529 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			529 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * arch/tile/kernel/kprobes.c | ||
|  |  * Kprobes on TILE-Gx | ||
|  |  * | ||
|  |  * Some portions copied from the MIPS version. | ||
|  |  * | ||
|  |  * Copyright (C) IBM Corporation, 2002, 2004 | ||
|  |  * Copyright 2006 Sony Corp. | ||
|  |  * Copyright 2010 Cavium Networks | ||
|  |  * | ||
|  |  * Copyright 2012 Tilera Corporation. All Rights Reserved. | ||
|  |  * | ||
|  |  *   This program is free software; you can redistribute it and/or | ||
|  |  *   modify it under the terms of the GNU General Public License | ||
|  |  *   as published by the Free Software Foundation, version 2. | ||
|  |  * | ||
|  |  *   This program is distributed in the hope that it will be useful, but | ||
|  |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
|  |  *   NON INFRINGEMENT.  See the GNU General Public License for | ||
|  |  *   more details. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <linux/kprobes.h>
 | ||
|  | #include <linux/kdebug.h>
 | ||
|  | #include <linux/module.h>
 | ||
|  | #include <linux/slab.h>
 | ||
|  | #include <linux/uaccess.h>
 | ||
|  | #include <asm/cacheflush.h>
 | ||
|  | 
 | ||
|  | #include <arch/opcode.h>
 | ||
|  | 
 | ||
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | ||
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | ||
|  | 
 | ||
|  | tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE; | ||
|  | tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Check whether instruction is branch or jump, or if executing it | ||
|  |  * has different results depending on where it is executed (e.g. lnk). | ||
|  |  */ | ||
|  | static int __kprobes insn_has_control(kprobe_opcode_t insn) | ||
|  | { | ||
|  | 	if (get_Mode(insn) != 0) {   /* Y-format bundle */ | ||
|  | 		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 || | ||
|  | 		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1) | ||
|  | 			return 0; | ||
|  | 
 | ||
|  | 		switch (get_UnaryOpcodeExtension_Y1(insn)) { | ||
|  | 		case JALRP_UNARY_OPCODE_Y1: | ||
|  | 		case JALR_UNARY_OPCODE_Y1: | ||
|  | 		case JRP_UNARY_OPCODE_Y1: | ||
|  | 		case JR_UNARY_OPCODE_Y1: | ||
|  | 		case LNK_UNARY_OPCODE_Y1: | ||
|  | 			return 1; | ||
|  | 		default: | ||
|  | 			return 0; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	switch (get_Opcode_X1(insn)) { | ||
|  | 	case BRANCH_OPCODE_X1:	/* branch instructions */ | ||
|  | 	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */ | ||
|  | 		return 1; | ||
|  | 
 | ||
|  | 	case RRR_0_OPCODE_X1:   /* other jump instructions */ | ||
|  | 		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1) | ||
|  | 			return 0; | ||
|  | 		switch (get_UnaryOpcodeExtension_X1(insn)) { | ||
|  | 		case JALRP_UNARY_OPCODE_X1: | ||
|  | 		case JALR_UNARY_OPCODE_X1: | ||
|  | 		case JRP_UNARY_OPCODE_X1: | ||
|  | 		case JR_UNARY_OPCODE_X1: | ||
|  | 		case LNK_UNARY_OPCODE_X1: | ||
|  | 			return 1; | ||
|  | 		default: | ||
|  | 			return 0; | ||
|  | 		} | ||
|  | 	default: | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | ||
|  | { | ||
|  | 	unsigned long addr = (unsigned long)p->addr; | ||
|  | 
 | ||
|  | 	if (addr & (sizeof(kprobe_opcode_t) - 1)) | ||
|  | 		return -EINVAL; | ||
|  | 
 | ||
|  | 	if (insn_has_control(*p->addr)) { | ||
|  | 		pr_notice("Kprobes for control instructions are not " | ||
|  | 			  "supported\n"); | ||
|  | 		return -EINVAL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* insn: must be on special executable page on tile. */ | ||
|  | 	p->ainsn.insn = get_insn_slot(); | ||
|  | 	if (!p->ainsn.insn) | ||
