972 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			972 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | |||
|  |  *	linux/arch/alpha/kernel/pci_iommu.c | |||
|  |  */ | |||
|  | 
 | |||
|  | #include <linux/kernel.h>
 | |||
|  | #include <linux/mm.h>
 | |||
|  | #include <linux/pci.h>
 | |||
|  | #include <linux/slab.h>
 | |||
|  | #include <linux/bootmem.h>
 | |||
|  | 
 | |||
|  | #include <asm/io.h>
 | |||
|  | #include <asm/hwrpb.h>
 | |||
|  | 
 | |||
|  | #include "proto.h"
 | |||
|  | #include "pci_impl.h"
 | |||
|  | 
 | |||
|  | 
 | |||
|  | #define DEBUG_ALLOC 0
 | |||
|  | #if DEBUG_ALLOC > 0
 | |||
|  | # define DBGA(args...)		printk(KERN_DEBUG args)
 | |||
|  | #else
 | |||
|  | # define DBGA(args...)
 | |||
|  | #endif
 | |||
|  | #if DEBUG_ALLOC > 1
 | |||
|  | # define DBGA2(args...)		printk(KERN_DEBUG args)
 | |||
|  | #else
 | |||
|  | # define DBGA2(args...)
 | |||
|  | #endif
 | |||
|  | 
 | |||
|  | #define DEBUG_NODIRECT 0
 | |||
|  | #define DEBUG_FORCEDAC 0
 | |||
|  | 
 | |||
|  | #define ISA_DMA_MASK		0x00ffffff
 | |||
|  | 
 | |||
|  | static inline unsigned long | |||
|  | mk_iommu_pte(unsigned long paddr) | |||
|  | { | |||
|  | 	return (paddr >> (PAGE_SHIFT-1)) | 1; | |||
|  | } | |||
|  | 
 | |||
|  | static inline long | |||
|  | calc_npages(long bytes) | |||
|  | { | |||
|  | 	return (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; | |||
|  | } | |||
|  |  | |||
|  | 
 | |||
|  | /* Return the minimum of MAX or the first power of two larger
 | |||
|  |    than main memory.  */ | |||
|  | 
 | |||
|  | unsigned long | |||
|  | size_for_memory(unsigned long max) | |||
|  | { | |||
|  | 	unsigned long mem = max_low_pfn << PAGE_SHIFT; | |||
|  | 	if (mem < max) | |||
|  | 		max = 1UL << ceil_log2(mem); | |||
|  | 	return max; | |||
|  | } | |||
|  |  | |||
|  | struct pci_iommu_arena * | |||
|  | iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, | |||
|  | 		     unsigned long window_size, unsigned long align) | |||
|  | { | |||
|  | 	unsigned long mem_size; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 
 | |||
|  | 	mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long)); | |||
|  | 
 | |||
|  | 	/* Note that the TLB lookup logic uses bitwise concatenation,
 | |||
|  | 	   not addition, so the required arena alignment is based on | |||
|  | 	   the size of the window.  Retain the align parameter so that | |||
|  | 	   particular systems can over-align the arena.  */ | |||
|  | 	if (align < mem_size) | |||
|  | 		align = mem_size; | |||
|  | 
 | |||
|  | 
 | |||
|  | #ifdef CONFIG_DISCONTIGMEM
 | |||
|  | 
 | |||
|  |         if (!NODE_DATA(nid) || | |||
|  |             (NULL == (arena = alloc_bootmem_node(NODE_DATA(nid), | |||
|  |                                                  sizeof(*arena))))) { | |||
|  |                 printk("%s: couldn't allocate arena from node %d\n" | |||
|  |                        "    falling back to system-wide allocation\n", | |||
|  |                        __FUNCTION__, nid); | |||
|  |                 arena = alloc_bootmem(sizeof(*arena)); | |||
|  |         } | |||
|  | 
 | |||
|  |         if (!NODE_DATA(nid) || | |||
|  |             (NULL == (arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), | |||
|  |                                                          mem_size, | |||
|  |                                                          align, | |||
|  |                                                          0)))) { | |||
|  |                 printk("%s: couldn't allocate arena ptes from node %d\n" | |||
|  |                        "    falling back to system-wide allocation\n", | |||
|  |                        __FUNCTION__, nid); | |||
|  |                 arena->ptes = __alloc_bootmem(mem_size, align, 0); | |||
|  |         } | |||
|  | 
 | |||
|  | #else /* CONFIG_DISCONTIGMEM */
 | |||
|  | 
 | |||
|  | 	arena = alloc_bootmem(sizeof(*arena)); | |||
|  | 	arena->ptes = __alloc_bootmem(mem_size, align, 0); | |||
|  | 
 | |||
|  | #endif /* CONFIG_DISCONTIGMEM */
 | |||
|  | 
 | |||
|  | 	spin_lock_init(&arena->lock); | |||
|  | 	arena->hose = hose; | |||
|  | 	arena->dma_base = base; | |||
|  | 	arena->size = window_size; | |||
|  | 	arena->next_entry = 0; | |||
|  | 
 | |||
|  | 	/* Align allocations to a multiple of a page size.  Not needed
 | |||
|  | 	   unless there are chip bugs.  */ | |||
|  | 	arena->align_entry = 1; | |||
|  | 
 | |||
|  | 	return arena; | |||
|  | } | |||
|  | 
 | |||
|  | struct pci_iommu_arena * | |||
