| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * linux/mm/compaction.c | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Memory compaction for the reduction of external fragmentation. Note that | 
					
						
							|  |  |  |  * this heavily depends upon page migration to do all the real heavy | 
					
						
							|  |  |  |  * lifting | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | #include <linux/swap.h>
 | 
					
						
							|  |  |  | #include <linux/migrate.h>
 | 
					
						
							|  |  |  | #include <linux/compaction.h>
 | 
					
						
							|  |  |  | #include <linux/mm_inline.h>
 | 
					
						
							|  |  |  | #include <linux/backing-dev.h>
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | #include <linux/sysctl.h>
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | #include <linux/sysfs.h>
 | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:42 -08:00
										 |  |  | #include <linux/balloon_compaction.h>
 | 
					
						
							| 
									
										
										
										
											2013-02-22 16:33:58 -08:00
										 |  |  | #include <linux/page-isolation.h>
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | #include "internal.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | #ifdef CONFIG_COMPACTION
 | 
					
						
							|  |  |  | static inline void count_compact_event(enum vm_event_item item) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	count_vm_event(item); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static inline void count_compact_events(enum vm_event_item item, long delta) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	count_vm_events(item, delta); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #define count_compact_event(item) do { } while (0)
 | 
					
						
							|  |  |  | #define count_compact_events(item, delta) do { } while (0)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | #if defined CONFIG_COMPACTION || defined CONFIG_CMA
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | #define CREATE_TRACE_POINTS
 | 
					
						
							|  |  |  | #include <trace/events/compaction.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | static unsigned long release_freepages(struct list_head *freelist) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct page *page, *next; | 
					
						
							|  |  |  | 	unsigned long count = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	list_for_each_entry_safe(page, next, freelist, lru) { | 
					
						
							|  |  |  | 		list_del(&page->lru); | 
					
						
							|  |  |  | 		__free_page(page); | 
					
						
							|  |  |  | 		count++; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return count; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | static void map_pages(struct list_head *list) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct page *page; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	list_for_each_entry(page, list, lru) { | 
					
						
							|  |  |  | 		arch_alloc_page(page, 0); | 
					
						
							|  |  |  | 		kernel_map_pages(page, 1, 1); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | static inline bool migrate_async_suitable(int migratetype) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | #ifdef CONFIG_COMPACTION
 | 
					
						
							|  |  |  | /* Returns true if the pageblock should be scanned for pages to isolate. */ | 
					
						
							|  |  |  | static inline bool isolation_suitable(struct compact_control *cc, | 
					
						
							|  |  |  | 					struct page *page) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	if (cc->ignore_skip_hint) | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return !get_pageblock_skip(page); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * This function is called to clear all cached information on pageblocks that | 
					
						
							|  |  |  |  * should be skipped for page isolation when the migrate and free page scanner | 
					
						
							|  |  |  |  * meet. | 
					
						
							|  |  |  |  */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:47 -07:00
										 |  |  | static void __reset_isolation_suitable(struct zone *zone) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	unsigned long start_pfn = zone->zone_start_pfn; | 
					
						
							| 
									
										
										
										
											2013-02-22 16:35:23 -08:00
										 |  |  | 	unsigned long end_pfn = zone_end_pfn(zone); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	unsigned long pfn; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	zone->compact_cached_migrate_pfn[0] = start_pfn; | 
					
						
							|  |  |  | 	zone->compact_cached_migrate_pfn[1] = start_pfn; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	zone->compact_cached_free_pfn = end_pfn; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:47 -07:00
										 |  |  | 	zone->compact_blockskip_flush = false; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	/* Walk the zone and mark every pageblock as suitable for isolation */ | 
					
						
							|  |  |  | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
					
						
							|  |  |  | 		struct page *page; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cond_resched(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (!pfn_valid(pfn)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		page = pfn_to_page(pfn); | 
					
						
							|  |  |  | 		if (zone != page_zone(page)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		clear_pageblock_skip(page); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:47 -07:00
										 |  |  | void reset_isolation_suitable(pg_data_t *pgdat) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int zoneid; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
					
						
							|  |  |  | 		struct zone *zone = &pgdat->node_zones[zoneid]; | 
					
						
							|  |  |  | 		if (!populated_zone(zone)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Only flush if a full compaction finished recently */ | 
					
						
							|  |  |  | 		if (zone->compact_blockskip_flush) | 
					
						
							|  |  |  | 			__reset_isolation_suitable(zone); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * If no pages were isolated then mark this pageblock to be skipped in the | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:47 -07:00
										 |  |  |  * future. The information is later cleared by __reset_isolation_suitable(). | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | static void update_pageblock_skip(struct compact_control *cc, | 
					
						
							|  |  |  | 			struct page *page, unsigned long nr_isolated, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 			bool set_unsuitable, bool migrate_scanner) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	struct zone *zone = cc->zone; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	unsigned long pfn; | 
					
						
							| 
									
										
										
										
											2013-12-18 17:08:52 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	if (cc->ignore_skip_hint) | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	if (!page) | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	if (nr_isolated) | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Only skip pageblocks when all forms of compaction will be known to | 
					
						
							|  |  |  | 	 * fail in the near future. | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	if (set_unsuitable) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		set_pageblock_skip(page); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	pfn = page_to_pfn(page); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Update where async and sync compaction should restart */ | 
					
						
							|  |  |  | 	if (migrate_scanner) { | 
					
						
							|  |  |  | 		if (cc->finished_update_migrate) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 		if (pfn > zone->compact_cached_migrate_pfn[0]) | 
					
						
							|  |  |  | 			zone->compact_cached_migrate_pfn[0] = pfn; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		if (cc->mode != MIGRATE_ASYNC && | 
					
						
							|  |  |  | 		    pfn > zone->compact_cached_migrate_pfn[1]) | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 			zone->compact_cached_migrate_pfn[1] = pfn; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		if (cc->finished_update_free) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 		if (pfn < zone->compact_cached_free_pfn) | 
					
						
							|  |  |  | 			zone->compact_cached_free_pfn = pfn; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | static inline bool isolation_suitable(struct compact_control *cc, | 
					
						
							|  |  |  | 					struct page *page) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | static void update_pageblock_skip(struct compact_control *cc, | 
					
						
							|  |  |  | 			struct page *page, unsigned long nr_isolated, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 			bool set_unsuitable, bool migrate_scanner) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | { | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* CONFIG_COMPACTION */
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | static inline bool should_release_lock(spinlock_t *lock) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	return need_resched() || spin_is_contended(lock); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * Compaction requires the taking of some coarse locks that are potentially | 
					
						
							|  |  |  |  * very heavily contended. Check if the process needs to be scheduled or | 
					
						
							|  |  |  |  * if the lock is contended. For async compaction, back out in the event | 
					
						
							|  |  |  |  * if contention is severe. For sync compaction, schedule. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Returns true if the lock is held. | 
					
						
							|  |  |  |  * Returns false if the lock is released and compaction should abort | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, | 
					
						
							|  |  |  | 				      bool locked, struct compact_control *cc) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 	if (should_release_lock(lock)) { | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 		if (locked) { | 
					
						
							|  |  |  | 			spin_unlock_irqrestore(lock, *flags); | 
					
						
							|  |  |  | 			locked = false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* async aborts if taking too long or contended */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		if (cc->mode == MIGRATE_ASYNC) { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:27 -07:00
										 |  |  | 			cc->contended = true; | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cond_resched(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!locked) | 
					
						
							|  |  |  | 		spin_lock_irqsave(lock, *flags); | 
					
						
							|  |  |  | 	return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * Aside from avoiding lock contention, compaction also periodically checks | 
					
						
							|  |  |  |  * need_resched() and either schedules in sync compaction or aborts async | 
					
						
							|  |  |  |  * compaction. This is similar to what compact_checklock_irqsave() does, but | 
					
						
							|  |  |  |  * is used where no lock is concerned. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Returns false when no scheduling was needed, or sync compaction scheduled. | 
					
						
							|  |  |  |  * Returns true when async compaction should abort. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static inline bool compact_should_abort(struct compact_control *cc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* async compaction aborts if contended */ | 
					
						
							|  |  |  | 	if (need_resched()) { | 
					
						
							|  |  |  | 		if (cc->mode == MIGRATE_ASYNC) { | 
					
						
							|  |  |  | 			cc->contended = true; | 
					
						
							|  |  |  | 			return true; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cond_resched(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return false; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | /* Returns true if the page is within a block suitable for migration to */ | 
					
						
							|  |  |  | static bool suitable_migration_target(struct page *page) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:03 -07:00
										 |  |  | 	/* If the page is a large free page, then disallow migration */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 	if (PageBuddy(page) && page_order(page) >= pageblock_order) | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:03 -07:00
										 |  |  | 		return false; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:03 -07:00
										 |  |  | 	if (migrate_async_suitable(get_pageblock_migratetype(page))) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		return true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Otherwise skip the block */ | 
					
						
							|  |  |  | 	return false; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | /*
 | 
					
						
							| 
									
										
										
