLE/LIRC_SET_REC_CARRIER
with the upper bound.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_NOTIFY_DECODE</term>
<listitem>
<para>This ioctl is called by lircd whenever a successful decoding of an
incoming IR signal could be done. This can be used by supporting hardware
to give visual feedback to the user e.g. by flashing a LED.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LIRC_SETUP_{START,END}</term>
<listitem>
<para>Setting of several driver parameters can be optimized by encapsulating
the according ioctl calls with LIRC_SETUP_START/LIRC_SETUP_END. When a
driver receives a LIRC_SETUP_START ioctl it can choose to not commit
further setting changes to the hardware until a LIRC_SETUP_END is received.
But this is open to the driver implementation and every driver must also
handle parameter changes which are not encapsulated by LIRC_SETUP_START
and LIRC_SETUP_END. Drivers can also choose to ignore these ioctls.</para>
</listitem>
</varlistentry>
</variablelist>
</section>
</section>

View file

@ -792,6 +792,18 @@ http://www.thedirks.org/winnov/</ulink></para></entry>
<entry>'YYUV'</entry>
<entry>unknown</entry>
</row>
<row id="V4L2-PIX-FMT-Y4">
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
<entry>'Y04 '</entry>
<entry>Old 4-bit greyscale format. Only the least significant 4 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
<row id="V4L2-PIX-FMT-Y6">
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
<entry>'Y06 '</entry>
<entry>Old 6-bit greyscale format. Only the least significant 6 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
</tbody>
</tgroup>
</table>

View file

@ -173,3 +173,5 @@ keymapping.</para>
<para>This program demonstrates how to replace the keymap tables.</para>
&sub-keytable-c;
</section>
&sub-lirc_device_interface;

View file

@ -58,7 +58,7 @@ MPEG stream embedded, sliced VBI data format in this specification.
</contrib>
<affiliation>
<address>
<email>awalls@radix.net</email>
<email>awalls@md.metrocast.net</email>
</address>
</affiliation>
</author>
@ -401,6 +401,7 @@ and discussions on the V4L mailing list.</revremark>
<section id="ttx"> &sub-dev-teletext; </section>
<section id="radio"> &sub-dev-radio; </section>
<section id="rds"> &sub-dev-rds; </section>
<section id="event"> &sub-dev-event; </section>
</chapter>
<chapter id="driver">
@ -426,6 +427,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-cropcap;
&sub-dbg-g-chip-ident;
&sub-dbg-g-register;
&sub-dqevent;
&sub-encoder-cmd;
&sub-enumaudio;
&sub-enumaudioout;
@ -467,6 +469,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-reqbufs;
&sub-s-hw-freq-seek;
&sub-streamon;
&sub-subscribe-event;
<!-- End of ioctls. -->
&sub-mmap;
&sub-munmap;

View file

@ -1018,6 +1018,13 @@ enum <link linkend="v4l2-colorfx">v4l2_colorfx</link> {
V4L2_COLORFX_NONE = 0,
V4L2_COLORFX_BW = 1,
V4L2_COLORFX_SEPIA = 2,
V4L2_COLORFX_NEGATIVE = 3,
V4L2_COLORFX_EMBOSS = 4,
V4L2_COLORFX_SKETCH = 5,
V4L2_COLORFX_SKY_BLUE = 6,
V4L2_COLORFX_GRASS_GREEN = 7,
V4L2_COLORFX_SKIN_WHITEN = 8,
V4L2_COLORFX_VIVID = 9.
};
#define V4L2_CID_AUTOBRIGHTNESS (V4L2_CID_BASE+32)
#define V4L2_CID_BAND_STOP_FILTER (V4L2_CID_BASE+33)
@ -1271,6 +1278,9 @@ enum <link linkend="v4l2-exposure-auto-type">v4l2_exposure_auto_type</link> {
#define V4L2_CID_PRIVACY (V4L2_CID_CAMERA_CLASS_BASE+16)
#define V4L2_CID_IRIS_ABSOLUTE (V4L2_CID_CAMERA_CLASS_BASE+17)
#define V4L2_CID_IRIS_RELATIVE (V4L2_CID_CAMERA_CLASS_BASE+18)
/* FM Modulator class control IDs */
#define V4L2_CID_FM_TX_CLASS_BASE (V4L2_CTRL_CLASS_FM_TX | 0x900)
#define V4L2_CID_FM_TX_CLASS (V4L2_CTRL_CLASS_FM_TX | 1)

View file

@ -0,0 +1,131 @@
<refentry id="vidioc-dqevent">
<refmeta>
<refentrytitle>ioctl VIDIOC_DQEVENT</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_DQEVENT</refname>
<refpurpose>Dequeue event</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_event
*<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_DQEVENT</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>Dequeue an event from a video device. No input is required
for this ioctl. All the fields of the &v4l2-event; structure are
filled by the driver. The file handle will also receive exceptions
which the application may get by e.g. using the select system
call.</para>
<table frame="none" pgwide="1" id="v4l2-event">
<title>struct <structname>v4l2_event</structname></title>
<tgroup cols="4">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>type</structfield></entry>
<entry></entry>
<entry>Type of the event.</entry>
</row>
<row>
<entry>union</entry>
<entry><structfield>u</structfield></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>&v4l2-event-vsync;</entry>
<entry><structfield>vsync</structfield></entry>
<entry>Event data for event V4L2_EVENT_VSYNC.
</entry>
</row>
<row>
<entry></entry>
<entry>__u8</entry>
<entry><structfield>data</structfield>[64]</entry>
<entry>Event data. Defined by the event type. The union
should be used to define easily accessible type for
events.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>pending</structfield></entry>
<entry></entry>
<entry>Number of pending events excluding this one.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>sequence</structfield></entry>
<entry></entry>
<entry>Event sequence number. The sequence number is
incremented for every subscribed event that takes place.
If sequence numbers are not contiguous it means that
events have been lost.
</entry>
</row>
<row>
<entry>struct timespec</entry>
<entry><structfield>timestamp</structfield></entry>
<entry></entry>
<entry>Event timestamp.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>reserved</structfield>[9]</entry>
<entry></entry>
<entry>Reserved for future extensions. Drivers must set
the array to zero.</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
</refentry>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->

View file

@ -283,7 +283,7 @@ input/output interface to linux-media@vger.kernel.org on 19 Oct 2009.
<entry>This input supports setting DV presets by using VIDIOC_S_DV_PRESET.</entry>
</row>
<row>
<entry><constant>V4L2_OUT_CAP_CUSTOM_TIMINGS</constant></entry>
<entry><constant>V4L2_IN_CAP_CUSTOM_TIMINGS</constant></entry>
<entry>0x00000002</entry>
<entry>This input supports setting custom video timings by using VIDIOC_S_DV_TIMINGS.</entry>
</row>

View file

@ -111,7 +111,11 @@ from the driver's outgoing queue. They just set the
and <structfield>reserved</structfield>
fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant>
is called with a pointer to this structure the driver fills the
remaining fields or returns an error code.</para>
remaining fields or returns an error code. The driver may also set
<constant>V4L2_BUF_FLAG_ERROR</constant> in the <structfield>flags</structfield>
field. It indicates a non-critical (recoverable) streaming error. In such case
the application may continue as normal, but should be aware that data in the
dequeued buffer might be corrupted.</para>
<para>By default <constant>VIDIOC_DQBUF</constant> blocks when no
buffer is in the outgoing queue. When the
@ -158,7 +162,13 @@ enqueue a user pointer buffer.</para>
<para><constant>VIDIOC_DQBUF</constant> failed due to an
internal error. Can also indicate temporary problems like signal
loss. Note the driver might dequeue an (empty) buffer despite
returning an error, or even stop capturing.</para>
returning an error, or even stop capturing. Reusing such buffer may be unsafe
though and its details (e.g. <structfield>index</structfield>) may not be
returned either. It is recommended that drivers indicate recoverable errors
by setting the <constant>V4L2_BUF_FLAG_ERROR</constant> and returning 0 instead.
In that case the application should be able to safely reuse the buffer and
continue streaming.
</para>
</listitem>
</varlistentry>
</variablelist>