|  | iommu_arena_new(struct pci_controller *hose, dma_addr_t base, | |||
|  | 		unsigned long window_size, unsigned long align) | |||
|  | { | |||
|  | 	return iommu_arena_new_node(0, hose, base, window_size, align); | |||
|  | } | |||
|  | 
 | |||
|  | /* Must be called with the arena lock held */ | |||
|  | static long | |||
|  | iommu_arena_find_pages(struct pci_iommu_arena *arena, long n, long mask) | |||
|  | { | |||
|  | 	unsigned long *ptes; | |||
|  | 	long i, p, nent; | |||
|  | 
 | |||
|  | 	/* Search forward for the first mask-aligned sequence of N free ptes */ | |||
|  | 	ptes = arena->ptes; | |||
|  | 	nent = arena->size >> PAGE_SHIFT; | |||
|  | 	p = (arena->next_entry + mask) & ~mask; | |||
|  | 	i = 0; | |||
|  | 	while (i < n && p+i < nent) { | |||
|  | 		if (ptes[p+i]) | |||
|  | 			p = (p + i + 1 + mask) & ~mask, i = 0; | |||
|  | 		else | |||
|  | 			i = i + 1; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	if (i < n) { | |||
|  |                 /* Reached the end.  Flush the TLB and restart the
 | |||
|  |                    search from the beginning.  */ | |||
|  | 		alpha_mv.mv_pci_tbi(arena->hose, 0, -1); | |||
|  | 
 | |||
|  | 		p = 0, i = 0; | |||
|  | 		while (i < n && p+i < nent) { | |||
|  | 			if (ptes[p+i]) | |||
|  | 				p = (p + i + 1 + mask) & ~mask, i = 0; | |||
|  | 			else | |||
|  | 				i = i + 1; | |||
|  | 		} | |||
|  | 
 | |||
|  | 		if (i < n) | |||
|  | 			return -1; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Success. It's the responsibility of the caller to mark them
 | |||
|  | 	   in use before releasing the lock */ | |||
|  | 	return p; | |||
|  | } | |||
|  | 
 | |||
|  | static long | |||
|  | iommu_arena_alloc(struct pci_iommu_arena *arena, long n, unsigned int align) | |||
|  | { | |||
|  | 	unsigned long flags; | |||
|  | 	unsigned long *ptes; | |||
|  | 	long i, p, mask; | |||
|  | 
 | |||
|  | 	spin_lock_irqsave(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	/* Search for N empty ptes */ | |||
|  | 	ptes = arena->ptes; | |||
|  | 	mask = max(align, arena->align_entry) - 1; | |||
|  | 	p = iommu_arena_find_pages(arena, n, mask); | |||
|  | 	if (p < 0) { | |||
|  | 		spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 		return -1; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Success.  Mark them all in use, ie not zero and invalid
 | |||
|  | 	   for the iommu tlb that could load them from under us. | |||
|  | 	   The chip specific bits will fill this in with something | |||
|  | 	   kosher when we return.  */ | |||
|  | 	for (i = 0; i < n; ++i) | |||
|  | 		ptes[p+i] = IOMMU_INVALID_PTE; | |||
|  | 
 | |||
|  | 	arena->next_entry = p + n; | |||
|  | 	spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	return p; | |||
|  | } | |||
|  | 
 | |||
|  | static void | |||
|  | iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) | |||
|  | { | |||
|  | 	unsigned long *p; | |||
|  | 	long i; | |||
|  | 
 | |||
|  | 	p = arena->ptes + ofs; | |||
|  | 	for (i = 0; i < n; ++i) | |||
|  | 		p[i] = 0; | |||
|  | } | |||
|  |  | |||
|  | /* Map a single buffer of the indicated size for PCI DMA in streaming
 | |||
|  |    mode.  The 32-bit PCI bus mastering address to use is returned. | |||
|  |    Once the device is given the dma address, the device owns this memory | |||
|  |    until either pci_unmap_single or pci_dma_sync_single is performed.  */ | |||
|  | 
 | |||
|  | static dma_addr_t | |||
|  | pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, | |||
|  | 		 int dac_allowed) | |||
|  | { | |||
|  | 	struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | |||
|  | 	dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 	long npages, dma_ofs, i; | |||
|  | 	unsigned long paddr; | |||
|  | 	dma_addr_t ret; | |||
|  | 	unsigned int align = 0; | |||
|  | 
 | |||
|  | 	paddr = __pa(cpu_addr); | |||
|  | 
 | |||
|  | #if !DEBUG_NODIRECT
 | |||
|  | 	/* First check to see if we can use the direct map window.  */ | |||
|  | 	if (paddr + size + __direct_map_base - 1 <= max_dma | |||
|  | 	    && paddr + size <= __direct_map_size) { | |||
|  | 		ret = paddr + __direct_map_base; | |||
|  | 
 | |||
|  | 		DBGA2("pci_map_single: [%p,%lx] -> direct %lx from %p\n", | |||
|  | 		      cpu_addr, size, ret, __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 		return ret; | |||
|  | 	} | |||
|  | #endif
 | |||
|  | 
 | |||
|  | 	/* Next, use DAC if selected earlier.  */ | |||
|  | 	if (dac_allowed) { | |||
|  | 		ret = paddr + alpha_mv.pci_dac_offset; | |||