										
											2013-11-12 15:07:12 -08:00
										 |  |  |  * Isolate free pages onto a private freelist. If @strict is true, will abort | 
					
						
							|  |  |  |  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock | 
					
						
							|  |  |  |  * (even though it may still end up isolating some pages). | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | static unsigned long isolate_freepages_block(struct compact_control *cc, | 
					
						
							|  |  |  | 				unsigned long blockpfn, | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | 				unsigned long end_pfn, | 
					
						
							|  |  |  | 				struct list_head *freelist, | 
					
						
							|  |  |  | 				bool strict) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 	int nr_scanned = 0, total_isolated = 0; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	struct page *cursor, *valid_page = NULL; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 	unsigned long flags; | 
					
						
							|  |  |  | 	bool locked = false; | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:04 -07:00
										 |  |  | 	bool checked_pageblock = false; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	cursor = pfn_to_page(blockpfn); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 	/* Isolate free pages. */ | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	for (; blockpfn < end_pfn; blockpfn++, cursor++) { | 
					
						
							|  |  |  | 		int isolated, i; | 
					
						
							|  |  |  | 		struct page *page = cursor; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 		nr_scanned++; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		if (!pfn_valid_within(blockpfn)) | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 			goto isolate_fail; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		if (!valid_page) | 
					
						
							|  |  |  | 			valid_page = page; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		if (!PageBuddy(page)) | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 			goto isolate_fail; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * The zone lock must be held to isolate freepages. | 
					
						
							|  |  |  | 		 * Unfortunately this is a very coarse lock and can be | 
					
						
							|  |  |  | 		 * heavily contended if there are parallel allocations | 
					
						
							|  |  |  | 		 * or parallel compactions. For async compaction do not | 
					
						
							|  |  |  | 		 * spin on the lock and we acquire the lock as late as | 
					
						
							|  |  |  | 		 * possible. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags, | 
					
						
							|  |  |  | 								locked, cc); | 
					
						
							|  |  |  | 		if (!locked) | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Recheck this is a suitable migration target under lock */ | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:04 -07:00
										 |  |  | 		if (!strict && !checked_pageblock) { | 
					
						
							|  |  |  | 			/*
 | 
					
						
							|  |  |  | 			 * We need to check suitability of pageblock only once | 
					
						
							|  |  |  | 			 * and this isolate_freepages_block() is called with | 
					
						
							|  |  |  | 			 * pageblock range, so just check once is sufficient. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			checked_pageblock = true; | 
					
						
							|  |  |  | 			if (!suitable_migration_target(page)) | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		/* Recheck this is a buddy page under lock */ | 
					
						
							|  |  |  | 		if (!PageBuddy(page)) | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 			goto isolate_fail; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/* Found a free page, break it into order-0 pages */ | 
					
						
							|  |  |  | 		isolated = split_free_page(page); | 
					
						
							|  |  |  | 		total_isolated += isolated; | 
					
						
							|  |  |  | 		for (i = 0; i < isolated; i++) { | 
					
						
							|  |  |  | 			list_add(&page->lru, freelist); | 
					
						
							|  |  |  | 			page++; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* If a page was split, advance to the end of it */ | 
					
						
							|  |  |  | 		if (isolated) { | 
					
						
							|  |  |  | 			blockpfn += isolated - 1; | 
					
						
							|  |  |  | 			cursor += isolated - 1; | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | isolate_fail: | 
					
						
							|  |  |  | 		if (strict) | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * If strict isolation is requested by CMA then check that all the | 
					
						
							|  |  |  | 	 * pages requested were isolated. If there were any failures, 0 is | 
					
						
							|  |  |  | 	 * returned and CMA will fail. | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-03-10 15:49:44 -07:00
										 |  |  | 	if (strict && blockpfn < end_pfn) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		total_isolated = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (locked) | 
					
						
							|  |  |  | 		spin_unlock_irqrestore(&cc->zone->lock, flags); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	/* Update the pageblock-skip if the whole pageblock was scanned */ | 
					
						
							|  |  |  | 	if (blockpfn == end_pfn) | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 		update_pageblock_skip(cc, valid_page, total_isolated, true, | 
					
						
							|  |  |  | 				      false); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned); | 
					
						
							| 
									
										
										
										
											2012-10-19 12:00:10 +01:00
										 |  |  | 	if (total_isolated) | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | 		count_compact_events(COMPACTISOLATED, total_isolated); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	return total_isolated; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * isolate_freepages_range() - isolate free pages. | 
					
						
							|  |  |  |  * @start_pfn: The first PFN to start isolating. | 
					
						
							|  |  |  |  * @end_pfn:   The one-past-last PFN. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Non-free pages, invalid PFNs, or zone boundaries within the | 
					
						
							|  |  |  |  * [start_pfn, end_pfn) range are considered errors, cause function to | 
					
						
							|  |  |  |  * undo its actions and return zero. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Otherwise, function returns one-past-the-last PFN of isolated page | 
					
						
							|  |  |  |  * (which may be greater then end_pfn if end fell in a middle of | 
					
						
							|  |  |  |  * a free page). | 
					
						
							|  |  |  |  */ | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | unsigned long | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | isolate_freepages_range(struct compact_control *cc, | 
					
						
							|  |  |  | 			unsigned long start_pfn, unsigned long end_pfn) | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 	unsigned long isolated, pfn, block_end_pfn; | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | 	LIST_HEAD(freelist); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | 			break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * On subsequent iterations ALIGN() is actually not needed, | 
					
						
							|  |  |  | 		 * but we keep it that we not to complicate the code. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); | 
					
						
							|  |  |  | 		block_end_pfn = min(block_end_pfn, end_pfn); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn, | 
					
						
							| 
									
										
										
										
											2012-01-30 13:24:03 +01:00
										 |  |  | 						   &freelist, true); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * In strict mode, isolate_freepages_block() returns 0 if | 
					
						
							|  |  |  | 		 * there are any holes in the block (ie. invalid PFNs or | 
					
						
							|  |  |  | 		 * non-free pages). | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if (!isolated) | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * If we managed to isolate pages, it is always (1 << n) * | 
					
						
							|  |  |  | 		 * pageblock_nr_pages for some non-negative n.  (Max order | 
					
						
							|  |  |  | 		 * page may span two pageblocks). | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* split_free_page does not map the pages */ | 
					
						
							|  |  |  | 	map_pages(&freelist); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (pfn < end_pfn) { | 
					
						
							|  |  |  | 		/* Loop terminated early, cleanup. */ | 
					
						
							|  |  |  | 		release_freepages(&freelist); | 
					
						
							|  |  |  | 		return 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* We don't use freelists for anything. */ | 
					
						
							|  |  |  | 	return pfn; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | /* Update the number of anon and file isolated pages in the zone */ | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	struct page *page; | 
					
						
							| 
									
										
										
										
											2011-10-31 17:06:44 -07:00
										 |  |  | 	unsigned int count[2] = { 0, }; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-10-31 17:06:44 -07:00
										 |  |  | 	list_for_each_entry(page, &cc->migratepages, lru) | 
					
						
							|  |  |  | 		count[!!page_is_file_cache(page)]++; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 	/* If locked we can use the interrupt unsafe versions */ | 
					
						
							|  |  |  | 	if (locked) { | 
					
						
							|  |  |  | 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); | 
					
						
							|  |  |  | 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); | 
					
						
							|  |  |  | 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Similar to reclaim, but different enough that they don't share logic */ | 
					
						
							|  |  |  | static bool too_many_isolated(struct zone *zone) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-09-09 16:38:00 -07:00
										 |  |  | 	unsigned long active, inactive, isolated; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) + | 
					
						
							|  |  |  | 					zone_page_state(zone, NR_INACTIVE_ANON); | 
					
						
							| 
									
										
										
										
											2010-09-09 16:38:00 -07:00
										 |  |  | 	active = zone_page_state(zone, NR_ACTIVE_FILE) + | 
					
						
							|  |  |  | 					zone_page_state(zone, NR_ACTIVE_ANON); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) + | 
					
						
							|  |  |  | 					zone_page_state(zone, NR_ISOLATED_ANON); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-09-09 16:38:00 -07:00
										 |  |  | 	return isolated > (inactive + active) / 2; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * isolate_migratepages_range() - isolate all migrate-able pages in range. | 
					
						
							|  |  |  |  * @zone:	Zone pages are in. | 
					
						
							|  |  |  |  * @cc:		Compaction control structure. | 
					
						
							|  |  |  |  * @low_pfn:	The first PFN of the range. | 
					
						
							|  |  |  |  * @end_pfn:	The one-past-the-last PFN of the range. | 
					
						
							| 
									
										
										
										
											2012-10-08 16:33:48 -07:00
										 |  |  |  * @unevictable: true if it allows to isolate unevictable pages | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  |  * | 
					
						
							|  |  |  |  * Isolate all pages that can be migrated from the range specified by | 
					
						
							|  |  |  |  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal | 
					
						
							|  |  |  |  * pending), otherwise PFN of the first page that was not scanned | 
					
						
							|  |  |  |  * (which may be both less, equal to or more then end_pfn). | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Assumes that cc->migratepages is empty and cc->nr_migratepages is | 
					
						
							|  |  |  |  * zero. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Apart from cc->migratepages and cc->nr_migratetypes this function | 
					
						
							|  |  |  |  * does not modify any cc's fields, in particular it does not modify | 
					
						
							|  |  |  |  * (or read for that matter) cc->migrate_pfn. | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | unsigned long | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | isolate_migratepages_range(struct zone *zone, struct compact_control *cc, | 
					
						
							| 
									
										
										
										
											2012-10-08 16:33:48 -07:00
										 |  |  | 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:59 -08:00
										 |  |  | 	unsigned long last_pageblock_nr = 0, pageblock_nr; | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 	unsigned long nr_scanned = 0, nr_isolated = 0; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	struct list_head *migratelist = &cc->migratepages; | 
					
						
							| 
									
										
										