View file

@ -53,8 +53,10 @@ input</refpurpose>
automatically, similar to sensing the video standard. To do so, applications
call <constant> VIDIOC_QUERY_DV_PRESET</constant> with a pointer to a
&v4l2-dv-preset; type. Once the hardware detects a preset, that preset is
returned in the preset field of &v4l2-dv-preset;. When detection is not
possible or fails, the value V4L2_DV_INVALID is returned.</para>
returned in the preset field of &v4l2-dv-preset;. If the preset could not be
detected because there was no signal, or the signal was unreliable, or the
signal did not map to a supported preset, then the value V4L2_DV_INVALID is
returned.</para>
</refsect1>
<refsect1>

View file

@ -325,7 +325,7 @@ should be part of the control documentation.</entry>
<entry>n/a</entry>
<entry>This is not a control. When
<constant>VIDIOC_QUERYCTRL</constant> is called with a control ID
equal to a control class code (see <xref linkend="ctrl-class" />), the
equal to a control class code (see <xref linkend="ctrl-class" />) + 1, the
ioctl returns the name of the control class and this control type.
Older drivers which do not support this feature return an
&EINVAL;.</entry>

View file

@ -61,7 +61,7 @@ fields of the <structname>v4l2_requestbuffers</structname> structure.
They set the <structfield>type</structfield> field to the respective
stream or buffer type, the <structfield>count</structfield> field to
the desired number of buffers, <structfield>memory</structfield>
must be set to the requested I/O method and the reserved array
must be set to the requested I/O method and the <structfield>reserved</structfield> array
must be zeroed. When the ioctl
is called with a pointer to this structure the driver will attempt to allocate
the requested number of buffers and it stores the actual number

View file

@ -0,0 +1,133 @@
<refentry id="vidioc-subscribe-event">
<refmeta>
<refentrytitle>ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refname>
<refpurpose>Subscribe or unsubscribe event</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_event_subscription
*<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>Subscribe or unsubscribe V4L2 event. Subscribed events are
dequeued by using the &VIDIOC-DQEVENT; ioctl.</para>
<table frame="none" pgwide="1" id="v4l2-event-subscription">
<title>struct <structname>v4l2_event_subscription</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>type</structfield></entry>
<entry>Type of the event.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>reserved</structfield>[7]</entry>
<entry>Reserved for future extensions. Drivers and applications
must set the array to zero.</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="none" pgwide="1" id="event-type">
<title>Event Types</title>
<tgroup cols="3">
&cs-def;
<tbody valign="top">
<row>
<entry><constant>V4L2_EVENT_ALL</constant></entry>
<entry>0</entry>
<entry>All events. V4L2_EVENT_ALL is valid only for
VIDIOC_UNSUBSCRIBE_EVENT for unsubscribing all events at once.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_VSYNC</constant></entry>
<entry>1</entry>
<entry>This event is triggered on the vertical sync.
This event has &v4l2-event-vsync; associated with it.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_EOS</constant></entry>
<entry>2</entry>
<entry>This event is triggered when the end of a stream is reached.
This is typically used with MPEG decoders to report to the application
when the last of the MPEG stream has been decoded.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_PRIVATE_START</constant></entry>
<entry>0x08000000</entry>
<entry>Base event number for driver-private events.</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="none" pgwide="1" id="v4l2-event-vsync">
<title>struct <structname>v4l2_event_vsync</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u8</entry>
<entry><structfield>field</structfield></entry>
<entry>The upcoming field. See &v4l2-field;.</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
</refentry>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->

View file

@ -5518,34 +5518,41 @@ struct _snd_pcm_runtime {
]]>
</programlisting>
</informalexample>
For the raw data, <structfield>size</structfield> field must be
set properly. This specifies the maximum size of the proc file access.
</para>
<para>
The callback is much more complicated than the text-file
version. You need to use a low-level I/O functions such as
The read/write callbacks of raw mode are more direct than the text mode.
You need to use a low-level I/O functions such as
<function>copy_from/to_user()</function> to transfer the
data.
<informalexample>
<programlisting>
<![CDATA[
static long my_file_io_read(struct snd_info_entry *entry,
static ssize_t my_file_io_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char *buf,
unsigned long count,
unsigned long pos)
size_t count,
loff_t pos)
{
long size = count;
if (pos + size > local_max_size)
size = local_max_size - pos;
if (copy_to_user(buf, local_data + pos, size))
if (copy_to_user(buf, local_data + pos, count))
return -EFAULT;
return size;
return count;
}
]]>
</programlisting>
</informalexample>
If the size of the info entry has been set up properly,
<structfield>count</structfield> and <structfield>pos</structfield> are
guaranteed to fit within 0 and the given size.
You don't have to check the range in the callbacks unless any
other condition is required.
</para>
</chapter>

View file

@ -342,7 +342,7 @@ static inline void skel_delete (struct usb_skel *dev)
{
kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL)
usb_buffer_free (dev->udev, dev->bulk_out_size,
usb_free_coherent (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);
usb_free_urb (dev->write_urb);

View file

@ -187,7 +187,7 @@ apply a patch.
If you do not know where you want to start, but you want to look for
some task to start doing to join into the kernel development community,
go to the Linux Kernel Janitor's project:
http://janitor.kernelnewbies.org/
http://kernelnewbies.org/KernelJanitors
It is a great place to start. It describes a list of relatively simple
problems that need to be cleaned up and fixed within the Linux kernel
source tree. Working with the developers in charge of this project, you
@ -234,7 +234,7 @@ process is as follows:
Linus, usually the patches that have already been included in the
-next kernel for a few weeks. The preferred way to submit big changes
is using git (the kernel's source management tool, more information
can be found at http://git.or.cz/) but plain patches are also just
can be found at http://git-scm.com/) but plain patches are also just
fine.
- After two weeks a -rc1 kernel is released it is now possible to push
only patches that do not include new features that could affect the
@ -315,7 +315,7 @@ process is tracked with the tool patchwork. Patchwork offers a web
interface which shows patch postings, any comments on a patch or
revisions to it, and maintainers can mark patches as under review,
accepted, or rejected. Most of these patchwork sites are listed at
http://patchwork.kernel.org/ or http://patchwork.ozlabs.org/.
http://patchwork.kernel.org/.
2.6.x -next kernel tree for integration tests
---------------------------------------------
@ -595,7 +595,7 @@ start exactly where you are now.
----------
Thanks to Paolo Ciarrocchi who allowed the "Development Process"
(http://linux.tar.bz/articles/2.6-development_process) section
(http://lwn.net/Articles/94386/) section
to be based on text he had written, and to Randy Dunlap and Gerrit
Huizenga for some of the list of things you should and should not say.
Also thanks to Pat Mochel, Hanna Linder, Randy Dunlap, Kay Sievers,

View file

@ -216,7 +216,7 @@ The driver should return one of the following result codes:
- PCI_ERS_RESULT_NEED_RESET
Driver returns this if it thinks the device is not
recoverable in it's current state and it needs a slot
recoverable in its current state and it needs a slot
reset to proceed.
- PCI_ERS_RESULT_DISCONNECT
@ -241,7 +241,7 @@ in working condition.
The driver is not supposed to restart normal driver I/O operations
at this point. It should limit itself to "probing" the device to
check it's recoverability status. If all is right, then the platform
check its recoverability status. If all is right, then the platform
will call resume() once all drivers have ack'd link_reset().
Result codes:

View file

@ -581,7 +581,7 @@ to be handled by platform and generic code, not individual drivers.
8. Vendor and device identifications
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One is not not required to add new device ids to include/linux/pci_ids.h.
One is not required to add new device ids to include/linux/pci_ids.h.
Please add PCI_VENDOR_ID_xxx for vendors and a hex constant for device ids.
PCI_VENDOR_ID_xxx constants are re-used. The device ids are arbitrary

View file

@ -13,7 +13,7 @@ Reporting (AER) driver and provides information on how to use it, as
well as how to enable the drivers of endpoint devices to conform with
PCI Express AER driver.
1.2 Copyright © Intel Corporation 2006.
1.2 Copyright (C) Intel Corporation 2006.
1.3 What is the PCI Express AER Driver?
@ -71,15 +71,11 @@ console. If it's a correctable error, it is outputed as a warning.
Otherwise, it is printed as an error. So users could choose different
log level to filter out correctable error messages.
Below shows an example.
+------ PCI-Express Device Error -----+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0500
VendorID=8086h, DeviceID=0329h, Bus=05h, Device=00h, Function=00h
TLB Header:
04000001 00200a03 05010000 00050100
Below shows an example:
0000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID)
0000:50:00.0: device [8086:0329] error status/mask=00100000/00000000
0000:50:00.0: [20] Unsupported Request (First)
0000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100
In the example, 'Requester ID' means the ID of the device who sends
the error message to root port. Pls. refer to pci express specs for
@ -112,7 +108,7 @@ but the PCI Express link itself is fully functional. Fatal errors, on
the other hand, cause the link to be unreliable.
When AER is enabled, a PCI Express device will automatically send an
error message to the PCIE root port above it when the device captures
error message to the PCIe root port above it when the device captures
an error. The Root Port, upon receiving an error reporting message,
internally processes and logs the error message in its PCI Express
capability structure. Error information being logged includes storing
@ -198,8 +194,9 @@ to reset link, AER port service driver is required to provide the
function to reset link. Firstly, kernel looks for if the upstream
component has an aer driver. If it has, kernel uses the reset_link
callback of the aer driver. If the upstream component has no aer driver
and the port is downstream port, we will use the aer driver of the
root port who reports the AER error. As for upstream ports,
and the port is downstream port, we will perform a hot reset as the
default by setting the Secondary Bus Reset bit of the Bridge Control
register associated with the downstream port. As for upstream ports,
they should provide their own aer service drivers with reset_link
function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and
reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes
@ -253,11 +250,11 @@ cleanup uncorrectable status register. Pls. refer to section 3.3.
4. Software error injection
Debugging PCIE AER error recovery code is quite difficult because it
Debugging PCIe AER error recovery code is quite difficult because it
is hard to trigger real hardware errors. Software based error
injection can be used to fake various kinds of PCIE errors.
injection can be used to fake various kinds of PCIe errors.
First you should enable PCIE AER software error injection in kernel
First you should enable PCIe AER software error injection in kernel
configuration, that is, following item should be in your .config.
CONFIG_PCIEAER_INJECT=y or CONFIG_PCIEAER_INJECT=m

View file

@ -34,7 +34,7 @@ NMI handler.
cpu = smp_processor_id();
++nmi_count(cpu);
if (!rcu_dereference(nmi_callback)(regs, cpu))
if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
default_do_nmi(regs);
nmi_exit();
@ -47,12 +47,13 @@ function pointer. If this handler returns zero, do_nmi() invokes the
default_do_nmi() function to handle a machine-specific NMI. Finally,
preemption is restored.
Strictly speaking, rcu_dereference() is not needed, since this code runs
only on i386, which does not need rcu_dereference() anyway. However,
it is a good documentation aid, particularly for anyone attempting to
do something similar on Alpha.
In theory, rcu_dereference_sched() is not needed, since this code runs
only on i386, which in theory does not need rcu_dereference_sched()
anyway. However, in practice it is a good documentation aid, particularly
for anyone attempting to do something similar on Alpha or on systems
with aggressive optimizing compilers.
Quick Quiz: Why might the rcu_dereference() be necessary on Alpha,
Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
given that the code referenced by the pointer is read-only?
@ -99,17 +100,21 @@ invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.
Answer to Quick Quiz
Why might the rcu_dereference() be necessary on Alpha, given
Why might the rcu_dereference_sched() be necessary on Alpha, given
that the code referenced by the pointer is read-only?
Answer: The caller to set_nmi_callback() might well have
initialized some data that is to be used by the
new NMI handler. In this case, the rcu_dereference()
would be needed, because otherwise a CPU that received
an NMI just after the new handler was set might see
the pointer to the new NMI handler, but the old
pre-initialized version of the handler's data.
initialized some data that is to be used by the new NMI
handler. In this case, the rcu_dereference_sched() would
be needed, because otherwise a CPU that received an NMI
just after the new handler was set might see the pointer
to the new NMI handler, but the old pre-initialized
version of the handler's data.
More important, the rcu_dereference() makes it clear
to someone reading the code that the pointer is being
protected by RCU.
This same sad story can happen on other CPUs when using
a compiler with aggressive pointer-value speculation
optimizations.
More important, the rcu_dereference_sched() makes it
clear to someone reading the code that the pointer is
being protected by RCU-sched.

View file

@ -606,7 +606,7 @@ Suparna Bhattacharya"
,Year="2006"
,pages="v2 123-138"
,note="Available:
\url{http://www.linuxsymposium.org/2006/view_abstract.php?content_key=184}
\url{http://www.linuxsymposium.org/2006/index_2006.php}
\url{http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf}
[Viewed January 1, 2007]"
,annotation="

View file

@ -260,7 +260,8 @@ over a rather long period of time, but improvements are always welcome!
The reason that it is permissible to use RCU list-traversal
primitives when the update-side lock is held is that doing so
can be quite helpful in reducing code bloat when common code is
shared between readers and updaters.
shared between readers and updaters. Additional primitives
are provided for this case, as discussed in lockdep.txt.
10. Conversely, if you are in an RCU read-side critical section,
and you don't hold the appropriate update-side lock, you -must-
@ -344,8 +345,8 @@ over a rather long period of time, but improvements are always welcome!
requiring SRCU's read-side deadlock immunity or low read-side
realtime latency.
Note that, rcu_assign_pointer() and rcu_dereference() relate to
SRCU just as they do to other forms of RCU.
Note that, rcu_assign_pointer() relates to SRCU just as they do
to other forms of RCU.
15. The whole point of call_rcu(), synchronize_rcu(), and friends
is to wait until all pre-existing readers have finished before

View file

@ -32,9 +32,20 @@ checking of rcu_dereference() primitives:
srcu_dereference(p, sp):
Check for SRCU read-side critical section.
rcu_dereference_check(p, c):
Use explicit check expression "c".
Use explicit check expression "c". This is useful in
code that is invoked by both readers and updaters.
rcu_dereference_raw(p)
Don't check. (Use sparingly, if at all.)
rcu_dereference_protected(p, c):
Use explicit check expression "c", and omit all barriers
and compiler constraints. This is useful when the data
structure cannot change, for example, in code that is
invoked only by updaters.
rcu_access_pointer(p):
Return the value of the pointer and omit all barriers,
but retain the compiler constraints that prevent duplicating
or coalescsing. This is useful when when testing the
value of the pointer itself, for example, against NULL.
The rcu_dereference_check() check expression can be any boolean
expression, but would normally include one of the rcu_read_lock_held()
@ -59,7 +70,20 @@ In case (1), the pointer is picked up in an RCU-safe manner for vanilla
RCU read-side critical sections, in case (2) the ->file_lock prevents
any change from taking place, and finally, in case (3) the current task
is the only task accessing the file_struct, again preventing any change
from taking place.
from taking place. If the above statement was invoked only from updater
code, it could instead be written as follows:
file = rcu_dereference_protected(fdt->fd[fd],
lockdep_is_held(&files->file_lock) ||
atomic_read(&files->count) == 1);
This would verify cases #2 and #3 above, and furthermore lockdep would
complain if this was used in an RCU read-side critical section unless one
of these two cases held. Because rcu_dereference_protected() omits all
barriers and compiler constraints, it generates better code than do the
other flavors of rcu_dereference(). On the other hand, it is illegal
to use rcu_dereference_protected() if either the RCU-protected pointer
or the RCU-protected data that it points to can change concurrently.
There are currently only "universal" versions of the rcu_assign_pointer()
and RCU list-/tree-traversal primitives, which do not (yet) check for