|  | 
 | |||
|  | 		DBGA2("pci_map_single: [%p,%lx] -> DAC %lx from %p\n", | |||
|  | 		      cpu_addr, size, ret, __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 		return ret; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* If the machine doesn't define a pci_tbi routine, we have to
 | |||
|  | 	   assume it doesn't support sg mapping, and, since we tried to | |||
|  | 	   use direct_map above, it now must be considered an error. */ | |||
|  | 	if (! alpha_mv.mv_pci_tbi) { | |||
|  | 		static int been_here = 0; /* Only print the message once. */ | |||
|  | 		if (!been_here) { | |||
|  | 		    printk(KERN_WARNING "pci_map_single: no HW sg\n"); | |||
|  | 		    been_here = 1; | |||
|  | 		} | |||
|  | 		return 0; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	arena = hose->sg_pci; | |||
|  | 	if (!arena || arena->dma_base + arena->size - 1 > max_dma) | |||
|  | 		arena = hose->sg_isa; | |||
|  | 
 | |||
|  | 	npages = calc_npages((paddr & ~PAGE_MASK) + size); | |||
|  | 
 | |||
|  | 	/* Force allocation to 64KB boundary for ISA bridges. */ | |||
|  | 	if (pdev && pdev == isa_bridge) | |||
|  | 		align = 8; | |||
|  | 	dma_ofs = iommu_arena_alloc(arena, npages, align); | |||
|  | 	if (dma_ofs < 0) { | |||
|  | 		printk(KERN_WARNING "pci_map_single failed: " | |||
|  | 		       "could not allocate dma page tables\n"); | |||
|  | 		return 0; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	paddr &= PAGE_MASK; | |||
|  | 	for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | |||
|  | 		arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr); | |||
|  | 
 | |||
|  | 	ret = arena->dma_base + dma_ofs * PAGE_SIZE; | |||
|  | 	ret += (unsigned long)cpu_addr & ~PAGE_MASK; | |||
|  | 
 | |||
|  | 	DBGA2("pci_map_single: [%p,%lx] np %ld -> sg %lx from %p\n", | |||
|  | 	      cpu_addr, size, npages, ret, __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 	return ret; | |||
|  | } | |||
|  | 
 | |||
|  | dma_addr_t | |||
|  | pci_map_single(struct pci_dev *pdev, void *cpu_addr, size_t size, int dir) | |||
|  | { | |||
|  | 	int dac_allowed;  | |||
|  | 
 | |||
|  | 	if (dir == PCI_DMA_NONE) | |||
|  | 		BUG(); | |||
|  | 
 | |||
|  | 	dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;  | |||
|  | 	return pci_map_single_1(pdev, cpu_addr, size, dac_allowed); | |||
|  | } | |||
|  | 
 | |||
|  | dma_addr_t | |||
|  | pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset, | |||
|  | 	     size_t size, int dir) | |||
|  | { | |||
|  | 	int dac_allowed; | |||
|  | 
 | |||
|  | 	if (dir == PCI_DMA_NONE) | |||
|  | 		BUG(); | |||
|  | 
 | |||
|  | 	dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;  | |||
|  | 	return pci_map_single_1(pdev, (char *)page_address(page) + offset,  | |||
|  | 				size, dac_allowed); | |||
|  | } | |||
|  | 
 | |||
|  | /* Unmap a single streaming mode DMA translation.  The DMA_ADDR and
 | |||
|  |    SIZE must match what was provided for in a previous pci_map_single | |||
|  |    call.  All other usages are undefined.  After this call, reads by | |||
|  |    the cpu to the buffer are guaranteed to see whatever the device | |||
|  |    wrote there.  */ | |||
|  | 
 | |||
|  | void | |||
|  | pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | |||
|  | 		 int direction) | |||
|  | { | |||
|  | 	unsigned long flags; | |||
|  | 	struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 	long dma_ofs, npages; | |||
|  | 
 | |||
|  | 	if (direction == PCI_DMA_NONE) | |||
|  | 		BUG(); | |||
|  | 
 | |||
|  | 	if (dma_addr >= __direct_map_base | |||
|  | 	    && dma_addr < __direct_map_base + __direct_map_size) { | |||
|  | 		/* Nothing to do.  */ | |||
|  | 
 | |||
|  | 		DBGA2("pci_unmap_single: direct [%lx,%lx] from %p\n", | |||
|  | 		      dma_addr, size, __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 		return; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	if (dma_addr > 0xffffffff) { | |||
|  | 		DBGA2("pci64_unmap_single: DAC [%lx,%lx] from %p\n", | |||
|  | 		      dma_addr, size, __builtin_return_address(0)); | |||
|  | 		return; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	arena = hose->sg_pci; | |||
|  | 	if (!arena || dma_addr < arena->dma_base) | |||
|  | 		arena = hose->sg_isa; | |||
|  | 
 | |||
|  | 	dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT; | |||
|  | 	if (dma_ofs * PAGE_SIZE >= arena->size) { | |||
|  | 		printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %lx " | |||
|  | 		       " base %lx size %x\n", dma_addr, arena->dma_base, | |||