										
											2012-05-29 15:07:09 -07:00
										 |  |  | 	struct lruvec *lruvec; | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 	unsigned long flags; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 	bool locked = false; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	struct page *page = NULL, *valid_page = NULL; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	bool set_unsuitable = true; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 	const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ? | 
					
						
							|  |  |  | 					ISOLATE_ASYNC_MIGRATE : 0) | | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:34 -07:00
										 |  |  | 				    (unevictable ? ISOLATE_UNEVICTABLE : 0); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Ensure that there are not too many pages isolated from the LRU | 
					
						
							|  |  |  | 	 * list by either parallel reclaimers or compaction. If there are, | 
					
						
							|  |  |  | 	 * delay for some time until fewer pages are isolated | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	while (unlikely(too_many_isolated(zone))) { | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | 		/* async migration should just abort */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		if (cc->mode == MIGRATE_ASYNC) | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 			return 0; | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		congestion_wait(BLK_RW_ASYNC, HZ/10); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (fatal_signal_pending(current)) | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 			return 0; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 	if (compact_should_abort(cc)) | 
					
						
							|  |  |  | 		return 0; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:31 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	/* Time to isolate some pages for migration */ | 
					
						
							|  |  |  | 	for (; low_pfn < end_pfn; low_pfn++) { | 
					
						
							| 
									
										
										
										
											2011-03-22 16:33:10 -07:00
										 |  |  | 		/* give a chance to irqs before checking need_resched() */ | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:05 -07:00
										 |  |  | 		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 			if (should_release_lock(&zone->lru_lock)) { | 
					
						
							|  |  |  | 				spin_unlock_irqrestore(&zone->lru_lock, flags); | 
					
						
							|  |  |  | 				locked = false; | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2011-03-22 16:33:10 -07:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-02-03 15:37:18 -08:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * migrate_pfn does not necessarily start aligned to a | 
					
						
							|  |  |  | 		 * pageblock. Ensure that pfn_valid is called when moving | 
					
						
							|  |  |  | 		 * into a new MAX_ORDER_NR_PAGES range in case of large | 
					
						
							|  |  |  | 		 * memory holes within the zone | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { | 
					
						
							|  |  |  | 			if (!pfn_valid(low_pfn)) { | 
					
						
							|  |  |  | 				low_pfn += MAX_ORDER_NR_PAGES - 1; | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		if (!pfn_valid_within(low_pfn)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 		nr_scanned++; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-02-08 17:13:38 -08:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Get the page and ensure the page is within the same zone. | 
					
						
							|  |  |  | 		 * See the comment in isolate_freepages about overlapping | 
					
						
							|  |  |  | 		 * nodes. It is deliberate that the new zone lock is not taken | 
					
						
							|  |  |  | 		 * as memory compaction should not move pages between nodes. | 
					
						
							|  |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		page = pfn_to_page(low_pfn); | 
					
						
							| 
									
										
										
										
											2012-02-08 17:13:38 -08:00
										 |  |  | 		if (page_zone(page) != zone) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		if (!valid_page) | 
					
						
							|  |  |  | 			valid_page = page; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* If isolation recently failed, do not retry */ | 
					
						
							|  |  |  | 		pageblock_nr = low_pfn >> pageblock_order; | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:06 -07:00
										 |  |  | 		if (last_pageblock_nr != pageblock_nr) { | 
					
						
							|  |  |  | 			int mt; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			last_pageblock_nr = pageblock_nr; | 
					
						
							|  |  |  | 			if (!isolation_suitable(cc, page)) | 
					
						
							|  |  |  | 				goto next_pageblock; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/*
 | 
					
						
							|  |  |  | 			 * For async migration, also only scan in MOVABLE | 
					
						
							|  |  |  | 			 * blocks. Async migration is optimistic to see if | 
					
						
							|  |  |  | 			 * the minimum amount of work satisfies the allocation | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			mt = get_pageblock_migratetype(page); | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 			if (cc->mode == MIGRATE_ASYNC && | 
					
						
							|  |  |  | 			    !migrate_async_suitable(mt)) { | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 				set_unsuitable = false; | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:06 -07:00
										 |  |  | 				goto next_pageblock; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-01-23 15:53:38 -08:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Skip if free. page_order cannot be used without zone->lock | 
					
						
							|  |  |  | 		 * as nothing prevents parallel allocations or buddy merging. | 
					
						
							|  |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		if (PageBuddy(page)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:42 -08:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Check may be lockless but that's ok as we recheck later. | 
					
						
							|  |  |  | 		 * It's possible to migrate LRU pages and balloon pages | 
					
						
							|  |  |  | 		 * Skip any other type of page | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if (!PageLRU(page)) { | 
					
						
							|  |  |  | 			if (unlikely(balloon_page_movable(page))) { | 
					
						
							|  |  |  | 				if (locked && balloon_page_isolate(page)) { | 
					
						
							|  |  |  | 					/* Successfully isolated */ | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:07 -07:00
										 |  |  | 					goto isolate_success; | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:42 -08:00
										 |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:08 -08:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:42 -08:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:08 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 		 * PageLRU is set. lru_lock normally excludes isolation | 
					
						
							|  |  |  | 		 * splitting and collapsing (collapsing has already happened | 
					
						
							|  |  |  | 		 * if PageLRU is set) but the lock is not necessarily taken | 
					
						
							|  |  |  | 		 * here and it is wasteful to take it just to check transhuge. | 
					
						
							|  |  |  | 		 * Check TransHuge without lock and skip the whole pageblock if | 
					
						
							|  |  |  | 		 * it's either a transhuge or hugetlbfs page, as calling | 
					
						
							|  |  |  | 		 * compound_order() without preventing THP from splitting the | 
					
						
							|  |  |  | 		 * page underneath us may return surprising results. | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:08 -08:00
										 |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 		if (PageTransHuge(page)) { | 
					
						
							|  |  |  | 			if (!locked) | 
					
						
							|  |  |  | 				goto next_pageblock; | 
					
						
							|  |  |  | 			low_pfn += (1 << compound_order(page)) - 1; | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-04-03 14:48:00 -07:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Migration will fail if an anonymous page is pinned in memory, | 
					
						
							|  |  |  | 		 * so avoid taking lru_lock and isolating it unnecessarily in an | 
					
						
							|  |  |  | 		 * admittedly racy check. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if (!page_mapping(page) && | 
					
						
							|  |  |  | 		    page_count(page) > page_mapcount(page)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 		/* Check if it is ok to still hold the lock */ | 
					
						
							|  |  |  | 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags, | 
					
						
							|  |  |  | 								locked, cc); | 
					
						
							|  |  |  | 		if (!locked || fatal_signal_pending(current)) | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Recheck PageLRU and PageTransHuge under lock */ | 
					
						
							|  |  |  | 		if (!PageLRU(page)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:08 -08:00
										 |  |  | 		if (PageTransHuge(page)) { | 
					
						
							|  |  |  | 			low_pfn += (1 << compound_order(page)) - 1; | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-05-29 15:07:09 -07:00
										 |  |  | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		/* Try isolate the page */ | 
					
						
							| 
									
										
										
										
											2012-05-29 15:06:54 -07:00
										 |  |  | 		if (__isolate_lru_page(page, mode) != 0) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-01-23 15:52:54 -08:00
										 |  |  | 		VM_BUG_ON_PAGE(PageTransCompound(page), page); | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:08 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		/* Successfully isolated */ | 
					
						
							| 
									
										
										
										
											2012-05-29 15:07:09 -07:00
										 |  |  | 		del_page_from_lru_list(page, lruvec, page_lru(page)); | 
					
						
							| 
									
										
										
										
											2014-04-07 15:37:07 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | isolate_success: | 
					
						
							|  |  |  | 		cc->finished_update_migrate = true; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		list_add(&page->lru, migratelist); | 
					
						
							|  |  |  | 		cc->nr_migratepages++; | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 		nr_isolated++; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/* Avoid isolating too much */ | 
					
						
							| 
									
										
										
										
											2012-01-10 15:07:59 -08:00
										 |  |  | 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { | 
					
						
							|  |  |  | 			++low_pfn; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 			break; | 
					
						
							| 
									
										
										
										
											2012-01-10 15:07:59 -08:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:33 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | next_pageblock: | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:25 -08:00
										 |  |  | 		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 	acct_isolated(zone, locked, cc); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-08-21 16:16:17 -07:00
										 |  |  | 	if (locked) | 
					
						
							|  |  |  | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-01-21 15:51:10 -08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Update the pageblock-skip information and cached scanner pfn, | 
					
						
							|  |  |  | 	 * if the whole pageblock was scanned without isolating any page. | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 	if (low_pfn == end_pfn) | 
					
						
							|  |  |  | 		update_pageblock_skip(cc, valid_page, nr_isolated, | 
					
						
							|  |  |  | 				      set_unsuitable, true); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:54 -08:00
										 |  |  | 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); | 
					
						
							| 
									
										
										
										
											2012-10-19 12:00:10 +01:00
										 |  |  | 	if (nr_isolated) | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | 		count_compact_events(COMPACTISOLATED, nr_isolated); | 
					
						
							| 
									
										
										
										
											2012-10-19 12:00:10 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 	return low_pfn; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | #endif /* CONFIG_COMPACTION || CONFIG_CMA */
 | 
					
						
							|  |  |  | #ifdef CONFIG_COMPACTION
 | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | /*
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  |  * Based on information in the current compact_control, find blocks | 
					
						
							|  |  |  |  * suitable for isolating free pages from and then isolate them. | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | static void isolate_freepages(struct zone *zone, | 
					
						
							|  |  |  | 				struct compact_control *cc) | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	struct page *page; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 	unsigned long block_start_pfn;	/* start of current pageblock */ | 
					
						
							|  |  |  | 	unsigned long block_end_pfn;	/* end of current pageblock */ | 
					
						
							|  |  |  | 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */ | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	int nr_freepages = cc->nr_freepages; | 
					
						
							|  |  |  | 	struct list_head *freelist = &cc->freepages; | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Initialise the free scanner. The starting point is where we last | 
					
						
							| 
									
										
										