View file

@ -3,35 +3,79 @@ Using RCU's CPU Stall Detector
The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables
RCU's CPU stall detector, which detects conditions that unduly delay
RCU grace periods. The stall detector's idea of what constitutes
"unduly delayed" is controlled by a pair of C preprocessor macros:
"unduly delayed" is controlled by a set of C preprocessor macros:
RCU_SECONDS_TILL_STALL_CHECK
This macro defines the period of time that RCU will wait from
the beginning of a grace period until it issues an RCU CPU
stall warning. It is normally ten seconds.
stall warning. This time period is normally ten seconds.
RCU_SECONDS_TILL_STALL_RECHECK
This macro defines the period of time that RCU will wait after
issuing a stall warning until it issues another stall warning.
It is normally set to thirty seconds.
issuing a stall warning until it issues another stall warning
for the same stall. This time period is normally set to thirty
seconds.
RCU_STALL_RAT_DELAY
The CPU stall detector tries to make the offending CPU rat on itself,
as this often gives better-quality stack traces. However, if
the offending CPU does not detect its own stall in the number
of jiffies specified by RCU_STALL_RAT_DELAY, then other CPUs will
complain. This is normally set to two jiffies.
The CPU stall detector tries to make the offending CPU print its
own warnings, as this often gives better-quality stack traces.
However, if the offending CPU does not detect its own stall in
the number of jiffies specified by RCU_STALL_RAT_DELAY, then
some other CPU will complain. This delay is normally set to
two jiffies.
The following problems can result in an RCU CPU stall warning:
When a CPU detects that it is stalling, it will print a message similar
to the following:
INFO: rcu_sched_state detected stall on CPU 5 (t=2500 jiffies)
This message indicates that CPU 5 detected that it was causing a stall,
and that the stall was affecting RCU-sched. This message will normally be
followed by a stack dump of the offending CPU. On TREE_RCU kernel builds,
RCU and RCU-sched are implemented by the same underlying mechanism,
while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented
by rcu_preempt_state.
On the other hand, if the offending CPU fails to print out a stall-warning
message quickly enough, some other CPU will print a message similar to
the following:
INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 jiffies)
This message indicates that CPU 2 detected that CPUs 3 and 5 were both
causing stalls, and that the stall was affecting RCU-bh. This message
will normally be followed by stack dumps for each CPU. Please note that
TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
and that the tasks will be indicated by PID, for example, "P3421".
It is even possible for a rcu_preempt_state stall to be caused by both
CPUs -and- tasks, in which case the offending CPUs and tasks will all
be called out in the list.
Finally, if the grace period ends just as the stall warning starts
printing, there will be a spurious stall-warning message:
INFO: rcu_bh_state detected stalls on CPUs/tasks: { } (detected by 4, 2502 jiffies)
This is rare, but does happen from time to time in real life.
So your kernel printed an RCU CPU stall warning. The next question is
"What caused it?" The following problems can result in RCU CPU stall
warnings:
o A CPU looping in an RCU read-side critical section.
o A CPU looping with interrupts disabled.
o A CPU looping with interrupts disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o A CPU looping with preemption disabled.
o A CPU looping with preemption disabled. This condition can
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
stalls.
o A CPU looping with bottom halves disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
without invoking schedule().
@ -39,20 +83,24 @@ o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
o A bug in the RCU implementation.
o A hardware failure. This is quite unlikely, but has occurred
at least once in a former life. A CPU failed in a running system,
at least once in real life. A CPU failed in a running system,
becoming unresponsive, but not causing an immediate crash.
This resulted in a series of RCU CPU stall warnings, eventually
leading the realization that the CPU had failed.
The RCU, RCU-sched, and RCU-bh implementations have CPU stall warning.
SRCU does not do so directly, but its calls to synchronize_sched() will
result in RCU-sched detecting any CPU stalls that might be occurring.
The RCU, RCU-sched, and RCU-bh implementations have CPU stall
warning. SRCU does not have its own CPU stall warnings, but its
calls to synchronize_sched() will result in RCU-sched detecting
RCU-sched-related CPU stalls. Please note that RCU only detects
CPU stalls when there is a grace period in progress. No grace period,
no CPU stall warnings.
To diagnose the cause of the stall, inspect the stack traces. The offending
function will usually be near the top of the stack. If you have a series
of stall warnings from a single extended stall, comparing the stack traces
can often help determine where the stall is occurring, which will usually
be in the function nearest the top of the stack that stays the same from
trace to trace.
To diagnose the cause of the stall, inspect the stack traces.
The offending function will usually be near the top of the stack.
If you have a series of stall warnings from a single extended stall,
comparing the stack traces can often help determine where the stall
is occurring, which will usually be in the function nearest the top of
that portion of the stack which remains the same from trace to trace.
If you can reliably trigger the stall, ftrace can be quite helpful.
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE.

View file

@ -182,16 +182,6 @@ Similarly, sched_expedited RCU provides the following:
sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0
state: -1 / 0:0 3:0 4:0
As before, the first four lines are similar to those for RCU.
The last line shows the task-migration state. The first number is
-1 if synchronize_sched_expedited() is idle, -2 if in the process of
posting wakeups to the migration kthreads, and N when waiting on CPU N.
Each of the colon-separated fields following the "/" is a CPU:state pair.
Valid states are "0" for idle, "1" for waiting for quiescent state,
"2" for passed through quiescent state, and "3" when a race with a
CPU-hotplug event forces use of the synchronize_sched() primitive.
USAGE

View file

@ -256,23 +256,23 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
The output of "cat rcu/rcu_pending" looks as follows:
rcu_sched:
0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
3 np=236249 qsp=48766 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
4 np=221310 qsp=46850 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
5 np=237332 qsp=48449 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
6 np=219995 qsp=46718 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
7 np=249893 qsp=49390 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
0 np=255892 qsp=53936 rpq=85 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
1 np=261224 qsp=54638 rpq=33 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
2 np=237496 qsp=49664 rpq=23 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
3 np=236249 qsp=48766 rpq=98 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
4 np=221310 qsp=46850 rpq=7 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
5 np=237332 qsp=48449 rpq=9 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
6 np=219995 qsp=46718 rpq=12 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
7 np=249893 qsp=49390 rpq=42 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
rcu_bh:
0 np=146741 qsp=1419 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
1 np=155792 qsp=12597 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
2 np=136629 qsp=18680 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
3 np=137723 qsp=2843 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
4 np=123110 qsp=12433 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
5 np=137456 qsp=4210 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
6 np=120834 qsp=9902 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
7 np=144888 qsp=26336 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
0 np=146741 qsp=1419 rpq=6 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
1 np=155792 qsp=12597 rpq=3 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
2 np=136629 qsp=18680 rpq=1 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
3 np=137723 qsp=2843 rpq=0 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
4 np=123110 qsp=12433 rpq=0 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
5 np=137456 qsp=4210 rpq=1 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
6 np=120834 qsp=9902 rpq=2 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
7 np=144888 qsp=26336 rpq=0 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
As always, this is once again split into "rcu_sched" and "rcu_bh"
portions, with CONFIG_TREE_PREEMPT_RCU kernels having an additional
@ -284,6 +284,9 @@ o "np" is the number of times that __rcu_pending() has been invoked
o "qsp" is the number of times that the RCU was waiting for a
quiescent state from this CPU.
o "rpq" is the number of times that the CPU had passed through
a quiescent state, but not yet reported it to RCU.
o "cbr" is the number of times that this CPU had RCU callbacks
that had passed through a grace period, and were thus ready
to be invoked.

