249 lines
		
	
	
	
		
			9.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			249 lines
		
	
	
	
		
			9.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
 | ||
|  |  * linux/include/asm/dma.h: Defines for using and allocating dma channels. | ||
|  |  * Written by Hennus Bergman, 1992. | ||
|  |  * High DMA channel support & info by Hannu Savolainen | ||
|  |  * and John Boyd, Nov. 1992. | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifndef _ASM_APOLLO_DMA_H
 | ||
|  | #define _ASM_APOLLO_DMA_H
 | ||
|  | 
 | ||
|  | #include <asm/apollohw.h>		/* need byte IO */
 | ||
|  | #include <linux/spinlock.h>		/* And spinlocks */
 | ||
|  | #include <linux/delay.h>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define dma_outb(val,addr) (*((volatile unsigned char *)(addr+IO_BASE)) = (val))
 | ||
|  | #define dma_inb(addr)	   (*((volatile unsigned char *)(addr+IO_BASE)))
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * NOTES about DMA transfers: | ||
|  |  * | ||
|  |  *  controller 1: channels 0-3, byte operations, ports 00-1F | ||
|  |  *  controller 2: channels 4-7, word operations, ports C0-DF | ||
|  |  * | ||
|  |  *  - ALL registers are 8 bits only, regardless of transfer size | ||
|  |  *  - channel 4 is not used - cascades 1 into 2. | ||
|  |  *  - channels 0-3 are byte - addresses/counts are for physical bytes | ||
|  |  *  - channels 5-7 are word - addresses/counts are for physical words | ||
|  |  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries | ||
|  |  *  - transfer count loaded to registers is 1 less than actual count | ||
|  |  *  - controller 2 offsets are all even (2x offsets for controller 1) | ||
|  |  *  - page registers for 5-7 don't use data bit 0, represent 128K pages | ||
|  |  *  - page registers for 0-3 use bit 0, represent 64K pages | ||
|  |  * | ||
|  |  * DMA transfers are limited to the lower 16MB of _physical_ memory. | ||
|  |  * Note that addresses loaded into registers must be _physical_ addresses, | ||
|  |  * not logical addresses (which may differ if paging is active). | ||
|  |  * | ||
|  |  *  Address mapping for channels 0-3: | ||
|  |  * | ||
|  |  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses) | ||
|  |  *    |  ...  |   |  ... |   |  ... | | ||
|  |  *    |  ...  |   |  ... |   |  ... | | ||
|  |  *    |  ...  |   |  ... |   |  ... | | ||
|  |  *   P7  ...  P0  A7 ... A0  A7 ... A0 | ||
|  |  * |    Page    | Addr MSB | Addr LSB |   (DMA registers) | ||
|  |  * | ||
|  |  *  Address mapping for channels 5-7: | ||
|  |  * | ||
|  |  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses) | ||
|  |  *    |  ...  |   \   \   ... \  \  \  ... \  \ | ||
|  |  *    |  ...  |    \   \   ... \  \  \  ... \  (not used) | ||
|  |  *    |  ...  |     \   \   ... \  \  \  ... \ | ||
|  |  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0 | ||
|  |  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers) | ||
|  |  * | ||
|  |  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses | ||
|  |  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at | ||
|  |  * the hardware level, so odd-byte transfers aren't possible). | ||
|  |  * | ||
|  |  * Transfer count (_not # bytes_) is limited to 64K, represented as actual | ||
|  |  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more, | ||
|  |  * and up to 128K bytes may be transferred on channels 5-7 in one operation. | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #define MAX_DMA_CHANNELS	8
 | ||
|  | 
 | ||
|  | /* The maximum address that we can perform a DMA transfer to on this platform */#define MAX_DMA_ADDRESS      (PAGE_OFFSET+0x1000000)
 | ||
|  | 
 | ||
|  | /* 8237 DMA controllers */ | ||
|  | #define IO_DMA1_BASE	0x10C00	/* 8 bit slave DMA, channels 0..3 */
 | ||
|  | #define IO_DMA2_BASE	0x10D00	/* 16 bit master DMA, ch 4(=slave input)..7 */
 | ||
|  | 
 | ||
|  | /* DMA controller registers */ | ||