										
											2014-05-06 12:50:03 -07:00
										 |  |  | 	 * successfully isolated from, zone-cached value, or the end of the | 
					
						
							|  |  |  | 	 * zone when isolating for the first time. We need this aligned to | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 	 * the pageblock boundary, because we do | 
					
						
							|  |  |  | 	 * block_start_pfn -= pageblock_nr_pages in the for loop. | 
					
						
							|  |  |  | 	 * For ending point, take care when isolating in last pageblock of a | 
					
						
							|  |  |  | 	 * a zone which ends in the middle of a pageblock. | 
					
						
							| 
									
										
										
										
											2014-05-06 12:50:03 -07:00
										 |  |  | 	 * The low boundary is the end of the pageblock the migration scanner | 
					
						
							|  |  |  | 	 * is using. | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); | 
					
						
							|  |  |  | 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages, | 
					
						
							|  |  |  | 						zone_end_pfn(zone)); | 
					
						
							| 
									
										
											  
											
												mm: compaction: detect when scanners meet in isolate_freepages
Compaction of a zone is finished when the migrate scanner (which begins
at the zone's lowest pfn) meets the free page scanner (which begins at
the zone's highest pfn).  This is detected in compact_zone() and in the
case of direct compaction, the compact_blockskip_flush flag is set so
that kswapd later resets the cached scanner pfn's, and a new compaction
may again start at the zone's borders.
The meeting of the scanners can happen during either scanner's activity.
However, it may currently fail to be detected when it occurs in the free
page scanner, due to two problems.  First, isolate_freepages() keeps
free_pfn at the highest block where it isolated pages from, for the
purposes of not missing the pages that are returned back to allocator
when migration fails.  Second, failing to isolate enough free pages due
to scanners meeting results in -ENOMEM being returned by
migrate_pages(), which makes compact_zone() bail out immediately without
calling compact_finished() that would detect scanners meeting.
This failure to detect scanners meeting might result in repeated
attempts at compaction of a zone that keep starting from the cached
pfn's close to the meeting point, and quickly failing through the
-ENOMEM path, without the cached pfns being reset, over and over.  This
has been observed (through additional tracepoints) in the third phase of
the mmtests stress-highalloc benchmark, where the allocator runs on an
otherwise idle system.  The problem was observed in the DMA32 zone,
which was used as a fallback to the preferred Normal zone, but on the
4GB system it was actually the largest zone.  The problem is even
amplified for such fallback zone - the deferred compaction logic, which
could (after being fixed by a previous patch) reset the cached scanner
pfn's, is only applied to the preferred zone and not for the fallbacks.
The problem in the third phase of the benchmark was further amplified by
commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") which
resulted in a non-deterministic regression of the allocation success
rate from ~85% to ~65%.  This occurs in about half of benchmark runs,
making bisection problematic.  It is unlikely that the commit itself is
buggy, but it should put more pressure on the DMA32 zone during phases 1
and 2, which may leave it more fragmented in phase 3 and expose the bugs
that this patch fixes.
The fix is to make scanners meeting in isolate_freepage() stay that way,
and to check in compact_zone() for scanners meeting when migrate_pages()
returns -ENOMEM.  The result is that compact_finished() also detects
scanners meeting and sets the compact_blockskip_flush flag to make
kswapd reset the scanner pfn's.
The results in stress-highalloc benchmark show that the "regression" by
commit 81c0a2bb515f in phase 3 no longer occurs, and phase 1 and 2
allocation success rates are also significantly improved.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-01-21 15:51:09 -08:00
										 |  |  | 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Isolate free pages until enough are available to migrate the | 
					
						
							|  |  |  | 	 * pages on cc->migratepages. We stop searching if the migrate | 
					
						
							|  |  |  | 	 * and free page scanners meet or enough free pages are isolated. | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages; | 
					
						
							|  |  |  | 				block_end_pfn = block_start_pfn, | 
					
						
							|  |  |  | 				block_start_pfn -= pageblock_nr_pages) { | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 		unsigned long isolated; | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-09-30 13:45:03 -07:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * This can iterate a massively long zone without finding any | 
					
						
							|  |  |  | 		 * suitable migration targets, so periodically check if we need | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 		 * to schedule, or even abort async compaction. | 
					
						
							| 
									
										
										
										
											2013-09-30 13:45:03 -07:00
										 |  |  | 		 */ | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) | 
					
						
							|  |  |  | 						&& compact_should_abort(cc)) | 
					
						
							|  |  |  | 			break; | 
					
						
							| 
									
										
										
										
											2013-09-30 13:45:03 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 		if (!pfn_valid(block_start_pfn)) | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2012-01-30 13:16:26 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Check for overlapping nodes/zones. It's possible on some | 
					
						
							|  |  |  | 		 * configurations to have a setup like | 
					
						
							|  |  |  | 		 * node0 node1 node0 | 
					
						
							|  |  |  | 		 * i.e. it's possible that all pages within a zones range of | 
					
						
							|  |  |  | 		 * pages do not belong to a single zone. | 
					
						
							|  |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 		page = pfn_to_page(block_start_pfn); | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 		if (page_zone(page) != zone) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Check the block is suitable for migration */ | 
					
						
							| 
									
										
										
										
											2012-06-03 20:05:57 -07:00
										 |  |  | 		if (!suitable_migration_target(page)) | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2012-06-03 20:05:57 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 		/* If isolation recently failed, do not retry */ | 
					
						
							|  |  |  | 		if (!isolation_suitable(cc, page)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		/* Found a block suitable for isolating free pages from */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:34 -07:00
										 |  |  | 		cc->free_pfn = block_start_pfn; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 		isolated = isolate_freepages_block(cc, block_start_pfn, | 
					
						
							|  |  |  | 					block_end_pfn, freelist, false); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:36 -07:00
										 |  |  | 		nr_freepages += isolated; | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:34 -07:00
										 |  |  | 		 * Set a flag that we successfully isolated in this pageblock. | 
					
						
							|  |  |  | 		 * In the next loop iteration, zone->compact_cached_free_pfn | 
					
						
							|  |  |  | 		 * will not be updated and thus it will effectively contain the | 
					
						
							|  |  |  | 		 * highest pageblock we isolated pages from. | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:34 -07:00
										 |  |  | 		if (isolated) | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 			cc->finished_update_free = true; | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * isolate_freepages_block() might have aborted due to async | 
					
						
							|  |  |  | 		 * compaction being contended | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if (cc->contended) | 
					
						
							|  |  |  | 			break; | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* split_free_page does not map the pages */ | 
					
						
							|  |  |  | 	map_pages(freelist); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm: compaction: detect when scanners meet in isolate_freepages
Compaction of a zone is finished when the migrate scanner (which begins
at the zone's lowest pfn) meets the free page scanner (which begins at
the zone's highest pfn).  This is detected in compact_zone() and in the
case of direct compaction, the compact_blockskip_flush flag is set so
that kswapd later resets the cached scanner pfn's, and a new compaction
may again start at the zone's borders.
The meeting of the scanners can happen during either scanner's activity.
However, it may currently fail to be detected when it occurs in the free
page scanner, due to two problems.  First, isolate_freepages() keeps
free_pfn at the highest block where it isolated pages from, for the
purposes of not missing the pages that are returned back to allocator
when migration fails.  Second, failing to isolate enough free pages due
to scanners meeting results in -ENOMEM being returned by
migrate_pages(), which makes compact_zone() bail out immediately without
calling compact_finished() that would detect scanners meeting.
This failure to detect scanners meeting might result in repeated
attempts at compaction of a zone that keep starting from the cached
pfn's close to the meeting point, and quickly failing through the
-ENOMEM path, without the cached pfns being reset, over and over.  This
has been observed (through additional tracepoints) in the third phase of
the mmtests stress-highalloc benchmark, where the allocator runs on an
otherwise idle system.  The problem was observed in the DMA32 zone,
which was used as a fallback to the preferred Normal zone, but on the
4GB system it was actually the largest zone.  The problem is even
amplified for such fallback zone - the deferred compaction logic, which
could (after being fixed by a previous patch) reset the cached scanner
pfn's, is only applied to the preferred zone and not for the fallbacks.
The problem in the third phase of the benchmark was further amplified by
commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") which
resulted in a non-deterministic regression of the allocation success
rate from ~85% to ~65%.  This occurs in about half of benchmark runs,
making bisection problematic.  It is unlikely that the commit itself is
buggy, but it should put more pressure on the DMA32 zone during phases 1
and 2, which may leave it more fragmented in phase 3 and expose the bugs
that this patch fixes.
The fix is to make scanners meeting in isolate_freepage() stay that way,
and to check in compact_zone() for scanners meeting when migrate_pages()
returns -ENOMEM.  The result is that compact_finished() also detects
scanners meeting and sets the compact_blockskip_flush flag to make
kswapd reset the scanner pfn's.
The results in stress-highalloc benchmark show that the "regression" by
commit 81c0a2bb515f in phase 3 no longer occurs, and phase 1 and 2
allocation success rates are also significantly improved.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-01-21 15:51:09 -08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * If we crossed the migrate scanner, we want to keep it that way | 
					
						
							|  |  |  | 	 * so that compact_finished() may detect this | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 	if (block_start_pfn < low_pfn) | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:34 -07:00
										 |  |  | 		cc->free_pfn = cc->migrate_pfn; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:07:26 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 	cc->nr_freepages = nr_freepages; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * This is a migrate-callback that "allocates" freepages by taking pages | 
					
						
							|  |  |  |  * from the isolated freelists in the block we are migrating to. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static struct page *compaction_alloc(struct page *migratepage, | 
					
						
							|  |  |  | 					unsigned long data, | 
					
						
							|  |  |  | 					int **result) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct compact_control *cc = (struct compact_control *)data; | 
					
						
							|  |  |  | 	struct page *freepage; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Isolate free pages if necessary, and if we are not aborting due to | 
					