View file

@ -840,6 +840,12 @@ SRCU: Initialization/cleanup
init_srcu_struct
cleanup_srcu_struct
All: lockdep-checked RCU-protected pointer access
rcu_dereference_check
rcu_dereference_protected
rcu_access_pointer
See the comment headers in the source code (or the docbook generated
from them) for more information.

View file

@ -73,7 +73,7 @@ NOTE: Smack labels are limited to 23 characters. The attr command
If you don't do anything special all users will get the floor ("_")
label when they log in. If you do want to log in via the hacked ssh
at other labels use the attr command to set the smack value on the
home directory and it's contents.
home directory and its contents.
You can add access rules in /etc/smack/accesses. They take the form:

View file

@ -18,6 +18,8 @@ kernel patches.
2b: Passes allnoconfig, allmodconfig
2c: Builds successfully when using O=builddir
3: Builds on multiple CPU architectures by using local cross-compile tools
or some other build farm.
@ -95,3 +97,13 @@ kernel patches.
25: If any ioctl's are added by the patch, then also update
Documentation/ioctl/ioctl-number.txt.
26: If your modified source code depends on or uses any of the kernel
APIs or features that are related to the following kconfig symbols,
then test multiple builds with the related kconfig symbols disabled
and/or =m (if that option is available) [not all of these at the
same time, just various/random combinations of them]:
CONFIG_SMP, CONFIG_SYSFS, CONFIG_PROC_FS, CONFIG_INPUT, CONFIG_PCI,
CONFIG_BLOCK, CONFIG_PM, CONFIG_HOTPLUG, CONFIG_MAGIC_SYSRQ,
CONFIG_NET, CONFIG_INET=n (but latter with CONFIG_NET=y)

View file

@ -130,6 +130,8 @@ Linux kernel master tree:
ftp.??.kernel.org:/pub/linux/kernel/...
?? == your country code, such as "us", "uk", "fr", etc.
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git
Linux kernel mailing list:
linux-kernel@vger.kernel.org
[mail majordomo@vger.kernel.org to subscribe]
@ -159,4 +161,7 @@ How to NOT write kernel driver by Arjan van de Ven:
http://www.fenrus.org/how-to-not-write-a-device-driver-paper.pdf
Kernel Janitor:
http://janitor.kernelnewbies.org/
http://kernelnewbies.org/KernelJanitors
GIT, Fast Version Control System:
http://git-scm.com/