|  | 		       arena->size); | |||
|  | 		return; | |||
|  | 		BUG(); | |||
|  | 	} | |||
|  | 
 | |||
|  | 	npages = calc_npages((dma_addr & ~PAGE_MASK) + size); | |||
|  | 
 | |||
|  | 	spin_lock_irqsave(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	iommu_arena_free(arena, dma_ofs, npages); | |||
|  | 
 | |||
|  |         /* If we're freeing ptes above the `next_entry' pointer (they
 | |||
|  |            may have snuck back into the TLB since the last wrap flush), | |||
|  |            we need to flush the TLB before reallocating the latter.  */ | |||
|  | 	if (dma_ofs >= arena->next_entry) | |||
|  | 		alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1); | |||
|  | 
 | |||
|  | 	spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	DBGA2("pci_unmap_single: sg [%lx,%lx] np %ld from %p\n", | |||
|  | 	      dma_addr, size, npages, __builtin_return_address(0)); | |||
|  | } | |||
|  | 
 | |||
|  | void | |||
|  | pci_unmap_page(struct pci_dev *pdev, dma_addr_t dma_addr, | |||
|  | 	       size_t size, int direction) | |||
|  | { | |||
|  | 	pci_unmap_single(pdev, dma_addr, size, direction); | |||
|  | } | |||
|  | 
 | |||
|  | /* Allocate and map kernel buffer using consistent mode DMA for PCI
 | |||
|  |    device.  Returns non-NULL cpu-view pointer to the buffer if | |||
|  |    successful and sets *DMA_ADDRP to the pci side dma address as well, | |||
|  |    else DMA_ADDRP is undefined.  */ | |||
|  | 
 | |||
|  | void * | |||
|  | pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) | |||
|  | { | |||
|  | 	void *cpu_addr; | |||
|  | 	long order = get_order(size); | |||
|  | 	int gfp = GFP_ATOMIC; | |||
|  | 
 | |||
|  | try_again: | |||
|  | 	cpu_addr = (void *)__get_free_pages(gfp, order); | |||
|  | 	if (! cpu_addr) { | |||
|  | 		printk(KERN_INFO "pci_alloc_consistent: " | |||
|  | 		       "get_free_pages failed from %p\n", | |||
|  | 			__builtin_return_address(0)); | |||
|  | 		/* ??? Really atomic allocation?  Otherwise we could play
 | |||
|  | 		   with vmalloc and sg if we can't find contiguous memory.  */ | |||
|  | 		return NULL; | |||
|  | 	} | |||
|  | 	memset(cpu_addr, 0, size); | |||
|  | 
 | |||
|  | 	*dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0); | |||
|  | 	if (*dma_addrp == 0) { | |||
|  | 		free_pages((unsigned long)cpu_addr, order); | |||
|  | 		if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA)) | |||
|  | 			return NULL; | |||
|  | 		/* The address doesn't fit required mask and we
 | |||
|  | 		   do not have iommu. Try again with GFP_DMA. */ | |||
|  | 		gfp |= GFP_DMA; | |||
|  | 		goto try_again; | |||
|  | 	} | |||
|  | 		 | |||
|  | 	DBGA2("pci_alloc_consistent: %lx -> [%p,%x] from %p\n", | |||
|  | 	      size, cpu_addr, *dma_addrp, __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 	return cpu_addr; | |||
|  | } | |||
|  | 
 | |||
|  | /* Free and unmap a consistent DMA buffer.  CPU_ADDR and DMA_ADDR must
 | |||
|  |    be values that were returned from pci_alloc_consistent.  SIZE must | |||
|  |    be the same as what as passed into pci_alloc_consistent. | |||
|  |    References to the memory and mappings associated with CPU_ADDR or | |||
|  |    DMA_ADDR past this call are illegal.  */ | |||
|  | 
 | |||
|  | void | |||
|  | pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu_addr, | |||
|  | 		    dma_addr_t dma_addr) | |||
|  | { | |||
|  | 	pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); | |||
|  | 	free_pages((unsigned long)cpu_addr, get_order(size)); | |||
|  | 
 | |||
|  | 	DBGA2("pci_free_consistent: [%x,%lx] from %p\n", | |||
|  | 	      dma_addr, size, __builtin_return_address(0)); | |||
|  | } | |||
|  | 
 | |||
|  | 
 | |||
|  | /* Classify the elements of the scatterlist.  Write dma_address
 | |||
|  |    of each element with: | |||
|  | 	0   : Followers all physically adjacent. | |||
|  | 	1   : Followers all virtually adjacent. | |||
|  | 	-1  : Not leader, physically adjacent to previous. | |||
|  | 	-2  : Not leader, virtually adjacent to previous. | |||
|  |    Write dma_length of each leader with the combined lengths of | |||
|  |    the mergable followers.  */ | |||
|  | 
 | |||
|  | #define SG_ENT_VIRT_ADDRESS(SG) (page_address((SG)->page) + (SG)->offset)
 | |||
|  | #define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG))
 | |||
|  | 
 | |||
|  | static void | |||
|  | sg_classify(struct scatterlist *sg, struct scatterlist *end, int virt_ok) | |||
|  | { | |||
|  | 	unsigned long next_paddr; | |||
|  | 	struct scatterlist *leader; | |||