						
							|  |  |  | 	 * contention. | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	if (list_empty(&cc->freepages)) { | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 		if (!cc->contended) | 
					
						
							|  |  |  | 			isolate_freepages(cc->zone, cc); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		if (list_empty(&cc->freepages)) | 
					
						
							|  |  |  | 			return NULL; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	freepage = list_entry(cc->freepages.next, struct page, lru); | 
					
						
							|  |  |  | 	list_del(&freepage->lru); | 
					
						
							|  |  |  | 	cc->nr_freepages--; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return freepage; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:26 -07:00
										 |  |  |  * This is a migrate-callback that "frees" freepages back to the isolated | 
					
						
							|  |  |  |  * freelist.  All pages on the freelist are from the same zone, so there is no | 
					
						
							|  |  |  |  * special handling needed for NUMA. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static void compaction_free(struct page *page, unsigned long data) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct compact_control *cc = (struct compact_control *)data; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	list_add(&page->lru, &cc->freepages); | 
					
						
							|  |  |  | 	cc->nr_freepages++; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | /* possible outcome of isolate_migratepages */ | 
					
						
							|  |  |  | typedef enum { | 
					
						
							|  |  |  | 	ISOLATE_ABORT,		/* Abort compaction now */ | 
					
						
							|  |  |  | 	ISOLATE_NONE,		/* No pages isolated, continue scanning */ | 
					
						
							|  |  |  | 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */ | 
					
						
							|  |  |  | } isolate_migrate_t; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * Isolate all pages that can be migrated from the block pointed to by | 
					
						
							|  |  |  |  * the migrate scanner within compact_control. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static isolate_migrate_t isolate_migratepages(struct zone *zone, | 
					
						
							|  |  |  | 					struct compact_control *cc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned long low_pfn, end_pfn; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Do not scan outside zone boundaries */ | 
					
						
							|  |  |  | 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Only scan within a pageblock boundary */ | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:25 -08:00
										 |  |  | 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	/* Do not cross the free scanner or scan within a memory hole */ | 
					
						
							|  |  |  | 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { | 
					
						
							|  |  |  | 		cc->migrate_pfn = end_pfn; | 
					
						
							|  |  |  | 		return ISOLATE_NONE; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Perform the isolation */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:33:48 -07:00
										 |  |  | 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:27 -07:00
										 |  |  | 	if (!low_pfn || cc->contended) | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 		return ISOLATE_ABORT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	cc->migrate_pfn = low_pfn; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return ISOLATE_SUCCESS; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | static int compact_finished(struct zone *zone, | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:11 -08:00
										 |  |  | 			    struct compact_control *cc) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2013-01-11 14:32:16 -08:00
										 |  |  | 	unsigned int order; | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:11 -08:00
										 |  |  | 	unsigned long watermark; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:10:41 -07:00
										 |  |  | 	if (cc->contended || fatal_signal_pending(current)) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		return COMPACT_PARTIAL; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:40 -07:00
										 |  |  | 	/* Compaction run completes if the migrate and free scanner meet */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	if (cc->free_pfn <= cc->migrate_pfn) { | 
					
						
							| 
									
										
										
										
											2014-01-21 15:51:11 -08:00
										 |  |  | 		/* Let the next compaction start anew. */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; | 
					
						
							|  |  |  | 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; | 
					
						
							| 
									
										
										
										
											2014-01-21 15:51:11 -08:00
										 |  |  | 		zone->compact_cached_free_pfn = zone_end_pfn(zone); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:47 -07:00
										 |  |  | 		/*
 | 
					
						
							|  |  |  | 		 * Mark that the PG_migrate_skip information should be cleared | 
					
						
							|  |  |  | 		 * by kswapd when it goes to sleep. kswapd does not set the | 
					
						
							|  |  |  | 		 * flag itself as the decision to be clear should be directly | 
					
						
							|  |  |  | 		 * based on an allocation request. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		if (!current_is_kswapd()) | 
					
						
							|  |  |  | 			zone->compact_blockskip_flush = true; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		return COMPACT_COMPLETE; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:41 -07:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-20 14:44:21 -08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * order == -1 is expected when compacting via | 
					
						
							|  |  |  | 	 * /proc/sys/vm/compact_memory | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 	if (cc->order == -1) | 
					
						
							|  |  |  | 		return COMPACT_CONTINUE; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:25 -07:00
										 |  |  | 	/* Compaction run is not finished if the watermark is not met */ | 
					
						
							|  |  |  | 	watermark = low_wmark_pages(zone); | 
					
						
							|  |  |  | 	watermark += (1 << cc->order); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) | 
					
						
							|  |  |  | 		return COMPACT_CONTINUE; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 	/* Direct compactor: Is a suitable page free? */ | 
					
						
							| 
									
										
										
										
											2013-01-11 14:32:16 -08:00
										 |  |  | 	for (order = cc->order; order < MAX_ORDER; order++) { | 
					
						
							|  |  |  | 		struct free_area *area = &zone->free_area[order]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Job done if page is free of the right migratetype */ | 
					
						
							|  |  |  | 		if (!list_empty(&area->free_list[cc->migratetype])) | 
					
						
							|  |  |  | 			return COMPACT_PARTIAL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/* Job done if allocation would set block type */ | 
					
						
							|  |  |  | 		if (cc->order >= pageblock_order && area->nr_free) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 			return COMPACT_PARTIAL; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	return COMPACT_CONTINUE; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * compaction_suitable: Is this suitable to run compaction on this zone now? | 
					
						
							|  |  |  |  * Returns | 
					
						
							|  |  |  |  *   COMPACT_SKIPPED  - If there are too few free pages for compaction | 
					
						
							|  |  |  |  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction | 
					
						
							|  |  |  |  *   COMPACT_CONTINUE - If compaction should run now | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | unsigned long compaction_suitable(struct zone *zone, int order) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int fragindex; | 
					
						
							|  |  |  | 	unsigned long watermark; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:25 -07:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * order == -1 is expected when compacting via | 
					
						
							|  |  |  | 	 * /proc/sys/vm/compact_memory | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	if (order == -1) | 
					
						
							|  |  |  | 		return COMPACT_CONTINUE; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Watermarks for order-0 must be met for compaction. Note the 2UL. | 
					
						
							|  |  |  | 	 * This is because during migration, copies of pages need to be | 
					
						
							|  |  |  | 	 * allocated and for a short time, the footprint is higher | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	watermark = low_wmark_pages(zone) + (2UL << order); | 
					
						
							|  |  |  | 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | 
					
						
							|  |  |  | 		return COMPACT_SKIPPED; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * fragmentation index determines if allocation failures are due to | 
					
						
							|  |  |  | 	 * low memory or external fragmentation | 
					
						
							|  |  |  | 	 * | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:49 -07:00
										 |  |  | 	 * index of -1000 implies allocations might succeed depending on | 
					
						
							|  |  |  | 	 * watermarks | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | 	 * index towards 0 implies failure is due to lack of memory | 
					
						
							|  |  |  | 	 * index towards 1000 implies failure is due to fragmentation | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * Only compact if a failure would be due to fragmentation. | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	fragindex = fragmentation_index(zone, order); | 
					
						
							|  |  |  | 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) | 
					
						
							|  |  |  | 		return COMPACT_SKIPPED; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:49 -07:00
										 |  |  | 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, | 
					
						
							|  |  |  | 	    0, 0)) | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | 		return COMPACT_PARTIAL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return COMPACT_CONTINUE; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | static int compact_zone(struct zone *zone, struct compact_control *cc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int ret; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	unsigned long start_pfn = zone->zone_start_pfn; | 
					
						
							| 
									
										
										
										
											2013-02-22 16:35:23 -08:00
										 |  |  | 	unsigned long end_pfn = zone_end_pfn(zone); | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 	const bool sync = cc->mode != MIGRATE_ASYNC; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | 	ret = compaction_suitable(zone, cc->order); | 
					
						
							|  |  |  | 	switch (ret) { | 
					
						
							|  |  |  | 	case COMPACT_PARTIAL: | 
					
						
							|  |  |  | 	case COMPACT_SKIPPED: | 
					
						
							|  |  |  | 		/* Compaction is likely to fail */ | 
					
						
							|  |  |  | 		return ret; | 
					
						
							|  |  |  | 	case COMPACT_CONTINUE: | 
					
						
							|  |  |  | 		/* Fall through to compaction */ | 
					
						
							|  |  |  | 		; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-01-21 15:51:08 -08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Clear pageblock skip if there were failures recently and compaction | 
					
						
							|  |  |  | 	 * is about to be retried after being deferred. kswapd does not do | 
					
						
							|  |  |  | 	 * this reset as it'll reset the cached information when going to sleep. | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) | 
					
						
							|  |  |  | 		__reset_isolation_suitable(zone); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Setup to move all movable pages to the end of the zone. Used cached | 
					
						
							|  |  |  | 	 * information on where the scanners should start but check that it | 
					
						
							|  |  |  | 	 * is initialised by ensuring the values are within zone boundaries. | 
					
						
							|  |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	cc->free_pfn = zone->compact_cached_free_pfn; | 
					
						
							|  |  |  | 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { | 
					
						
							|  |  |  | 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); | 
					
						
							|  |  |  | 		zone->compact_cached_free_pfn = cc->free_pfn; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { | 
					
						
							|  |  |  | 		cc->migrate_pfn = start_pfn; | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:27 -07:00
										 |  |  | 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; | 
					