|  | 		return -ENOMEM; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * In the kprobe->ainsn.insn[] array we store the original | ||
|  | 	 * instruction at index zero and a break trap instruction at | ||
|  | 	 * index one. | ||
|  | 	 */ | ||
|  | 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); | ||
|  | 	p->ainsn.insn[1] = breakpoint2_insn; | ||
|  | 	p->opcode = *p->addr; | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | ||
|  | { | ||
|  | 	unsigned long addr_wr; | ||
|  | 
 | ||
|  | 	/* Operate on writable kernel text mapping. */ | ||
|  | 	addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET; | ||
|  | 
 | ||
|  | 	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn, | ||
|  | 		sizeof(breakpoint_insn))) | ||
|  | 		pr_err("%s: failed to enable kprobe\n", __func__); | ||
|  | 
 | ||
|  | 	smp_wmb(); | ||
|  | 	flush_insn_slot(p); | ||
|  | } | ||
|  | 
 | ||
|  | void __kprobes arch_disarm_kprobe(struct kprobe *kp) | ||
|  | { | ||
|  | 	unsigned long addr_wr; | ||
|  | 
 | ||
|  | 	/* Operate on writable kernel text mapping. */ | ||
|  | 	addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET; | ||
|  | 
 | ||
|  | 	if (probe_kernel_write((void *)addr_wr, &kp->opcode, | ||
|  | 		sizeof(kp->opcode))) | ||
|  | 		pr_err("%s: failed to enable kprobe\n", __func__); | ||
|  | 
 | ||
|  | 	smp_wmb(); | ||
|  | 	flush_insn_slot(kp); | ||
|  | } | ||
|  | 
 | ||
|  | void __kprobes arch_remove_kprobe(struct kprobe *p) | ||
|  | { | ||
|  | 	if (p->ainsn.insn) { | ||
|  | 		free_insn_slot(p->ainsn.insn, 0); | ||
|  | 		p->ainsn.insn = NULL; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
|  | { | ||
|  | 	kcb->prev_kprobe.kp = kprobe_running(); | ||
|  | 	kcb->prev_kprobe.status = kcb->kprobe_status; | ||
|  | 	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc; | ||
|  | } | ||
|  | 
 | ||
|  | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
|  | { | ||
|  | 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | ||
|  | 	kcb->kprobe_status = kcb->prev_kprobe.status; | ||
|  | 	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc; | ||
|  | } | ||
|  | 
 | ||
|  | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | ||
|  | 			struct kprobe_ctlblk *kcb) | ||
|  | { | ||
|  | 	__this_cpu_write(current_kprobe, p); | ||
|  | 	kcb->kprobe_saved_pc = regs->pc; | ||
|  | } | ||
|  | 
 | ||
|  | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | ||
|  | { | ||
|  | 	/* Single step inline if the instruction is a break. */ | ||
|  | 	if (p->opcode == breakpoint_insn || | ||
|  | 	    p->opcode == breakpoint2_insn) | ||
|  | 		regs->pc = (unsigned long)p->addr; | ||
|  | 	else | ||
|  | 		regs->pc = (unsigned long)&p->ainsn.insn[0]; | ||
|  | } | ||
|  | 
 | ||
|  | static int __kprobes kprobe_handler(struct pt_regs *regs) | ||
|  | { | ||
|  | 	struct kprobe *p; | ||
|  | 	int ret = 0; | ||
|  | 	kprobe_opcode_t *addr; | ||
|  | 	struct kprobe_ctlblk *kcb; | ||
|  | 
 | ||
|  | 	addr = (kprobe_opcode_t *)regs->pc; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * We don't want to be preempted for the entire | ||
|  | 	 * duration of kprobe processing. | ||
|  | 	 */ | ||
|  | 	preempt_disable(); | ||
|  | 	kcb = get_kprobe_ctlblk(); | ||
|  | 
 | ||
|  | 	/* Check we're not actually recursing. */ | ||
|  | 	if (kprobe_running()) { | ||
|  | 		p = get_kprobe(addr); | ||
|  | 		if (p) { | ||
|  | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | ||
|  | 			    p->ainsn.insn[0] == breakpoint_insn) { | ||
|  | 				goto no_kprobe; | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * We have reentered the kprobe_handler(), since | ||
|  | 			 * another probe was hit while within the handler. | ||