|  | 	long leader_flag, leader_length; | |||
|  | 
 | |||
|  | 	leader = sg; | |||
|  | 	leader_flag = 0; | |||
|  | 	leader_length = leader->length; | |||
|  | 	next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length; | |||
|  | 
 | |||
|  | 	for (++sg; sg < end; ++sg) { | |||
|  | 		unsigned long addr, len; | |||
|  | 		addr = SG_ENT_PHYS_ADDRESS(sg); | |||
|  | 		len = sg->length; | |||
|  | 
 | |||
|  | 		if (next_paddr == addr) { | |||
|  | 			sg->dma_address = -1; | |||
|  | 			leader_length += len; | |||
|  | 		} else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) { | |||
|  | 			sg->dma_address = -2; | |||
|  | 			leader_flag = 1; | |||
|  | 			leader_length += len; | |||
|  | 		} else { | |||
|  | 			leader->dma_address = leader_flag; | |||
|  | 			leader->dma_length = leader_length; | |||
|  | 			leader = sg; | |||
|  | 			leader_flag = 0; | |||
|  | 			leader_length = len; | |||
|  | 		} | |||
|  | 
 | |||
|  | 		next_paddr = addr + len; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	leader->dma_address = leader_flag; | |||
|  | 	leader->dma_length = leader_length; | |||
|  | } | |||
|  | 
 | |||
|  | /* Given a scatterlist leader, choose an allocation method and fill
 | |||
|  |    in the blanks.  */ | |||
|  | 
 | |||
|  | static int | |||
|  | sg_fill(struct scatterlist *leader, struct scatterlist *end, | |||
|  | 	struct scatterlist *out, struct pci_iommu_arena *arena, | |||
|  | 	dma_addr_t max_dma, int dac_allowed) | |||
|  | { | |||
|  | 	unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader); | |||
|  | 	long size = leader->dma_length; | |||
|  | 	struct scatterlist *sg; | |||
|  | 	unsigned long *ptes; | |||
|  | 	long npages, dma_ofs, i; | |||
|  | 
 | |||
|  | #if !DEBUG_NODIRECT
 | |||
|  | 	/* If everything is physically contiguous, and the addresses
 | |||
|  | 	   fall into the direct-map window, use it.  */ | |||
|  | 	if (leader->dma_address == 0 | |||
|  | 	    && paddr + size + __direct_map_base - 1 <= max_dma | |||
|  | 	    && paddr + size <= __direct_map_size) { | |||
|  | 		out->dma_address = paddr + __direct_map_base; | |||
|  | 		out->dma_length = size; | |||
|  | 
 | |||
|  | 		DBGA("    sg_fill: [%p,%lx] -> direct %lx\n", | |||
|  | 		     __va(paddr), size, out->dma_address); | |||
|  | 
 | |||
|  | 		return 0; | |||
|  | 	} | |||
|  | #endif
 | |||
|  | 
 | |||
|  | 	/* If physically contiguous and DAC is available, use it.  */ | |||
|  | 	if (leader->dma_address == 0 && dac_allowed) { | |||
|  | 		out->dma_address = paddr + alpha_mv.pci_dac_offset; | |||
|  | 		out->dma_length = size; | |||
|  | 
 | |||
|  | 		DBGA("    sg_fill: [%p,%lx] -> DAC %lx\n", | |||
|  | 		     __va(paddr), size, out->dma_address); | |||
|  | 
 | |||
|  | 		return 0; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Otherwise, we'll use the iommu to make the pages virtually
 | |||
|  | 	   contiguous.  */ | |||
|  | 
 | |||
|  | 	paddr &= ~PAGE_MASK; | |||
|  | 	npages = calc_npages(paddr + size); | |||
|  | 	dma_ofs = iommu_arena_alloc(arena, npages, 0); | |||
|  | 	if (dma_ofs < 0) { | |||
|  | 		/* If we attempted a direct map above but failed, die.  */ | |||
|  | 		if (leader->dma_address == 0) | |||
|  | 			return -1; | |||
|  | 
 | |||
|  | 		/* Otherwise, break up the remaining virtually contiguous
 | |||
|  | 		   hunks into individual direct maps and retry.  */ | |||
|  | 		sg_classify(leader, end, 0); | |||
|  | 		return sg_fill(leader, end, out, arena, max_dma, dac_allowed); | |||
|  | 	} | |||
|  | 
 | |||
|  | 	out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr; | |||
|  | 	out->dma_length = size; | |||
|  | 
 | |||
|  | 	DBGA("    sg_fill: [%p,%lx] -> sg %lx np %ld\n", | |||
|  | 	     __va(paddr), size, out->dma_address, npages); | |||
|  | 
 | |||
|  | 	/* All virtually contiguous.  We need to find the length of each
 | |||
|  | 	   physically contiguous subsegment to fill in the ptes.  */ | |||
|  | 	ptes = &arena->ptes[dma_ofs]; | |||
|  | 	sg = leader; | |||
|  | 	do { | |||
|  | #if DEBUG_ALLOC > 0
 | |||
|  | 		struct scatterlist *last_sg = sg; | |||
|  | #endif
 | |||
|  | 
 | |||
|  | 		size = sg->length; | |||
|  | 		paddr = SG_ENT_PHYS_ADDRESS(sg); | |||
|  | 
 | |||
|  | 		while (sg+1 < end && (int) sg[1].dma_address == -1) { | |||
|  | 			size += sg[1].length; | |||
|  | 			sg++; | |||
|  | 		} | |||
|  | 
 | |||
|  | 		npages = calc_npages((paddr & ~PAGE_MASK) + size); | |||
|  | 
 | |||
|  | 		paddr &= PAGE_MASK; | |||