						
							|  |  |  | 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:45 -07:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm: compaction: trace compaction begin and end
The broad goal of the series is to improve allocation success rates for
huge pages through memory compaction, while trying not to increase the
compaction overhead.  The original objective was to reintroduce
capturing of high-order pages freed by the compaction, before they are
split by concurrent activity.  However, several bugs and opportunities
for simple improvements were found in the current implementation, mostly
through extra tracepoints (which are however too ugly for now to be
considered for sending).
The patches mostly deal with two mechanisms that reduce compaction
overhead, which is caching the progress of migrate and free scanners,
and marking pageblocks where isolation failed to be skipped during
further scans.
Patch 1 (from mgorman) adds tracepoints that allow calculate time spent in
        compaction and potentially debug scanner pfn values.
Patch 2 encapsulates the some functionality for handling deferred compactions
        for better maintainability, without a functional change
        type is not determined without being actually needed.
Patch 3 fixes a bug where cached scanner pfn's are sometimes reset only after
        they have been read to initialize a compaction run.
Patch 4 fixes a bug where scanners meeting is sometimes not properly detected
        and can lead to multiple compaction attempts quitting early without
        doing any work.
Patch 5 improves the chances of sync compaction to process pageblocks that
        async compaction has skipped due to being !MIGRATE_MOVABLE.
Patch 6 improves the chances of sync direct compaction to actually do anything
        when called after async compaction fails during allocation slowpath.
The impact of patches were validated using mmtests's stress-highalloc
benchmark with mmtests's stress-highalloc benchmark on a x86_64 machine
with 4GB memory.
Due to instability of the results (mostly related to the bugs fixed by
patches 2 and 3), 10 iterations were performed, taking min,mean,max
values for success rates and mean values for time and vmstat-based
metrics.
First, the default GFP_HIGHUSER_MOVABLE allocations were tested with the
patches stacked on top of v3.13-rc2.  Patch 2 is OK to serve as baseline
due to no functional changes in 1 and 2.  Comments below.
stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                              2-nothp               3-nothp               4-nothp               5-nothp               6-nothp
Success 1 Min          9.00 (  0.00%)       10.00 (-11.11%)       43.00 (-377.78%)       43.00 (-377.78%)       33.00 (-266.67%)
Success 1 Mean        27.50 (  0.00%)       25.30 (  8.00%)       45.50 (-65.45%)       45.90 (-66.91%)       46.30 (-68.36%)
Success 1 Max         36.00 (  0.00%)       36.00 (  0.00%)       47.00 (-30.56%)       48.00 (-33.33%)       52.00 (-44.44%)
Success 2 Min         10.00 (  0.00%)        8.00 ( 20.00%)       46.00 (-360.00%)       45.00 (-350.00%)       35.00 (-250.00%)
Success 2 Mean        26.40 (  0.00%)       23.50 ( 10.98%)       47.30 (-79.17%)       47.60 (-80.30%)       48.10 (-82.20%)
Success 2 Max         34.00 (  0.00%)       33.00 (  2.94%)       48.00 (-41.18%)       50.00 (-47.06%)       54.00 (-58.82%)
Success 3 Min         65.00 (  0.00%)       63.00 (  3.08%)       85.00 (-30.77%)       84.00 (-29.23%)       85.00 (-30.77%)
Success 3 Mean        76.70 (  0.00%)       70.50 (  8.08%)       86.20 (-12.39%)       85.50 (-11.47%)       86.00 (-12.13%)
Success 3 Max         87.00 (  0.00%)       86.00 (  1.15%)       88.00 ( -1.15%)       87.00 (  0.00%)       87.00 (  0.00%)
            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
             2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
User         6437.72     6459.76     5960.32     5974.55     6019.67
System       1049.65     1049.09     1029.32     1031.47     1032.31
Elapsed      1856.77     1874.48     1949.97     1994.22     1983.15
                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                               2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
Minor Faults                 253952267   254581900   250030122   250507333   250157829
Major Faults                       420         407         506         530         530
Swap Ins                             4           9           9           6           6
Swap Outs                          398         375         345         346         333
Direct pages scanned            197538      189017      298574      287019      299063
Kswapd pages scanned           1809843     1801308     1846674     1873184     1861089
Kswapd pages reclaimed         1806972     1798684     1844219     1870509     1858622
Direct pages reclaimed          197227      188829      298380      286822      298835
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity                953.382     970.449     952.243     934.569     922.286
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                104.058     101.832     153.961     143.200     148.205
Percentage direct scans             9%          9%         13%         13%         13%
Zone normal velocity           347.289     359.676     348.063     339.933     332.983
Zone dma32 velocity            710.151     712.605     758.140     737.835     737.507
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         557.600     429.000     353.600     426.400     381.800
Page writes file                   159          53           7          79          48
Page writes anon                   398         375         345         346         333
Page reclaim immediate             825         644         411         575         420
Sector Reads                   2781750     2769780     2878547     2939128     2910483
Sector Writes                 12080843    12083351    12012892    12002132    12010745
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1575654     1545344     1778406     1786700     1794073
Direct inode steals               9657       10037       15795       14104       14645
Kswapd inode steals              46857       46335       50543       50716       51796
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                     97          91          81          71          77
THP collapse alloc                 456         506         546         544         565
THP splits                           6           5           5           4           4
THP fault fallback                   0           1           0           0           0
THP collapse fail                   14          14          12          13          12
Compaction stalls                 1006         980        1537        1536        1548
Compaction success                 303         284         562         559         578
Compaction failures                702         696         974         976         969
Page migrate success           1177325     1070077     3927538     3781870     3877057
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      2547248     2306457     8301218     8008500     8200674
Compaction migrate scanned    42290478    38832618   153961130   154143900   159141197
Compaction free scanned       89199429    79189151   356529027   351943166   356326727
Compaction cost                   1566        1426        5312        5156        5294
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0
Observations:
- The "Success 3" line is allocation success rate with system idle
  (phases 1 and 2 are with background interference).  I used to get stable
  values around 85% with vanilla 3.11.  The lower min and mean values came
  with 3.12.  This was bisected to commit 81c0a2bb ("mm: page_alloc: fair
  zone allocator policy") As explained in comment for patch 3, I don't
  think the commit is wrong, but that it makes the effect of compaction
  bugs worse.  From patch 3 onwards, the results are OK and match the 3.11
  results.
- Patch 4 also clearly helps phases 1 and 2, and exceeds any results
  I've seen with 3.11 (I didn't measure it that thoroughly then, but it
  was never above 40%).
- Compaction cost and number of scanned pages is higher, especially due
  to patch 4.  However, keep in mind that patches 3 and 4 fix existing
  bugs in the current design of compaction overhead mitigation, they do
  not change it.  If overhead is found unacceptable, then it should be
  decreased differently (and consistently, not due to random conditions)
  than the current implementation does.  In contrast, patches 5 and 6
  (which are not strictly bug fixes) do not increase the overhead (but
  also not success rates).  This might be a limitation of the
  stress-highalloc benchmark as it's quite uniform.
Another set of results is when configuring stress-highalloc t allocate
with similar flags as THP uses:
 (GFP_HIGHUSER_MOVABLE|__GFP_NOMEMALLOC|__GFP_NORETRY|__GFP_NO_KSWAPD)
stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                                2-thp                 3-thp                 4-thp                 5-thp                 6-thp
Success 1 Min          2.00 (  0.00%)        7.00 (-250.00%)       18.00 (-800.00%)       19.00 (-850.00%)       26.00 (-1200.00%)
Success 1 Mean        19.20 (  0.00%)       17.80 (  7.29%)       29.20 (-52.08%)       29.90 (-55.73%)       32.80 (-70.83%)
Success 1 Max         27.00 (  0.00%)       29.00 ( -7.41%)       35.00 (-29.63%)       36.00 (-33.33%)       37.00 (-37.04%)
Success 2 Min          3.00 (  0.00%)        8.00 (-166.67%)       21.00 (-600.00%)       21.00 (-600.00%)       32.00 (-966.67%)
Success 2 Mean        19.30 (  0.00%)       17.90 (  7.25%)       32.20 (-66.84%)       32.60 (-68.91%)       35.70 (-84.97%)
Success 2 Max         27.00 (  0.00%)       30.00 (-11.11%)       36.00 (-33.33%)       37.00 (-37.04%)       39.00 (-44.44%)
Success 3 Min         62.00 (  0.00%)       62.00 (  0.00%)       85.00 (-37.10%)       75.00 (-20.97%)       64.00 ( -3.23%)
Success 3 Mean        66.30 (  0.00%)       65.50 (  1.21%)       85.60 (-29.11%)       83.40 (-25.79%)       83.50 (-25.94%)
Success 3 Max         70.00 (  0.00%)       69.00 (  1.43%)       87.00 (-24.29%)       86.00 (-22.86%)       87.00 (-24.29%)
            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
               2-thp       3-thp       4-thp       5-thp       6-thp
User         6547.93     6475.85     6265.54     6289.46     6189.96
System       1053.42     1047.28     1043.23     1042.73     1038.73
Elapsed      1835.43     1821.96     1908.67     1912.74     1956.38
                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                                 2-thp       3-thp       4-thp       5-thp       6-thp
Minor Faults                 256805673   253106328   253222299   249830289   251184418
Major Faults                       395         375         423         434         448
Swap Ins                            12          10          10          12           9
Swap Outs                          530         537         487         455         415
Direct pages scanned             71859       86046      153244      152764      190713
Kswapd pages scanned           1900994     1870240     1898012     1892864     1880520
Kswapd pages reclaimed         1897814     1867428     1894939     1890125     1877924
Direct pages reclaimed           71766       85908      153167      152643      190600
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity               1029.000    1067.782    1000.091     991.049     951.218
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                 38.897      49.127      80.747      79.983      96.468
Percentage direct scans             3%          4%          7%          7%          9%
Zone normal velocity           351.377     372.494     348.910     341.689     335.310
Zone dma32 velocity            716.520     744.414     731.928     729.343     712.377
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         669.300     604.000     545.700     538.900     429.900
Page writes file                   138          66          58          83          14
Page writes anon                   530         537         487         455         415
Page reclaim immediate             806         655         772         548         517
Sector Reads                   2711956     2703239     2811602     2818248     2839459
Sector Writes                 12163238    12018662    12038248    11954736    11994892
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1385088     1388364     1507968     1513292     1558656
Direct inode steals               1739        2564        4622        5496        6007
Kswapd inode steals              47461       46406       47804       48013       48466
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                    110          82          84          69          70
THP collapse alloc                 445         482         467         462         539
THP splits                           6           5           4           5           3
THP fault fallback                   3           0           0           0           0
THP collapse fail                   15          14          14          14          13
Compaction stalls                  659         685        1033        1073        1111
Compaction success                 222         225         410         427         456
Compaction failures                436         460         622         646         655
Page migrate success            446594      439978     1085640     1095062     1131716
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      1029475     1013490     2453074     2482698     2565400
Compaction migrate scanned     9955461    11344259    24375202    27978356    30494204
Compaction free scanned       27715272    28544654    80150615    82898631    85756132
Compaction cost                    552         555        1344        1379        1436
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0
There are some differences from the previous results for THP-like allocations:
- Here, the bad result for unpatched kernel in phase 3 is much more
  consistent to be between 65-70% and not related to the "regression" in
  3.12.  Still there is the improvement from patch 4 onwards, which brings
  it on par with simple GFP_HIGHUSER_MOVABLE allocations.
- Compaction costs have increased, but nowhere near as much as the
  non-THP case.  Again, the patches should be worth the gained
  determininsm.
- Patches 5 and 6 somewhat increase the number of migrate-scanned pages.
   This is most likely due to __GFP_NO_KSWAPD flag, which means the cached
  pfn's and pageblock skip bits are not reset by kswapd that often (at
  least in phase 3 where no concurrent activity would wake up kswapd) and
  the patches thus help the sync-after-async compaction.  It doesn't
  however show that the sync compaction would help so much with success
  rates, which can be again seen as a limitation of the benchmark
  scenario.
This patch (of 6):
Add two tracepoints for compaction begin and end of a zone.  Using this it
is possible to calculate how much time a workload is spending within
compaction and potentially debug problems related to cached pfns for
scanning.  In combination with the direct reclaim and slab trace points it
should be possible to estimate most allocation-related overhead for a
workload.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-01-21 15:51:05 -08:00
										 |  |  | 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	migrate_prep_local(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { | 
					