View file

@ -0,0 +1,59 @@
APEI Error INJection
~~~~~~~~~~~~~~~~~~~~
EINJ provides a hardware error injection mechanism
It is very useful for debugging and testing of other APEI and RAS features.
To use EINJ, make sure the following are enabled in your kernel
configuration:
CONFIG_DEBUG_FS
CONFIG_ACPI_APEI
CONFIG_ACPI_APEI_EINJ
The user interface of EINJ is debug file system, under the
directory apei/einj. The following files are provided.
- available_error_type
Reading this file returns the error injection capability of the
platform, that is, which error types are supported. The error type
definition is as follow, the left field is the error type value, the
right field is error description.
0x00000001 Processor Correctable
0x00000002 Processor Uncorrectable non-fatal
0x00000004 Processor Uncorrectable fatal
0x00000008 Memory Correctable
0x00000010 Memory Uncorrectable non-fatal
0x00000020 Memory Uncorrectable fatal
0x00000040 PCI Express Correctable
0x00000080 PCI Express Uncorrectable fatal
0x00000100 PCI Express Uncorrectable non-fatal
0x00000200 Platform Correctable
0x00000400 Platform Uncorrectable non-fatal
0x00000800 Platform Uncorrectable fatal
The format of file contents are as above, except there are only the
available error type lines.
- error_type
This file is used to set the error type value. The error type value
is defined in "available_error_type" description.
- error_inject
Write any integer to this file to trigger the error
injection. Before this, please specify all necessary error
parameters.
- param1
This file is used to set the first error parameter value. Effect of
parameter depends on error_type specified. For memory error, this is
physical memory address.
- param2
This file is used to set the second error parameter value. Effect of
parameter depends on error_type specified. For memory error, this is
physical memory address mask.
For more information about EINJ, please refer to ACPI specification
version 4.0, section 17.5.

View file

@ -1,6 +1,6 @@
The EtherDrive (R) HOWTO for users of 2.6 kernels is found at ...
http://www.coraid.com/support/linux/EtherDrive-2.6-HOWTO.html
http://www.coraid.com/SUPPORT/EtherDrive-HBA
It has many tips and hints!

View file

@ -0,0 +1,39 @@
--- What is AppArmor? ---
AppArmor is MAC style security extension for the Linux kernel. It implements
a task centered policy, with task "profiles" being created and loaded
from user space. Tasks on the system that do not have a profile defined for
them run in an unconfined state which is equivalent to standard Linux DAC
permissions.
--- How to enable/disable ---
set CONFIG_SECURITY_APPARMOR=y
If AppArmor should be selected as the default security module then
set CONFIG_DEFAULT_SECURITY="apparmor"
and CONFIG_SECURITY_APPARMOR_BOOTPARAM_VALUE=1
Build the kernel
If AppArmor is not the default security module it can be enabled by passing
security=apparmor on the kernel's command line.
If AppArmor is the default security module it can be disabled by passing
apparmor=0, security=XXXX (where XXX is valid security module), on the
kernel's command line
For AppArmor to enforce any restrictions beyond standard Linux DAC permissions
policy must be loaded into the kernel from user space (see the Documentation
and tools links).
--- Documentation ---
Documentation can be found on the wiki.
--- Links ---
Mailing List - apparmor@lists.ubuntu.com
Wiki - http://apparmor.wiki.kernel.org/
User space tools - https://launchpad.net/apparmor
Kernel module - git://git.kernel.org/pub/scm/linux/kernel/git/jj/apparmor-dev.git

View file

@ -20,6 +20,8 @@ Samsung-S3C24XX
- S3C24XX ARM Linux Overview
Sharp-LH
- Linux on Sharp LH79524 and LH7A40X System On a Chip (SOC)
SPEAr
- ST SPEAr platform Linux Overview
VFP/
- Release notes for Linux Kernel Vector Floating Point support code
empeg/

View file

@ -14,7 +14,7 @@ telecom systems. In addition to an XScale core, it contains up to 8
interfaces (UTOPIA, SPI, etc), a PCI host bridge, one serial port,
flash interface, and some other odds and ends. For more information, see:
http://developer.intel.com/design/network/products/npfamily/ixp2xxx.htm
http://developer.intel.com
2. Linux Support

View file

@ -45,7 +45,7 @@ require the use of Intel's propietary CSR softare:
If you need to use any of the above, you need to download Intel's
software from:
http://developer.intel.com/design/network/products/npfamily/ixp425swr1.htm
http://developer.intel.com/design/network/products/npfamily/ixp425.htm
DO NOT POST QUESTIONS TO THE LINUX MAILING LISTS REGARDING THE PROPIETARY
SOFTWARE.
@ -53,7 +53,7 @@ SOFTWARE.
There are several websites that provide directions/pointers on using
Intel's software:
http://ixp4xx-osdg.sourceforge.net/
http://sourceforge.net/projects/ixp4xx-osdg/
Open Source Developer's Guide for using uClinux and the Intel libraries
http://gatewaymaker.sourceforge.net/
@ -112,21 +112,21 @@ http://www.adiengineering.com/productsCoyote.html
Finally, there is an IDE port hanging off the expansion bus.
Gateworks Avila Network Platform
http://www.gateworks.com/avila_sbc.htm
http://www.gateworks.com/support/overview.php
The Avila platform is basically and IXDP425 with the 4 PCI slots
replaced with mini-PCI slots and a CF IDE interface hanging off
the expansion bus.
Intel IXDP425 Development Platform
http://developer.intel.com/design/network/products/npfamily/ixdp425.htm
http://www.intel.com/design/network/products/npfamily/ixdpg425.htm
This is Intel's standard reference platform for the IXDP425 and is
also known as the Richfield board. It contains 4 PCI slots, 16MB
of flash, two 10/100 ports and one ADSL port.
Intel IXDP465 Development Platform
http://developer.intel.com/design/network/products/npfamily/ixdp465.htm
http://www.intel.com/design/network/products/npfamily/ixdp465.htm
This is basically an IXDP425 with an IXP465 and 32M of flash instead
of just 16.
@ -141,15 +141,13 @@ Intel IXDPG425 Development Platform
a pivot_root to NFS.
Motorola PrPMC1100 Processor Mezanine Card
http://www.fountainsys.com/datasheet/PrPMC1100.pdf
http://www.fountainsys.com
The PrPMC1100 is based on the IXCP1100 and is meant to plug into
and IXP2400/2800 system to act as the system controller. It simply
contains a CPU and 16MB of flash on the board and needs to be
plugged into a carrier board to function. Currently Linux only
supports the Motorola PrPMC carrier board for this platform.
See https://mcg.motorola.com/us/ds/pdf/ds0144.pdf for info
on the carrier board.
5. TODO LIST

View file

@ -41,12 +41,12 @@ Bug reports etc
---------------
Please send patches to the patch system. For more information, see
http://www.arm.linux.org.uk/patches/info.html Always include some
http://www.arm.linux.org.uk/developer/patches/info.php Always include some
explanation as to what the patch does and why it is needed.
Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk,
or submitted through the web form at
http://www.arm.linux.org.uk/forms/solution.shtml
http://www.arm.linux.org.uk/developer/
When sending bug reports, please ensure that they contain all relevant
information, eg. the kernel messages that were printed before/during

View file

@ -32,7 +32,7 @@ Notes:
- The flash on board is divided into 3 partitions.
You should be careful to use flash on board.
It's partition is different from GraphicsClient Plus and GraphicsMaster
Its partition is different from GraphicsClient Plus and GraphicsMaster
- 16bpp mode requires a different cable than what ships with the board.
Contact ADS or look through the manual to wire your own. Currently,

View file

@ -2,8 +2,7 @@ The Intel Assabet (SA-1110 evaluation) board
============================================
Please see:
http://developer.intel.com/design/strong/quicklist/eval-plat/sa-1110.htm
http://developer.intel.com/design/strong/guides/278278.htm
http://developer.intel.com
Also some notes from John G Dorsey <jd5q@andrew.cmu.edu>:
http://www.cs.cmu.edu/~wearable/software/assabet.html
@ -64,7 +63,7 @@ Initial RedBoot configuration
-----------------------------
The commands used here are explained in The RedBoot User's Guide available
on-line at http://sources.redhat.com/ecos/docs-latest/redboot/redboot.html.
on-line at http://sources.redhat.com/ecos/docs.html.
Please refer to it for explanations.
If you have a CF network card (my Assabet kit contained a CF+ LP-E from

View file

@ -1,7 +1,7 @@
Brutus is an evaluation platform for the SA1100 manufactured by Intel.
For more details, see:
http://developer.intel.com/design/strong/applnots/sa1100lx/getstart.htm
http://developer.intel.com
To compile for Brutus, you must issue the following commands:

View file

@ -1,5 +1,5 @@
Freebird-1.1 is produced by Legned(C) ,Inc.
(http://www.legend.com.cn)
http://web.archive.org/web/*/http://www.legend.com.cn
and software/linux mainatined by Coventive(C),Inc.
(http://www.coventive.com)

View file

@ -71,7 +71,7 @@ Supported peripherals:
- serial ports (ttyS[0-2])
- ttyS0 is default for serial console
- Smart I/O (ADC, keypad, digital inputs, etc)
See http://www.applieddata.com/developers/linux for IOCTL documentation
See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation
and example user space code. ps/2 keybd is multiplexed through this driver
To do:

View file

@ -28,7 +28,7 @@ Supported peripherals:
- serial ports (ttyS[0-2])
- ttyS0 is default for serial console
- Smart I/O (ADC, keypad, digital inputs, etc)
See http://www.applieddata.com/developers/linux for IOCTL documentation
See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation
and example user space code. ps/2 keybd is multiplexed through this driver