|  | #define DMA1_CMD_REG		(IO_DMA1_BASE+0x08) /* command register (w) */
 | ||
|  | #define DMA1_STAT_REG		(IO_DMA1_BASE+0x08) /* status register (r) */
 | ||
|  | #define DMA1_REQ_REG            (IO_DMA1_BASE+0x09) /* request register (w) */
 | ||
|  | #define DMA1_MASK_REG		(IO_DMA1_BASE+0x0A) /* single-channel mask (w) */
 | ||
|  | #define DMA1_MODE_REG		(IO_DMA1_BASE+0x0B) /* mode register (w) */
 | ||
|  | #define DMA1_CLEAR_FF_REG	(IO_DMA1_BASE+0x0C) /* clear pointer flip-flop (w) */
 | ||
|  | #define DMA1_TEMP_REG           (IO_DMA1_BASE+0x0D) /* Temporary Register (r) */
 | ||
|  | #define DMA1_RESET_REG		(IO_DMA1_BASE+0x0D) /* Master Clear (w) */
 | ||
|  | #define DMA1_CLR_MASK_REG       (IO_DMA1_BASE+0x0E) /* Clear Mask */
 | ||
|  | #define DMA1_MASK_ALL_REG       (IO_DMA1_BASE+0x0F) /* all-channels mask (w) */
 | ||
|  | 
 | ||
|  | #define DMA2_CMD_REG		(IO_DMA2_BASE+0x10) /* command register (w) */
 | ||
|  | #define DMA2_STAT_REG		(IO_DMA2_BASE+0x10) /* status register (r) */
 | ||
|  | #define DMA2_REQ_REG            (IO_DMA2_BASE+0x12) /* request register (w) */
 | ||
|  | #define DMA2_MASK_REG		(IO_DMA2_BASE+0x14) /* single-channel mask (w) */
 | ||
|  | #define DMA2_MODE_REG		(IO_DMA2_BASE+0x16) /* mode register (w) */
 | ||
|  | #define DMA2_CLEAR_FF_REG	(IO_DMA2_BASE+0x18) /* clear pointer flip-flop (w) */
 | ||
|  | #define DMA2_TEMP_REG           (IO_DMA2_BASE+0x1A) /* Temporary Register (r) */
 | ||
|  | #define DMA2_RESET_REG		(IO_DMA2_BASE+0x1A) /* Master Clear (w) */
 | ||
|  | #define DMA2_CLR_MASK_REG       (IO_DMA2_BASE+0x1C) /* Clear Mask */
 | ||
|  | #define DMA2_MASK_ALL_REG       (IO_DMA2_BASE+0x1E) /* all-channels mask (w) */
 | ||
|  | 
 | ||
|  | #define DMA_ADDR_0              (IO_DMA1_BASE+0x00) /* DMA address registers */
 | ||
|  | #define DMA_ADDR_1              (IO_DMA1_BASE+0x02)
 | ||
|  | #define DMA_ADDR_2              (IO_DMA1_BASE+0x04)
 | ||
|  | #define DMA_ADDR_3              (IO_DMA1_BASE+0x06)
 | ||
|  | #define DMA_ADDR_4              (IO_DMA2_BASE+0x00)
 | ||
|  | #define DMA_ADDR_5              (IO_DMA2_BASE+0x04)
 | ||
|  | #define DMA_ADDR_6              (IO_DMA2_BASE+0x08)
 | ||
|  | #define DMA_ADDR_7              (IO_DMA2_BASE+0x0C)
 | ||
|  | 
 | ||
|  | #define DMA_CNT_0               (IO_DMA1_BASE+0x01)   /* DMA count registers */
 | ||
|  | #define DMA_CNT_1               (IO_DMA1_BASE+0x03)
 | ||
|  | #define DMA_CNT_2               (IO_DMA1_BASE+0x05)
 | ||
|  | #define DMA_CNT_3               (IO_DMA1_BASE+0x07)
 | ||
|  | #define DMA_CNT_4               (IO_DMA2_BASE+0x02)
 | ||
|  | #define DMA_CNT_5               (IO_DMA2_BASE+0x06)
 | ||
|  | #define DMA_CNT_6               (IO_DMA2_BASE+0x0A)
 | ||
|  | #define DMA_CNT_7               (IO_DMA2_BASE+0x0E)
 | ||
|  | 
 | ||
|  | #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
 | ||
|  | #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
 | ||
|  | #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
 | ||
|  | 
 | ||
|  | #define DMA_AUTOINIT	0x10
 | ||
|  | 
 | ||
|  | #define DMA_8BIT 0
 | ||
|  | #define DMA_16BIT 1
 | ||
|  | #define DMA_BUSMASTER 2
 | ||
|  | 
 | ||
|  | extern spinlock_t  dma_spin_lock; | ||
|  | 
 | ||
|  | static __inline__ unsigned long claim_dma_lock(void) | ||
|  | { | ||
|  | 	unsigned long flags; | ||
|  | 	spin_lock_irqsave(&dma_spin_lock, flags); | ||
|  | 	return flags; | ||
|  | } | ||
|  | 
 | ||
|  | static __inline__ void release_dma_lock(unsigned long flags) | ||
|  | { | ||
|  | 	spin_unlock_irqrestore(&dma_spin_lock, flags); | ||
|  | } | ||
|  | 
 | ||
|  | /* enable/disable a specific DMA channel */ | ||
|  | static __inline__ void enable_dma(unsigned int dmanr) | ||
|  | { | ||
|  | 	if (dmanr<=3) | ||
|  | 		dma_outb(dmanr,  DMA1_MASK_REG); | ||
|  | 	else | ||
|  | 		dma_outb(dmanr & 3,  DMA2_MASK_REG); | ||
|  | } | ||
|  | 
 | ||
|  | static __inline__ void disable_dma(unsigned int dmanr) | ||