						
							| 
									
										
										
										
											2011-03-22 16:30:39 -07:00
										 |  |  | 		int err; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | 		switch (isolate_migratepages(zone, cc)) { | 
					
						
							|  |  |  | 		case ISOLATE_ABORT: | 
					
						
							|  |  |  | 			ret = COMPACT_PARTIAL; | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:47 -08:00
										 |  |  | 			putback_movable_pages(&cc->migratepages); | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:27 -07:00
										 |  |  | 			cc->nr_migratepages = 0; | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | 			goto out; | 
					
						
							|  |  |  | 		case ISOLATE_NONE: | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | 		case ISOLATE_SUCCESS: | 
					
						
							|  |  |  | 			; | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm/compaction: do not count migratepages when unnecessary
During compaction, update_nr_listpages() has been used to count remaining
non-migrated and free pages after a call to migrage_pages().  The
freepages counting has become unneccessary, and it turns out that
migratepages counting is also unnecessary in most cases.
The only situation when it's needed to count cc->migratepages is when
migrate_pages() returns with a negative error code.  Otherwise, the
non-negative return value is the number of pages that were not migrated,
which is exactly the count of remaining pages in the cc->migratepages
list.
Furthermore, any non-zero count is only interesting for the tracepoint of
mm_compaction_migratepages events, because after that all remaining
unmigrated pages are put back and their count is set to 0.
This patch therefore removes update_nr_listpages() completely, and changes
the tracepoint definition so that the manual counting is done only when
the tracepoint is enabled, and only when migrate_pages() returns a
negative error code.
Furthermore, migrate_pages() and the tracepoints won't be called when
there's nothing to migrate.  This potentially avoids some wasted cycles
and reduces the volume of uninteresting mm_compaction_migratepages events
where "nr_migrated=0 nr_failed=0".  In the stress-highalloc mmtest, this
was about 75% of the events.  The mm_compaction_isolate_migratepages event
is better for determining that nothing was isolated for migration, and
this one was just duplicating the info.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:08:32 -07:00
										 |  |  | 		if (!cc->nr_migratepages) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:26 -07:00
										 |  |  | 		err = migrate_pages(&cc->migratepages, compaction_alloc, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 				compaction_free, (unsigned long)cc, cc->mode, | 
					
						
							| 
									
										
										
										
											2012-10-19 14:07:31 +01:00
										 |  |  | 				MR_COMPACTION); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm/compaction: do not count migratepages when unnecessary
During compaction, update_nr_listpages() has been used to count remaining
non-migrated and free pages after a call to migrage_pages().  The
freepages counting has become unneccessary, and it turns out that
migratepages counting is also unnecessary in most cases.
The only situation when it's needed to count cc->migratepages is when
migrate_pages() returns with a negative error code.  Otherwise, the
non-negative return value is the number of pages that were not migrated,
which is exactly the count of remaining pages in the cc->migratepages
list.
Furthermore, any non-zero count is only interesting for the tracepoint of
mm_compaction_migratepages events, because after that all remaining
unmigrated pages are put back and their count is set to 0.
This patch therefore removes update_nr_listpages() completely, and changes
the tracepoint definition so that the manual counting is done only when
the tracepoint is enabled, and only when migrate_pages() returns a
negative error code.
Furthermore, migrate_pages() and the tracepoints won't be called when
there's nothing to migrate.  This potentially avoids some wasted cycles
and reduces the volume of uninteresting mm_compaction_migratepages events
where "nr_migrated=0 nr_failed=0".  In the stress-highalloc mmtest, this
was about 75% of the events.  The mm_compaction_isolate_migratepages event
is better for determining that nothing was isolated for migration, and
this one was just duplicating the info.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:08:32 -07:00
										 |  |  | 		trace_mm_compaction_migratepages(cc->nr_migratepages, err, | 
					
						
							|  |  |  | 							&cc->migratepages); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm/compaction: do not count migratepages when unnecessary
During compaction, update_nr_listpages() has been used to count remaining
non-migrated and free pages after a call to migrage_pages().  The
freepages counting has become unneccessary, and it turns out that
migratepages counting is also unnecessary in most cases.
The only situation when it's needed to count cc->migratepages is when
migrate_pages() returns with a negative error code.  Otherwise, the
non-negative return value is the number of pages that were not migrated,
which is exactly the count of remaining pages in the cc->migratepages
list.
Furthermore, any non-zero count is only interesting for the tracepoint of
mm_compaction_migratepages events, because after that all remaining
unmigrated pages are put back and their count is set to 0.
This patch therefore removes update_nr_listpages() completely, and changes
the tracepoint definition so that the manual counting is done only when
the tracepoint is enabled, and only when migrate_pages() returns a
negative error code.
Furthermore, migrate_pages() and the tracepoints won't be called when
there's nothing to migrate.  This potentially avoids some wasted cycles
and reduces the volume of uninteresting mm_compaction_migratepages events
where "nr_migrated=0 nr_failed=0".  In the stress-highalloc mmtest, this
was about 75% of the events.  The mm_compaction_isolate_migratepages event
is better for determining that nothing was isolated for migration, and
this one was just duplicating the info.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-06-04 16:08:32 -07:00
										 |  |  | 		/* All pages were either migrated or will be released */ | 
					
						
							|  |  |  | 		cc->nr_migratepages = 0; | 
					
						
							| 
									
										
										
										
											2011-03-22 16:30:39 -07:00
										 |  |  | 		if (err) { | 
					
						
							| 
									
										
										
										
											2012-12-11 16:02:47 -08:00
										 |  |  | 			putback_movable_pages(&cc->migratepages); | 
					
						
							| 
									
										
											  
											
												mm: compaction: detect when scanners meet in isolate_freepages
Compaction of a zone is finished when the migrate scanner (which begins
at the zone's lowest pfn) meets the free page scanner (which begins at
the zone's highest pfn).  This is detected in compact_zone() and in the
case of direct compaction, the compact_blockskip_flush flag is set so
that kswapd later resets the cached scanner pfn's, and a new compaction
may again start at the zone's borders.
The meeting of the scanners can happen during either scanner's activity.
However, it may currently fail to be detected when it occurs in the free
page scanner, due to two problems.  First, isolate_freepages() keeps
free_pfn at the highest block where it isolated pages from, for the
purposes of not missing the pages that are returned back to allocator
when migration fails.  Second, failing to isolate enough free pages due
to scanners meeting results in -ENOMEM being returned by
migrate_pages(), which makes compact_zone() bail out immediately without
calling compact_finished() that would detect scanners meeting.
This failure to detect scanners meeting might result in repeated
attempts at compaction of a zone that keep starting from the cached
pfn's close to the meeting point, and quickly failing through the
-ENOMEM path, without the cached pfns being reset, over and over.  This
has been observed (through additional tracepoints) in the third phase of
the mmtests stress-highalloc benchmark, where the allocator runs on an
otherwise idle system.  The problem was observed in the DMA32 zone,
which was used as a fallback to the preferred Normal zone, but on the
4GB system it was actually the largest zone.  The problem is even
amplified for such fallback zone - the deferred compaction logic, which
could (after being fixed by a previous patch) reset the cached scanner
pfn's, is only applied to the preferred zone and not for the fallbacks.
The problem in the third phase of the benchmark was further amplified by
commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") which
resulted in a non-deterministic regression of the allocation success
rate from ~85% to ~65%.  This occurs in about half of benchmark runs,
making bisection problematic.  It is unlikely that the commit itself is
buggy, but it should put more pressure on the DMA32 zone during phases 1
and 2, which may leave it more fragmented in phase 3 and expose the bugs
that this patch fixes.
The fix is to make scanners meeting in isolate_freepage() stay that way,
and to check in compact_zone() for scanners meeting when migrate_pages()
returns -ENOMEM.  The result is that compact_finished() also detects
scanners meeting and sets the compact_blockskip_flush flag to make
kswapd reset the scanner pfn's.
The results in stress-highalloc benchmark show that the "regression" by
commit 81c0a2bb515f in phase 3 no longer occurs, and phase 1 and 2
allocation success rates are also significantly improved.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-01-21 15:51:09 -08:00
										 |  |  | 			/*
 | 
					
						
							|  |  |  | 			 * migrate_pages() may return -ENOMEM when scanners meet | 
					
						
							|  |  |  | 			 * and we want compact_finished() to detect it | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { | 
					
						
							| 
									
										
										