To do:

View file

@ -4,7 +4,7 @@ research projects at Compaq that are related to pocket computing.
For more information, see:
http://www.research.digital.com/wrl/itsy/index.html
http://www.hpl.hp.com/downloads/crl/itsy/
Notes on initial 2.4 Itsy support (8/27/2000) :
The port was done on an Itsy version 1.5 machine with a daughtercard with

View file

@ -6,6 +6,6 @@ PLEB support has yet to be fully integrated.
For more information, see:
http://www.cse.unsw.edu.au/~pleb/
http://www.cse.unsw.edu.au

View file

@ -3,7 +3,7 @@ VisuAide, Inc. to be used by blind people.
For more information related to Victor, see:
http://www.visuaide.com/victor
http://www.humanware.com/en-usa/products
Of course Victor is using Linux as its main operating system.
The Victor implementation for Linux is maintained by Nicolas Pitre:

View file

@ -7,5 +7,5 @@ for more info.
(Ref: Stuart Adams <sja@brightstareng.com>)
Also visit Larry Doolittle's "Linux for the nanoEngine" site:
http://recycle.lbl.gov/~ldoolitt/bse/
http://www.brightstareng.com/arm/nanoeng.htm

View file

@ -0,0 +1,60 @@
SPEAr ARM Linux Overview
==========================
Introduction
------------
SPEAr (Structured Processor Enhanced Architecture).
weblink : http://www.st.com/spear
The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-Chip CPUs are
supported by the 'spear' platform of ARM Linux. Currently SPEAr300,
SPEAr310, SPEAr320 and SPEAr600 SOCs are supported. Support for the SPEAr13XX
series is in progress.
Hierarchy in SPEAr is as follows:
SPEAr (Platform)
- SPEAr3XX (3XX SOC series, based on ARM9)
- SPEAr300 (SOC)
- SPEAr300_EVB (Evaluation Board)
- SPEAr310 (SOC)
- SPEAr310_EVB (Evaluation Board)
- SPEAr320 (SOC)
- SPEAr320_EVB (Evaluation Board)
- SPEAr6XX (6XX SOC series, based on ARM9)
- SPEAr600 (SOC)
- SPEAr600_EVB (Evaluation Board)
- SPEAr13XX (13XX SOC series, based on ARM CORTEXA9)
- SPEAr1300 (SOC)
Configuration
-------------
A generic configuration is provided for each machine, and can be used as the
default by
make spear600_defconfig
make spear300_defconfig
make spear310_defconfig
make spear320_defconfig
Layout
------
The common files for multiple machine families (SPEAr3XX, SPEAr6XX and
SPEAr13XX) are located in the platform code contained in arch/arm/plat-spear
with headers in plat/.
Each machine series have a directory with name arch/arm/mach-spear followed by
series name. Like mach-spear3xx, mach-spear6xx and mach-spear13xx.
Common file for machines of spear3xx family is mach-spear3xx/spear3xx.c and for
spear6xx is mach-spear6xx/spear6xx.c. mach-spear* also contain soc/machine
specific files, like spear300.c, spear310.c, spear320.c and spear600.c.
mach-spear* also contains board specific files for each machine type.
Document Author
---------------
Viresh Kumar, (c) 2010 ST Microelectronics

View file

@ -12,6 +12,8 @@ Introduction
of the s3c2410 GPIO system, please read the Samsung provided
data-sheet/users manual to find out the complete list.
See Documentation/arm/Samsung/GPIO.txt for the core implemetation.
GPIOLIB
-------
@ -24,8 +26,60 @@ GPIOLIB
listed below will be removed (they may be marked as __deprecated
in the near future).
- s3c2410_gpio_getpin
- s3c2410_gpio_setpin
The following functions now either have a s3c_ specific variant
or are merged into gpiolib. See the definitions in
arch/arm/plat-samsung/include/plat/gpio-cfg.h:
s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output()
s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input()
s3c2410_gpio_getirq() gpio_to_irq()
s3c2410_gpio_cfgpin() s3c_gpio_cfgpin()
s3c2410_gpio_getcfg() s3c_gpio_getcfg()
s3c2410_gpio_pullup() s3c_gpio_setpull()
GPIOLIB conversion
------------------
If you need to convert your board or driver to use gpiolib from the exiting
s3c2410 api, then here are some notes on the process.
1) If your board is exclusively using an GPIO, say to control peripheral
power, then it will require to claim the gpio with gpio_request() before
it can use it.
It is recommended to check the return value, with at least WARN_ON()
during initialisation.
2) The s3c2410_gpio_cfgpin() can be directly replaced with s3c_gpio_cfgpin()
as they have the same arguments, and can either take the pin specific
values, or the more generic special-function-number arguments.
3) s3c2410_gpio_pullup() changs have the problem that whilst the
s3c2410_gpio_pullup(x, 1) can be easily translated to the
s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0)
are not so easy.
The s3c2410_gpio_pullup(x, 0) case enables the pull-up (or in the case
of some of the devices, a pull-down) and as such the new API distinguishes
between the UP and DOWN case. There is currently no 'just turn on' setting
which may be required if this becomes a problem.
4) s3c2410_gpio_setpin() can be replaced by gpio_set_value(), the old call
does not implicitly configure the relevant gpio to output. The gpio
direction should be changed before using gpio_set_value().
5) s3c2410_gpio_getpin() is replaceable by gpio_get_value() if the pin
has been set to input. It is currently unknown what the behaviour is
when using gpio_get_value() on an output pin (s3c2410_gpio_getpin
would return the value the pin is supposed to be outputting).
6) s3c2410_gpio_getirq() should be directly replacable with the
gpio_to_irq() call.
The s3c2410_gpio and gpio_ calls have always operated on the same gpio
numberspace, so there is no problem with converting the gpio numbering
between the calls.
Headers
@ -54,6 +108,11 @@ PIN Numbers
eg S3C2410_GPA(0) or S3C2410_GPF(1). These defines are used to tell
the GPIO functions which pin is to be used.
With the conversion to gpiolib, there is no longer a direct conversion
from gpio pin number to register base address as in earlier kernels. This
is due to the number space required for newer SoCs where the later
GPIOs are not contiguous.
Configuring a pin
-----------------
@ -71,6 +130,8 @@ Configuring a pin
which would turn GPA(0) into the lowest Address line A0, and set
GPE(8) to be connected to the SDIO/MMC controller's SDDAT1 line.
The s3c_gpio_cfgpin() call is a functional replacement for this call.
Reading the current configuration
---------------------------------
@ -82,6 +143,9 @@ Reading the current configuration
The return value will be from the same set of values which can be
passed to s3c2410_gpio_cfgpin().
The s3c_gpio_getcfg() call should be a functional replacement for
this call.
Configuring a pull-up resistor
------------------------------
@ -95,6 +159,10 @@ Configuring a pull-up resistor
Where the to value is zero to set the pull-up off, and 1 to enable
the specified pull-up. Any other values are currently undefined.
The s3c_gpio_setpull() offers similar functionality, but with the
ability to encode whether the pull is up or down. Currently there
is no 'just on' state, so up or down must be selected.
Getting the state of a PIN
--------------------------
@ -106,6 +174,9 @@ Getting the state of a PIN
This will return either zero or non-zero. Do not count on this
function returning 1 if the pin is set.
This call is now implemented by the relevant gpiolib calls, convert
your board or driver to use gpiolib.
Setting the state of a PIN
--------------------------
@ -117,6 +188,9 @@ Setting the state of a PIN
Which sets the given pin to the value. Use 0 to write 0, and 1 to
set the output to 1.
This call is now implemented by the relevant gpiolib calls, convert
your board or driver to use gpiolib.
Getting the IRQ number associated with a PIN
--------------------------------------------
@ -128,6 +202,9 @@ Getting the IRQ number associated with a PIN
Note, not all pins have an IRQ.
This call is now implemented by the relevant gpiolib calls, convert
your board or driver to use gpiolib.
Authour
-------

View file

@ -8,10 +8,16 @@ Introduction
The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported
by the 's3c2410' architecture of ARM Linux. Currently the S3C2410,
S3C2412, S3C2413, S3C2440, S3C2442 and S3C2443 devices are supported.
S3C2412, S3C2413, S3C2416 S3C2440, S3C2442, S3C2443 and S3C2450 devices
are supported.
Support for the S3C2400 and S3C24A0 series are in progress.
The S3C2416 and S3C2450 devices are very similar and S3C2450 support is
included under the arch/arm/mach-s3c2416 directory. Note, whilst core
support for these SoCs is in, work on some of the extra peripherals
and extra interrupts is still ongoing.
Configuration
-------------
@ -209,6 +215,13 @@ GPIO
Newer kernels carry GPIOLIB, and support is being moved towards
this with some of the older support in line to be removed.
As of v2.6.34, the move towards using gpiolib support is almost
complete, and very little of the old calls are left.
See Documentation/arm/Samsung-S3C24XX/GPIO.txt for the S3C24XX specific
support and Documentation/arm/Samsung/GPIO.txt for the core Samsung
implementation.
Clock Management
----------------

View file

@ -0,0 +1,42 @@
Samsung GPIO implementation
===========================
Introduction
------------
This outlines the Samsung GPIO implementation and the architecture
specfic calls provided alongisde the drivers/gpio core.
S3C24XX (Legacy)
----------------
See Documentation/arm/Samsung-S3C24XX/GPIO.txt for more information
about these devices. Their implementation is being brought into line
with the core samsung implementation described in this document.
GPIOLIB integration
-------------------
The gpio implementation uses gpiolib as much as possible, only providing
specific calls for the items that require Samsung specific handling, such
as pin special-function or pull resistor control.