|  | { | ||
|  | 	if (dmanr<=3) | ||
|  | 		dma_outb(dmanr | 4,  DMA1_MASK_REG); | ||
|  | 	else | ||
|  | 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG); | ||
|  | } | ||
|  | 
 | ||
|  | /* Clear the 'DMA Pointer Flip Flop'.
 | ||
|  |  * Write 0 for LSB/MSB, 1 for MSB/LSB access. | ||
|  |  * Use this once to initialize the FF to a known state. | ||
|  |  * After that, keep track of it. :-) | ||
|  |  * --- In order to do that, the DMA routines below should --- | ||
|  |  * --- only be used while holding the DMA lock ! --- | ||
|  |  */ | ||
|  | static __inline__ void clear_dma_ff(unsigned int dmanr) | ||
|  | { | ||
|  | 	if (dmanr<=3) | ||
|  | 		dma_outb(0,  DMA1_CLEAR_FF_REG); | ||
|  | 	else | ||
|  | 		dma_outb(0,  DMA2_CLEAR_FF_REG); | ||
|  | } | ||
|  | 
 | ||
|  | /* set mode (above) for a specific DMA channel */ | ||
|  | static __inline__ void set_dma_mode(unsigned int dmanr, char mode) | ||
|  | { | ||
|  | 	if (dmanr<=3) | ||
|  | 		dma_outb(mode | dmanr,  DMA1_MODE_REG); | ||
|  | 	else | ||
|  | 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG); | ||
|  | } | ||
|  | 
 | ||
|  | /* Set transfer address & page bits for specific DMA channel.
 | ||
|  |  * Assumes dma flipflop is clear. | ||
|  |  */ | ||
|  | static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) | ||
|  | { | ||
|  | 	if (dmanr <= 3)  { | ||
|  | 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); | ||
|  |             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); | ||
|  | 	}  else  { | ||
|  | 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); | ||
|  | 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 | ||
|  |  * a specific DMA channel. | ||
|  |  * You must ensure the parameters are valid. | ||
|  |  * NOTE: from a manual: "the number of transfers is one more | ||
|  |  * than the initial word count"! This is taken into account. | ||
|  |  * Assumes dma flip-flop is clear. | ||
|  |  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. | ||
|  |  */ | ||
|  | static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) | ||
|  | { | ||
|  |         count--; | ||
|  | 	if (dmanr <= 3)  { | ||
|  | 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); | ||
|  | 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); | ||
|  |         } else { | ||
|  | 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); | ||
|  | 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); | ||
|  |         } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Get DMA residue count. After a DMA transfer, this
 | ||
|  |  * should return zero. Reading this while a DMA transfer is | ||
|  |  * still in progress will return unpredictable results. | ||
|  |  * If called before the channel has been used, it may return 1. | ||
|  |  * Otherwise, it returns the number of _bytes_ left to transfer. | ||
|  |  * | ||
|  |  * Assumes DMA flip-flop is clear. | ||
|  |  */ | ||
|  | static __inline__ int get_dma_residue(unsigned int dmanr) | ||
|  | { | ||
|  | 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE | ||
|  | 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; | ||
|  | 
 | ||
|  | 	/* using short to get 16-bit wrap around */ | ||
|  | 	unsigned short count; | ||
|  | 
 | ||
|  | 	count = 1 + dma_inb(io_port); | ||
|  | 	count += dma_inb(io_port) << 8; | ||
|  | 
 | ||
|  | 	return (dmanr<=3)? count : (count<<1); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* These are in kernel/dma.c: */ | ||
|  | extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */ | ||
|  | extern void free_dma(unsigned int dmanr);	/* release it again */ | ||
|  | 
 | ||
|  | /* These are in arch/m68k/apollo/dma.c: */ | ||
|  | extern unsigned short dma_map_page(unsigned long phys_addr,int count,int type); | ||
|  | extern void dma_unmap_page(unsigned short dma_addr); | ||
|  | 
 | ||
|  | #endif /* _ASM_APOLLO_DMA_H */
 |