|  | 		for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | |||
|  | 			*ptes++ = mk_iommu_pte(paddr); | |||
|  | 
 | |||
|  | #if DEBUG_ALLOC > 0
 | |||
|  | 		DBGA("    (%ld) [%p,%x] np %ld\n", | |||
|  | 		     last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | |||
|  | 		     last_sg->length, npages); | |||
|  | 		while (++last_sg <= sg) { | |||
|  | 			DBGA("        (%ld) [%p,%x] cont\n", | |||
|  | 			     last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | |||
|  | 			     last_sg->length); | |||
|  | 		} | |||
|  | #endif
 | |||
|  | 	} while (++sg < end && (int) sg->dma_address < 0); | |||
|  | 
 | |||
|  | 	return 1; | |||
|  | } | |||
|  | 
 | |||
|  | int | |||
|  | pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | |||
|  | 	   int direction) | |||
|  | { | |||
|  | 	struct scatterlist *start, *end, *out; | |||
|  | 	struct pci_controller *hose; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 	dma_addr_t max_dma; | |||
|  | 	int dac_allowed; | |||
|  | 
 | |||
|  | 	if (direction == PCI_DMA_NONE) | |||
|  | 		BUG(); | |||
|  | 
 | |||
|  | 	dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | |||
|  | 
 | |||
|  | 	/* Fast path single entry scatterlists.  */ | |||
|  | 	if (nents == 1) { | |||
|  | 		sg->dma_length = sg->length; | |||
|  | 		sg->dma_address | |||
|  | 		  = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg), | |||
|  | 				     sg->length, dac_allowed); | |||
|  | 		return sg->dma_address != 0; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	start = sg; | |||
|  | 	end = sg + nents; | |||
|  | 
 | |||
|  | 	/* First, prepare information about the entries.  */ | |||
|  | 	sg_classify(sg, end, alpha_mv.mv_pci_tbi != 0); | |||
|  | 
 | |||
|  | 	/* Second, figure out where we're going to map things.  */ | |||
|  | 	if (alpha_mv.mv_pci_tbi) { | |||
|  | 		hose = pdev ? pdev->sysdata : pci_isa_hose; | |||
|  | 		max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | |||
|  | 		arena = hose->sg_pci; | |||
|  | 		if (!arena || arena->dma_base + arena->size - 1 > max_dma) | |||
|  | 			arena = hose->sg_isa; | |||
|  | 	} else { | |||
|  | 		max_dma = -1; | |||
|  | 		arena = NULL; | |||
|  | 		hose = NULL; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Third, iterate over the scatterlist leaders and allocate
 | |||
|  | 	   dma space as needed.  */ | |||
|  | 	for (out = sg; sg < end; ++sg) { | |||
|  | 		if ((int) sg->dma_address < 0) | |||
|  | 			continue; | |||
|  | 		if (sg_fill(sg, end, out, arena, max_dma, dac_allowed) < 0) | |||
|  | 			goto error; | |||
|  | 		out++; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Mark the end of the list for pci_unmap_sg.  */ | |||
|  | 	if (out < end) | |||
|  | 		out->dma_length = 0; | |||
|  | 
 | |||
|  | 	if (out - start == 0) | |||
|  | 		printk(KERN_WARNING "pci_map_sg failed: no entries?\n"); | |||
|  | 	DBGA("pci_map_sg: %ld entries\n", out - start); | |||
|  | 
 | |||
|  | 	return out - start; | |||
|  | 
 | |||
|  |  error: | |||
|  | 	printk(KERN_WARNING "pci_map_sg failed: " | |||
|  | 	       "could not allocate dma page tables\n"); | |||
|  | 
 | |||
|  | 	/* Some allocation failed while mapping the scatterlist
 | |||
|  | 	   entries.  Unmap them now.  */ | |||
|  | 	if (out > start) | |||
|  | 		pci_unmap_sg(pdev, start, out - start, direction); | |||
|  | 	return 0; | |||
|  | } | |||
|  | 
 | |||
|  | /* Unmap a set of streaming mode DMA translations.  Again, cpu read
 | |||
|  |    rules concerning calls here are the same as for pci_unmap_single() | |||
|  |    above.  */ | |||
|  | 
 | |||
|  | void | |||
|  | pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | |||
|  | 	     int direction) | |||
|  | { | |||
|  | 	unsigned long flags; | |||
|  | 	struct pci_controller *hose; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 	struct scatterlist *end; | |||
|  | 	dma_addr_t max_dma; | |||
|  | 	dma_addr_t fbeg, fend; | |||
|  | 
 | |||
|  | 	if (direction == PCI_DMA_NONE) | |||
|  | 		BUG(); | |||
|  | 
 | |||
|  | 	if (! alpha_mv.mv_pci_tbi) | |||
|  | 		return; | |||
|  | 
 | |||
|  | 	hose = pdev ? pdev->sysdata : pci_isa_hose; | |||
|  | 	max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | |||
|  | 	arena = hose->sg_pci; | |||
|  | 	if (!arena || arena->dma_base + arena->size - 1 > max_dma) | |||
|  | 		arena = hose->sg_isa; | |||
|  | 
 | |||
|  | 	fbeg = -1, fend = 0; | |||
|  | 
 | |||
|  | 	spin_lock_irqsave(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	for (end = sg + nents; sg < end; ++sg) { | |||