GPIO numbering is synchronised between the Samsung and gpiolib system.
PIN configuration
-----------------
Pin configuration is specific to the Samsung architecutre, with each SoC
registering the necessary information for the core gpio configuration
implementation to configure pins as necessary.
The s3c_gpio_cfgpin() and s3c_gpio_setpull() provide the means for a
driver or machine to change gpio configuration.
See arch/arm/plat-samsung/include/plat/gpio-cfg.h for more information
on these functions.

View file

@ -13,9 +13,10 @@ Introduction
- S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
- S3C64XX: S3C6400 and S3C6410
- S5PC6440
S5PC100 and S5PC110 support is currently being merged
- S5P6440
- S5P6442
- S5PC100
- S5PC110 / S5PV210
S3C24XX Systems
@ -35,7 +36,10 @@ Configuration
unifying all the SoCs into one kernel.
s5p6440_defconfig - S5P6440 specific default configuration
s5p6442_defconfig - S5P6442 specific default configuration
s5pc100_defconfig - S5PC100 specific default configuration
s5pc110_defconfig - S5PC110 specific default configuration
s5pv210_defconfig - S5PV210 specific default configuration
Layout
@ -50,18 +54,27 @@ Layout
specific information. It contains the base clock, GPIO and device definitions
to get the system running.
plat-s3c is the s3c24xx/s3c64xx platform directory, although it is currently
involved in other builds this will be phased out once the relevant code is
moved elsewhere.
plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs.
plat-s3c64xx is for the s3c64xx specific bits, see the S3C24XX docs.
plat-s5p is for s5p specific builds, more to be added.
plat-s5p is for s5p specific builds, and contains common support for the
S5P specific systems. Not all S5Ps use all the features in this directory
due to differences in the hardware.
Layout changes
--------------
The old plat-s3c and plat-s5pc1xx directories have been removed, with
support moved to either plat-samsung or plat-s5p as necessary. These moves
where to simplify the include and dependency issues involved with having
so many different platform directories.
It was decided to remove plat-s5pc1xx as some of the support was already
in plat-s5p or plat-samsung, with the S5PC110 support added with S5PV210
the only user was the S5PC100. The S5PC100 specific items where moved to
arch/arm/mach-s5pc100.
[ to finish ]
Port Contributors

View file

@ -7,7 +7,7 @@ The driver only implements a four-wire touch panel protocol.
The touchscreen driver is maintenance free except for the pen-down or
touch threshold. Some resistive displays and board combinations may
require tuning of this threshold. The driver exposes some of it's
require tuning of this threshold. The driver exposes some of its
internal state in the sys filesystem. If the kernel is configured
with it, CONFIG_SYSFS, and sysfs is mounted at /sys, there will be a
directory

View file

@ -33,7 +33,13 @@ ffff0000 ffff0fff CPU vector page.
fffe0000 fffeffff XScale cache flush area. This is used
in proc-xscale.S to flush the whole data
cache. Free for other usage on non-XScale.
cache. (XScale does not have TCM.)
fffe8000 fffeffff DTCM mapping area for platforms with
DTCM mounted inside the CPU.
fffe0000 fffe7fff ITCM mapping area for platforms with
ITCM mounted inside the CPU.
fff00000 fffdffff Fixmap mapping region. Addresses provided
by fix_to_virt() will be located here.

View file

@ -19,8 +19,8 @@ defines a CPUID_TCM register that you can read out from the
system control coprocessor. Documentation from ARM can be found
at http://infocenter.arm.com, search for "TCM Status Register"
to see documents for all CPUs. Reading this register you can
determine if ITCM (bit 0) and/or DTCM (bit 16) is present in the
machine.
determine if ITCM (bits 1-0) and/or DTCM (bit 17-16) is present
in the machine.
There is further a TCM region register (search for "TCM Region
Registers" at the ARM site) that can report and modify the location
@ -35,7 +35,15 @@ The TCM memory can then be remapped to another address again using
the MMU, but notice that the TCM if often used in situations where
the MMU is turned off. To avoid confusion the current Linux
implementation will map the TCM 1 to 1 from physical to virtual
memory in the location specified by the machine.
memory in the location specified by the kernel. Currently Linux
will map ITCM to 0xfffe0000 and on, and DTCM to 0xfffe8000 and
on, supporting a maximum of 32KiB of ITCM and 32KiB of DTCM.
Newer versions of the region registers also support dividing these
TCMs in two separate banks, so for example an 8KiB ITCM is divided
into two 4KiB banks with its own control registers. The idea is to
be able to lock and hide one of the banks for use by the secure
world (TrustZone).
TCM is used for a few things:
@ -65,18 +73,18 @@ in <asm/tcm.h>. Using this interface it is possible to:
memory. Such a heap is great for things like saving
device state when shutting off device power domains.
A machine that has TCM memory shall select HAVE_TCM in
arch/arm/Kconfig for itself, and then the
rest of the functionality will depend on the physical
location and size of ITCM and DTCM to be defined in
mach/memory.h for the machine. Code that needs to use
TCM shall #include <asm/tcm.h> If the TCM is not located
at the place given in memory.h it will be moved using
the TCM Region registers.
A machine that has TCM memory shall select HAVE_TCM from
arch/arm/Kconfig for itself. Code that needs to use TCM shall
#include <asm/tcm.h>
Functions to go into itcm can be tagged like this:
int __tcmfunc foo(int bar);
Since these are marked to become long_calls and you may want
to have functions called locally inside the TCM without
wasting space, there is also the __tcmlocalfunc prefix that
will make the call relative.
Variables to go into dtcm can be tagged like this:
int __tcmdata foo;

View file

@ -320,7 +320,7 @@ counter decrement would not become globally visible until the
obj->active update does.
As a historical note, 32-bit Sparc used to only allow usage of
24-bits of it's atomic_t type. This was because it used 8 bits
24-bits of its atomic_t type. This was because it used 8 bits
as a spinlock for SMP safety. Sparc32 lacked a "compare and swap"
type instruction. However, 32-bit Sparc has since been moved over
to a "hash table of spinlocks" scheme, that allows the full 32-bit

View file

@ -111,6 +111,6 @@ cause unexpected behaviour and can be a security hazard.
There is a web page about binfmt_misc at
http://www.tat.physik.uni-tuebingen.de/~rguenth/linux/binfmt_misc.html
http://www.tat.physik.uni-tuebingen.de
Richard Günther <rguenth@tat.physik.uni-tuebingen.de>

View file

@ -43,7 +43,7 @@
void bfin_gpio_irq_free(unsigned gpio);
The request functions will record the function state for a certain pin,
the free functions will clear it's function state.
the free functions will clear its function state.
Once a pin is requested, it can't be requested again before it is freed by
previous caller, otherwise kernel will dump stacks, and the request
function fail.

View file

@ -1162,8 +1162,8 @@ where a driver received a request ala this before:
As mentioned, there is no virtual mapping of a bio. For DMA, this is
not a problem as the driver probably never will need a virtual mapping.
Instead it needs a bus mapping (pci_map_page for a single segment or
use blk_rq_map_sg for scatter gather) to be able to ship it to the driver. For
Instead it needs a bus mapping (dma_map_page for a single segment or
use dma_map_sg for scatter gather) to be able to ship it to the driver. For
PIO drivers (or drivers that need to revert to PIO transfer once in a
while (IDE for example)), where the CPU is doing the actual data
transfer a virtual mapping is needed. If the driver supports highmem I/O,

View file

@ -412,6 +412,6 @@ have in your mail headers, when sending mail to the list server.
You might also find some useful information on the linux-parport
web pages (although they are not always up to date) at
http://www.torque.net/parport/
http://web.archive.org/web/*/http://www.torque.net/parport/

View file

@ -5,7 +5,7 @@
This document describes the cache/tlb flushing interfaces called
by the Linux VM subsystem. It enumerates over each interface,
describes it's intended purpose, and what side effect is expected
describes its intended purpose, and what side effect is expected
after the interface is invoked.
The side effects described below are stated for a uniprocessor
@ -231,7 +231,7 @@ require a whole different set of interfaces to handle properly.
The biggest problem is that of virtual aliasing in the data cache
of a processor.
Is your port susceptible to virtual aliasing in it's D-cache?
Is your port susceptible to virtual aliasing in its D-cache?
Well, if your D-cache is virtually indexed, is larger in size than
PAGE_SIZE, and does not prevent multiple cache lines for the same
physical address from existing at once, you have this problem.
@ -249,7 +249,7 @@ one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
Next, you have to solve the D-cache aliasing issue for all
other cases. Please keep in mind that fact that, for a given page
mapped into some user address space, there is always at least one more
mapping, that of the kernel in it's linear mapping starting at
mapping, that of the kernel in its linear mapping starting at
PAGE_OFFSET. So immediately, once the first user maps a given
physical page into its address space, by implication the D-cache
aliasing problem has the potential to exist since the kernel already

Some files were not shown because too many files have changed in this diff Show more