|  | 			 * We here save the original kprobes variables and | ||
|  | 			 * just single step on the instruction of the new probe | ||
|  | 			 * without calling any user handlers. | ||
|  | 			 */ | ||
|  | 			save_previous_kprobe(kcb); | ||
|  | 			set_current_kprobe(p, regs, kcb); | ||
|  | 			kprobes_inc_nmissed_count(p); | ||
|  | 			prepare_singlestep(p, regs); | ||
|  | 			kcb->kprobe_status = KPROBE_REENTER; | ||
|  | 			return 1; | ||
|  | 		} else { | ||
|  | 			if (*addr != breakpoint_insn) { | ||
|  | 				/*
 | ||
|  | 				 * The breakpoint instruction was removed by | ||
|  | 				 * another cpu right after we hit, no further | ||
|  | 				 * handling of this interrupt is appropriate. | ||
|  | 				 */ | ||
|  | 				ret = 1; | ||
|  | 				goto no_kprobe; | ||
|  | 			} | ||
|  | 			p = __this_cpu_read(current_kprobe); | ||
|  | 			if (p->break_handler && p->break_handler(p, regs)) | ||
|  | 				goto ss_probe; | ||
|  | 		} | ||
|  | 		goto no_kprobe; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	p = get_kprobe(addr); | ||
|  | 	if (!p) { | ||
|  | 		if (*addr != breakpoint_insn) { | ||
|  | 			/*
 | ||
|  | 			 * The breakpoint instruction was removed right | ||
|  | 			 * after we hit it.  Another cpu has removed | ||
|  | 			 * either a probepoint or a debugger breakpoint | ||
|  | 			 * at this address.  In either case, no further | ||
|  | 			 * handling of this interrupt is appropriate. | ||
|  | 			 */ | ||
|  | 			ret = 1; | ||
|  | 		} | ||
|  | 		/* Not one of ours: let kernel handle it. */ | ||
|  | 		goto no_kprobe; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	set_current_kprobe(p, regs, kcb); | ||
|  | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | ||
|  | 
 | ||
|  | 	if (p->pre_handler && p->pre_handler(p, regs)) { | ||
|  | 		/* Handler has already set things up, so skip ss setup. */ | ||
|  | 		return 1; | ||
|  | 	} | ||
|  | 
 | ||
|  | ss_probe: | ||
|  | 	prepare_singlestep(p, regs); | ||
|  | 	kcb->kprobe_status = KPROBE_HIT_SS; | ||
|  | 	return 1; | ||
|  | 
 | ||
|  | no_kprobe: | ||
|  | 	preempt_enable_no_resched(); | ||
|  | 	return ret; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Called after single-stepping.  p->addr is the address of the | ||
|  |  * instruction that has been replaced by the breakpoint. To avoid the | ||
|  |  * SMP problems that can occur when we temporarily put back the | ||
|  |  * original opcode to single-step, we single-stepped a copy of the | ||
|  |  * instruction.  The address of this copy is p->ainsn.insn. | ||
|  |  * | ||
|  |  * This function prepares to return from the post-single-step | ||
|  |  * breakpoint trap. | ||
|  |  */ | ||
|  | static void __kprobes resume_execution(struct kprobe *p, | ||
|  | 				       struct pt_regs *regs, | ||
|  | 				       struct kprobe_ctlblk *kcb) | ||
|  | { | ||
|  | 	unsigned long orig_pc = kcb->kprobe_saved_pc; | ||
|  | 	regs->pc = orig_pc + 8; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int post_kprobe_handler(struct pt_regs *regs) | ||
|  | { | ||
|  | 	struct kprobe *cur = kprobe_running(); | ||
|  | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
|  | 
 | ||
|  | 	if (!cur) | ||
|  | 		return 0; | ||
|  | 
 | ||
|  | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | ||
|  | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | ||
|  | 		cur->post_handler(cur, regs, 0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	resume_execution(cur, regs, kcb); | ||
|  | 
 | ||
|  | 	/* Restore back the original saved kprobes variables and continue. */ | ||
|  | 	if (kcb->kprobe_status == KPROBE_REENTER) { | ||
|  | 		restore_previous_kprobe(kcb); | ||