|  | 		dma64_addr_t addr; | |||
|  | 		size_t size; | |||
|  | 		long npages, ofs; | |||
|  | 		dma_addr_t tend; | |||
|  | 
 | |||
|  | 		addr = sg->dma_address; | |||
|  | 		size = sg->dma_length; | |||
|  | 		if (!size) | |||
|  | 			break; | |||
|  | 
 | |||
|  | 		if (addr > 0xffffffff) { | |||
|  | 			/* It's a DAC address -- nothing to do.  */ | |||
|  | 			DBGA("    (%ld) DAC [%lx,%lx]\n", | |||
|  | 			      sg - end + nents, addr, size); | |||
|  | 			continue; | |||
|  | 		} | |||
|  | 
 | |||
|  | 		if (addr >= __direct_map_base | |||
|  | 		    && addr < __direct_map_base + __direct_map_size) { | |||
|  | 			/* Nothing to do.  */ | |||
|  | 			DBGA("    (%ld) direct [%lx,%lx]\n", | |||
|  | 			      sg - end + nents, addr, size); | |||
|  | 			continue; | |||
|  | 		} | |||
|  | 
 | |||
|  | 		DBGA("    (%ld) sg [%lx,%lx]\n", | |||
|  | 		     sg - end + nents, addr, size); | |||
|  | 
 | |||
|  | 		npages = calc_npages((addr & ~PAGE_MASK) + size); | |||
|  | 		ofs = (addr - arena->dma_base) >> PAGE_SHIFT; | |||
|  | 		iommu_arena_free(arena, ofs, npages); | |||
|  | 
 | |||
|  | 		tend = addr + size - 1; | |||
|  | 		if (fbeg > addr) fbeg = addr; | |||
|  | 		if (fend < tend) fend = tend; | |||
|  | 	} | |||
|  | 
 | |||
|  |         /* If we're freeing ptes above the `next_entry' pointer (they
 | |||
|  |            may have snuck back into the TLB since the last wrap flush), | |||
|  |            we need to flush the TLB before reallocating the latter.  */ | |||
|  | 	if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry) | |||
|  | 		alpha_mv.mv_pci_tbi(hose, fbeg, fend); | |||
|  | 
 | |||
|  | 	spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); | |||
|  | } | |||
|  | 
 | |||
|  | 
 | |||
|  | /* Return whether the given PCI device DMA address mask can be
 | |||
|  |    supported properly.  */ | |||
|  | 
 | |||
|  | int | |||
|  | pci_dma_supported(struct pci_dev *pdev, u64 mask) | |||
|  | { | |||
|  | 	struct pci_controller *hose; | |||
|  | 	struct pci_iommu_arena *arena; | |||
|  | 
 | |||
|  | 	/* If there exists a direct map, and the mask fits either
 | |||
|  | 	   the entire direct mapped space or the total system memory as | |||
|  | 	   shifted by the map base */ | |||
|  | 	if (__direct_map_size != 0 | |||
|  | 	    && (__direct_map_base + __direct_map_size - 1 <= mask || | |||
|  | 		__direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask)) | |||
|  | 		return 1; | |||
|  | 
 | |||
|  | 	/* Check that we have a scatter-gather arena that fits.  */ | |||
|  | 	hose = pdev ? pdev->sysdata : pci_isa_hose; | |||
|  | 	arena = hose->sg_isa; | |||
|  | 	if (arena && arena->dma_base + arena->size - 1 <= mask) | |||
|  | 		return 1; | |||
|  | 	arena = hose->sg_pci; | |||
|  | 	if (arena && arena->dma_base + arena->size - 1 <= mask) | |||
|  | 		return 1; | |||
|  | 
 | |||
|  | 	/* As last resort try ZONE_DMA.  */ | |||
|  | 	if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask) | |||
|  | 		return 1; | |||
|  | 
 | |||
|  | 	return 0; | |||
|  | } | |||
|  | 
 | |||
|  |  | |||
|  | /*
 | |||
|  |  * AGP GART extensions to the IOMMU | |||
|  |  */ | |||
|  | int | |||
|  | iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask)  | |||
|  | { | |||
|  | 	unsigned long flags; | |||
|  | 	unsigned long *ptes; | |||
|  | 	long i, p; | |||
|  | 
 | |||
|  | 	if (!arena) return -EINVAL; | |||
|  | 
 | |||
|  | 	spin_lock_irqsave(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	/* Search for N empty ptes.  */ | |||
|  | 	ptes = arena->ptes; | |||
|  | 	p = iommu_arena_find_pages(arena, pg_count, align_mask); | |||
|  | 	if (p < 0) { | |||
|  | 		spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 		return -1; | |||
|  | 	} | |||
|  | 
 | |||
|  | 	/* Success.  Mark them all reserved (ie not zero and invalid)
 | |||
|  | 	   for the iommu tlb that could load them from under us. | |||
|  | 	   They will be filled in with valid bits by _bind() */ | |||
|  | 	for (i = 0; i < pg_count; ++i) | |||
|  | 		ptes[p+i] = IOMMU_RESERVED_PTE; | |||
|  | 
 | |||
|  | 	arena->next_entry = p + pg_count; | |||
|  | 	spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	return p; | |||
|  | } | |||
|  | 
 | |||
|  | int  | |||
|  | iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count) | |||
|  | { | |||
|  | 	unsigned long *ptes; | |||
|  | 	long i; | |||
|  | 
 | |||
|  | 	if (!arena) return -EINVAL; | |||
|  | 
 | |||
|  | 	ptes = arena->ptes; | |||
|  | 
 | |||
|  | 	/* Make sure they're all reserved first... */ | |||