|  | 		goto out; | ||
|  | 	} | ||
|  | 	reset_current_kprobe(); | ||
|  | out: | ||
|  | 	preempt_enable_no_resched(); | ||
|  | 
 | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | ||
|  | { | ||
|  | 	struct kprobe *cur = kprobe_running(); | ||
|  | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
|  | 
 | ||
|  | 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | ||
|  | 		return 1; | ||
|  | 
 | ||
|  | 	if (kcb->kprobe_status & KPROBE_HIT_SS) { | ||
|  | 		/*
 | ||
|  | 		 * We are here because the instruction being single | ||
|  | 		 * stepped caused a page fault. We reset the current | ||
|  | 		 * kprobe and the ip points back to the probe address | ||
|  | 		 * and allow the page fault handler to continue as a | ||
|  | 		 * normal page fault. | ||
|  | 		 */ | ||
|  | 		resume_execution(cur, regs, kcb); | ||
|  | 		reset_current_kprobe(); | ||
|  | 		preempt_enable_no_resched(); | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Wrapper routine for handling exceptions. | ||
|  |  */ | ||
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | ||
|  | 				       unsigned long val, void *data) | ||
|  | { | ||
|  | 	struct die_args *args = (struct die_args *)data; | ||
|  | 	int ret = NOTIFY_DONE; | ||
|  | 
 | ||
|  | 	switch (val) { | ||
|  | 	case DIE_BREAK: | ||
|  | 		if (kprobe_handler(args->regs)) | ||
|  | 			ret = NOTIFY_STOP; | ||
|  | 		break; | ||
|  | 	case DIE_SSTEPBP: | ||
|  | 		if (post_kprobe_handler(args->regs)) | ||
|  | 			ret = NOTIFY_STOP; | ||
|  | 		break; | ||
|  | 	case DIE_PAGE_FAULT: | ||
|  | 		/* kprobe_running() needs smp_processor_id(). */ | ||
|  | 		preempt_disable(); | ||
|  | 
 | ||
|  | 		if (kprobe_running() | ||
|  | 		    && kprobe_fault_handler(args->regs, args->trapnr)) | ||
|  | 			ret = NOTIFY_STOP; | ||
|  | 		preempt_enable(); | ||
|  | 		break; | ||
|  | 	default: | ||
|  | 		break; | ||
|  | 	} | ||
|  | 	return ret; | ||
|  | } | ||
|  | 
 | ||
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
|  | { | ||
|  | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | ||
|  | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
|  | 
 | ||
|  | 	kcb->jprobe_saved_regs = *regs; | ||
|  | 	kcb->jprobe_saved_sp = regs->sp; | ||
|  | 
 | ||
|  | 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, | ||
|  | 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | ||
|  | 
 | ||
|  | 	regs->pc = (unsigned long)(jp->entry); | ||
|  | 
 | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* Defined in the inline asm below. */ | ||
|  | void jprobe_return_end(void); | ||
|  | 
 | ||
|  | void __kprobes jprobe_return(void) | ||
|  | { | ||
|  | 	asm volatile( | ||
|  | 		"bpt\n\t" | ||
|  | 		".globl jprobe_return_end\n" | ||
|  | 		"jprobe_return_end:\n"); | ||
|  | } | ||
|  | 
 | ||
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | ||
|  | { | ||
|  | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
|  | 
 | ||
|  | 	if (regs->pc >= (unsigned long)jprobe_return && | ||
|  | 	    regs->pc <= (unsigned long)jprobe_return_end) { | ||
|  | 		*regs = kcb->jprobe_saved_regs; | ||
|  | 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, | ||
|  | 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | ||
|  | 		preempt_enable_no_resched(); | ||
|  | 
 | ||
|  | 		return 1; | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Function return probe trampoline: | ||
|  |  * - init_kprobes() establishes a probepoint here | ||
|  |  * - When the probed function returns, this probe causes the | ||
|  |  *   handlers to fire | ||
|  |  */ | ||
|  | static void __used kretprobe_trampoline_holder(void) | ||
|  | { | ||
|  | 	asm volatile( | ||