|  | 	for(i = pg_start; i < pg_start + pg_count; i++) | |||
|  | 		if (ptes[i] != IOMMU_RESERVED_PTE) | |||
|  | 			return -EBUSY; | |||
|  | 
 | |||
|  | 	iommu_arena_free(arena, pg_start, pg_count); | |||
|  | 	return 0; | |||
|  | } | |||
|  | 
 | |||
|  | int | |||
|  | iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count,  | |||
|  | 	   unsigned long *physaddrs) | |||
|  | { | |||
|  | 	unsigned long flags; | |||
|  | 	unsigned long *ptes; | |||
|  | 	long i, j; | |||
|  | 
 | |||
|  | 	if (!arena) return -EINVAL; | |||
|  | 	 | |||
|  | 	spin_lock_irqsave(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	ptes = arena->ptes; | |||
|  | 
 | |||
|  | 	for(j = pg_start; j < pg_start + pg_count; j++) { | |||
|  | 		if (ptes[j] != IOMMU_RESERVED_PTE) { | |||
|  | 			spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 			return -EBUSY; | |||
|  | 		} | |||
|  | 	} | |||
|  | 		 | |||
|  | 	for(i = 0, j = pg_start; i < pg_count; i++, j++) | |||
|  | 		ptes[j] = mk_iommu_pte(physaddrs[i]); | |||
|  | 
 | |||
|  | 	spin_unlock_irqrestore(&arena->lock, flags); | |||
|  | 
 | |||
|  | 	return 0; | |||
|  | } | |||
|  | 
 | |||
|  | int | |||
|  | iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) | |||
|  | { | |||
|  | 	unsigned long *p; | |||
|  | 	long i; | |||
|  | 
 | |||
|  | 	if (!arena) return -EINVAL; | |||
|  | 
 | |||
|  | 	p = arena->ptes + pg_start; | |||
|  | 	for(i = 0; i < pg_count; i++) | |||
|  | 		p[i] = IOMMU_RESERVED_PTE; | |||
|  | 
 | |||
|  | 	return 0; | |||
|  | } | |||
|  | 
 | |||
|  | /* True if the machine supports DAC addressing, and DEV can
 | |||
|  |    make use of it given MASK.  */ | |||
|  | 
 | |||
|  | int | |||
|  | pci_dac_dma_supported(struct pci_dev *dev, u64 mask) | |||
|  | { | |||
|  | 	dma64_addr_t dac_offset = alpha_mv.pci_dac_offset; | |||
|  | 	int ok = 1; | |||
|  | 
 | |||
|  | 	/* If this is not set, the machine doesn't support DAC at all.  */ | |||
|  | 	if (dac_offset == 0) | |||
|  | 		ok = 0; | |||
|  | 
 | |||
|  | 	/* The device has to be able to address our DAC bit.  */ | |||
|  | 	if ((dac_offset & dev->dma_mask) != dac_offset) | |||
|  | 		ok = 0; | |||
|  | 
 | |||
|  | 	/* If both conditions above are met, we are fine. */ | |||
|  | 	DBGA("pci_dac_dma_supported %s from %p\n", | |||
|  | 	     ok ? "yes" : "no", __builtin_return_address(0)); | |||
|  | 
 | |||
|  | 	return ok; | |||
|  | } | |||
|  | 
 | |||
|  | dma64_addr_t | |||
|  | pci_dac_page_to_dma(struct pci_dev *pdev, struct page *page, | |||
|  | 		    unsigned long offset, int direction) | |||
|  | { | |||
|  | 	return (alpha_mv.pci_dac_offset | |||
|  | 		+ __pa(page_address(page))  | |||
|  | 		+ (dma64_addr_t) offset); | |||
|  | } | |||
|  | 
 | |||
|  | struct page * | |||
|  | pci_dac_dma_to_page(struct pci_dev *pdev, dma64_addr_t dma_addr) | |||
|  | { | |||
|  | 	unsigned long paddr = (dma_addr & PAGE_MASK) - alpha_mv.pci_dac_offset; | |||
|  | 	return virt_to_page(__va(paddr)); | |||
|  | } | |||
|  | 
 | |||
|  | unsigned long | |||
|  | pci_dac_dma_to_offset(struct pci_dev *pdev, dma64_addr_t dma_addr) | |||
|  | { | |||
|  | 	return (dma_addr & ~PAGE_MASK); | |||
|  | } | |||
|  | 
 | |||
|  | 
 | |||
|  | /* Helper for generic DMA-mapping functions. */ | |||
|  | 
 | |||
|  | struct pci_dev * | |||
|  | alpha_gendev_to_pci(struct device *dev) | |||
|  | { | |||
|  | 	if (dev && dev->bus == &pci_bus_type) | |||
|  | 		return to_pci_dev(dev); | |||
|  | 
 | |||
|  | 	/* Assume that non-PCI devices asking for DMA are either ISA or EISA,
 | |||
|  | 	   BUG() otherwise. */ | |||
|  | 	BUG_ON(!isa_bridge); | |||
|  | 
 | |||
|  | 	/* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA
 | |||
|  | 	   bridge is bus master then). */ | |||
|  | 	if (!dev || !dev->dma_mask || !*dev->dma_mask) | |||
|  | 		return isa_bridge; | |||
|  | 
 | |||
|  | 	/* For EISA bus masters, return isa_bridge (it might have smaller
 | |||
|  | 	   dma_mask due to wiring limitations). */ | |||
|  | 	if (*dev->dma_mask >= isa_bridge->dma_mask) | |||
|  | 		return isa_bridge; | |||
|  | 
 | |||
|  | 	/* This assumes ISA bus master with dma_mask 0xffffff. */ | |||
|  | 	return NULL; | |||
|  | } | |||
|  | 
 | |||
|  | int | |||
|  | dma_set_mask(struct device *dev, u64 mask) | |||
|  | { | |||
|  | 	if (!dev->dma_mask || | |||
|  | 	    !pci_dma_supported(alpha_gendev_to_pci(dev), mask)) | |||
|  | 		return -EIO; | |||
|  | 
 | |||
|  | 	*dev->dma_mask = mask; | |||
|  | 
 | |||
|  | 	return 0; | |||
|  | } |