|  | 		"nop\n\t" | ||
|  | 		".global kretprobe_trampoline\n" | ||
|  | 		"kretprobe_trampoline:\n\t" | ||
|  | 		"nop\n\t" | ||
|  | 		: : : "memory"); | ||
|  | } | ||
|  | 
 | ||
|  | void kretprobe_trampoline(void); | ||
|  | 
 | ||
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | ||
|  | 				      struct pt_regs *regs) | ||
|  | { | ||
|  | 	ri->ret_addr = (kprobe_opcode_t *) regs->lr; | ||
|  | 
 | ||
|  | 	/* Replace the return addr with trampoline addr */ | ||
|  | 	regs->lr = (unsigned long)kretprobe_trampoline; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Called when the probe at kretprobe trampoline is hit. | ||
|  |  */ | ||
|  | static int __kprobes trampoline_probe_handler(struct kprobe *p, | ||
|  | 						struct pt_regs *regs) | ||
|  | { | ||
|  | 	struct kretprobe_instance *ri = NULL; | ||
|  | 	struct hlist_head *head, empty_rp; | ||
|  | 	struct hlist_node *tmp; | ||
|  | 	unsigned long flags, orig_ret_address = 0; | ||
|  | 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; | ||
|  | 
 | ||
|  | 	INIT_HLIST_HEAD(&empty_rp); | ||
|  | 	kretprobe_hash_lock(current, &head, &flags); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * It is possible to have multiple instances associated with a given | ||
|  | 	 * task either because multiple functions in the call path have | ||
|  | 	 * a return probe installed on them, and/or more than one return | ||
|  | 	 * return probe was registered for a target function. | ||
|  | 	 * | ||
|  | 	 * We can handle this because: | ||
|  | 	 *     - instances are always inserted at the head of the list | ||
|  | 	 *     - when multiple return probes are registered for the same | ||
|  | 	 *       function, the first instance's ret_addr will point to the | ||
|  | 	 *       real return address, and all the rest will point to | ||
|  | 	 *       kretprobe_trampoline | ||
|  | 	 */ | ||
|  | 	hlist_for_each_entry_safe(ri, tmp, head, hlist) { | ||
|  | 		if (ri->task != current) | ||
|  | 			/* another task is sharing our hash bucket */ | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		if (ri->rp && ri->rp->handler) | ||
|  | 			ri->rp->handler(ri, regs); | ||
|  | 
 | ||
|  | 		orig_ret_address = (unsigned long)ri->ret_addr; | ||
|  | 		recycle_rp_inst(ri, &empty_rp); | ||
|  | 
 | ||
|  | 		if (orig_ret_address != trampoline_address) { | ||
|  | 			/*
 | ||
|  | 			 * This is the real return address. Any other | ||
|  | 			 * instances associated with this task are for | ||
|  | 			 * other calls deeper on the call stack | ||
|  | 			 */ | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | ||
|  | 	instruction_pointer(regs) = orig_ret_address; | ||
|  | 
 | ||
|  | 	reset_current_kprobe(); | ||
|  | 	kretprobe_hash_unlock(current, &flags); | ||
|  | 	preempt_enable_no_resched(); | ||
|  | 
 | ||
|  | 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | ||
|  | 		hlist_del(&ri->hlist); | ||
|  | 		kfree(ri); | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * By returning a non-zero value, we are telling | ||
|  | 	 * kprobe_handler() that we don't want the post_handler | ||
|  | 	 * to run (and have re-enabled preemption) | ||
|  | 	 */ | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | ||
|  | { | ||
|  | 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) | ||
|  | 		return 1; | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | static struct kprobe trampoline_p = { | ||
|  | 	.addr = (kprobe_opcode_t *)kretprobe_trampoline, | ||
|  | 	.pre_handler = trampoline_probe_handler | ||
|  | }; | ||
|  | 
 | ||
|  | int __init arch_init_kprobes(void) | ||
|  | { | ||
|  | 	register_kprobe(&trampoline_p); | ||
|  | 	return 0; | ||
|  | } |