										
											2012-07-11 14:02:13 -07:00
										 |  |  | 				ret = COMPACT_PARTIAL; | 
					
						
							|  |  |  | 				goto out; | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-06-15 15:08:52 -07:00
										 |  |  | out: | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	/* Release free pages and check accounting */ | 
					
						
							|  |  |  | 	cc->nr_freepages -= release_freepages(&cc->freepages); | 
					
						
							|  |  |  | 	VM_BUG_ON(cc->nr_freepages != 0); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												mm: compaction: trace compaction begin and end
The broad goal of the series is to improve allocation success rates for
huge pages through memory compaction, while trying not to increase the
compaction overhead.  The original objective was to reintroduce
capturing of high-order pages freed by the compaction, before they are
split by concurrent activity.  However, several bugs and opportunities
for simple improvements were found in the current implementation, mostly
through extra tracepoints (which are however too ugly for now to be
considered for sending).
The patches mostly deal with two mechanisms that reduce compaction
overhead, which is caching the progress of migrate and free scanners,
and marking pageblocks where isolation failed to be skipped during
further scans.
Patch 1 (from mgorman) adds tracepoints that allow calculate time spent in
        compaction and potentially debug scanner pfn values.
Patch 2 encapsulates the some functionality for handling deferred compactions
        for better maintainability, without a functional change
        type is not determined without being actually needed.
Patch 3 fixes a bug where cached scanner pfn's are sometimes reset only after
        they have been read to initialize a compaction run.
Patch 4 fixes a bug where scanners meeting is sometimes not properly detected
        and can lead to multiple compaction attempts quitting early without
        doing any work.
Patch 5 improves the chances of sync compaction to process pageblocks that
        async compaction has skipped due to being !MIGRATE_MOVABLE.
Patch 6 improves the chances of sync direct compaction to actually do anything
        when called after async compaction fails during allocation slowpath.
The impact of patches were validated using mmtests's stress-highalloc
benchmark with mmtests's stress-highalloc benchmark on a x86_64 machine
with 4GB memory.
Due to instability of the results (mostly related to the bugs fixed by
patches 2 and 3), 10 iterations were performed, taking min,mean,max
values for success rates and mean values for time and vmstat-based
metrics.
First, the default GFP_HIGHUSER_MOVABLE allocations were tested with the
patches stacked on top of v3.13-rc2.  Patch 2 is OK to serve as baseline
due to no functional changes in 1 and 2.  Comments below.
stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                              2-nothp               3-nothp               4-nothp               5-nothp               6-nothp
Success 1 Min          9.00 (  0.00%)       10.00 (-11.11%)       43.00 (-377.78%)       43.00 (-377.78%)       33.00 (-266.67%)
Success 1 Mean        27.50 (  0.00%)       25.30 (  8.00%)       45.50 (-65.45%)       45.90 (-66.91%)       46.30 (-68.36%)
Success 1 Max         36.00 (  0.00%)       36.00 (  0.00%)       47.00 (-30.56%)       48.00 (-33.33%)       52.00 (-44.44%)
Success 2 Min         10.00 (  0.00%)        8.00 ( 20.00%)       46.00 (-360.00%)       45.00 (-350.00%)       35.00 (-250.00%)
Success 2 Mean        26.40 (  0.00%)       23.50 ( 10.98%)       47.30 (-79.17%)       47.60 (-80.30%)       48.10 (-82.20%)
Success 2 Max         34.00 (  0.00%)       33.00 (  2.94%)       48.00 (-41.18%)       50.00 (-47.06%)       54.00 (-58.82%)
Success 3 Min         65.00 (  0.00%)       63.00 (  3.08%)       85.00 (-30.77%)       84.00 (-29.23%)       85.00 (-30.77%)
Success 3 Mean        76.70 (  0.00%)       70.50 (  8.08%)       86.20 (-12.39%)       85.50 (-11.47%)       86.00 (-12.13%)
Success 3 Max         87.00 (  0.00%)       86.00 (  1.15%)       88.00 ( -1.15%)       87.00 (  0.00%)       87.00 (  0.00%)
            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
             2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
User         6437.72     6459.76     5960.32     5974.55     6019.67
System       1049.65     1049.09     1029.32     1031.47     1032.31
Elapsed      1856.77     1874.48     1949.97     1994.22     1983.15
                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                               2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
Minor Faults                 253952267   254581900   250030122   250507333   250157829
Major Faults                       420         407         506         530         530
Swap Ins                             4           9           9           6           6
Swap Outs                          398         375         345         346         333
Direct pages scanned            197538      189017      298574      287019      299063
Kswapd pages scanned           1809843     1801308     1846674     1873184     1861089
Kswapd pages reclaimed         1806972     1798684     1844219     1870509     1858622
Direct pages reclaimed          197227      188829      298380      286822      298835
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity                953.382     970.449     952.243     934.569     922.286
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                104.058     101.832     153.961     143.200     148.205
Percentage direct scans             9%          9%         13%         13%         13%
Zone normal velocity           347.289     359.676     348.063     339.933     332.983
Zone dma32 velocity            710.151     712.605     758.140     737.835     737.507
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         557.600     429.000     353.600     426.400     381.800
Page writes file                   159          53           7          79          48
Page writes anon                   398         375         345         346         333
Page reclaim immediate             825         644         411         575         420
Sector Reads                   2781750     2769780     2878547     2939128     2910483
Sector Writes                 12080843    12083351    12012892    12002132    12010745
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1575654     1545344     1778406     1786700     1794073
Direct inode steals               9657       10037       15795       14104       14645
Kswapd inode steals              46857       46335       50543       50716       51796
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                     97          91          81          71          77
THP collapse alloc                 456         506         546         544         565
THP splits                           6           5           5           4           4
THP fault fallback                   0           1           0           0           0
THP collapse fail                   14          14          12          13          12
Compaction stalls                 1006         980        1537        1536        1548
Compaction success                 303         284         562         559         578
Compaction failures                702         696         974         976         969
Page migrate success           1177325     1070077     3927538     3781870     3877057
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      2547248     2306457     8301218     8008500     8200674
Compaction migrate scanned    42290478    38832618   153961130   154143900   159141197
Compaction free scanned       89199429    79189151   356529027   351943166   356326727
Compaction cost                   1566        1426        5312        5156        5294
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0
Observations:
- The "Success 3" line is allocation success rate with system idle
  (phases 1 and 2 are with background interference).  I used to get stable
  values around 85% with vanilla 3.11.  The lower min and mean values came
  with 3.12.  This was bisected to commit 81c0a2bb ("mm: page_alloc: fair
  zone allocator policy") As explained in comment for patch 3, I don't
  think the commit is wrong, but that it makes the effect of compaction
  bugs worse.  From patch 3 onwards, the results are OK and match the 3.11
  results.
- Patch 4 also clearly helps phases 1 and 2, and exceeds any results
  I've seen with 3.11 (I didn't measure it that thoroughly then, but it
  was never above 40%).
- Compaction cost and number of scanned pages is higher, especially due
  to patch 4.  However, keep in mind that patches 3 and 4 fix existing
  bugs in the current design of compaction overhead mitigation, they do
  not change it.  If overhead is found unacceptable, then it should be
  decreased differently (and consistently, not due to random conditions)
  than the current implementation does.  In contrast, patches 5 and 6
  (which are not strictly bug fixes) do not increase the overhead (but
  also not success rates).  This might be a limitation of the
  stress-highalloc benchmark as it's quite uniform.
Another set of results is when configuring stress-highalloc t allocate
with similar flags as THP uses:
 (GFP_HIGHUSER_MOVABLE|__GFP_NOMEMALLOC|__GFP_NORETRY|__GFP_NO_KSWAPD)
stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                                2-thp                 3-thp                 4-thp                 5-thp                 6-thp
Success 1 Min          2.00 (  0.00%)        7.00 (-250.00%)       18.00 (-800.00%)       19.00 (-850.00%)       26.00 (-1200.00%)
Success 1 Mean        19.20 (  0.00%)       17.80 (  7.29%)       29.20 (-52.08%)       29.90 (-55.73%)       32.80 (-70.83%)
Success 1 Max         27.00 (  0.00%)       29.00 ( -7.41%)       35.00 (-29.63%)       36.00 (-33.33%)       37.00 (-37.04%)
Success 2 Min          3.00 (  0.00%)        8.00 (-166.67%)       21.00 (-600.00%)       21.00 (-600.00%)       32.00 (-966.67%)
Success 2 Mean        19.30 (  0.00%)       17.90 (  7.25%)       32.20 (-66.84%)       32.60 (-68.91%)       35.70 (-84.97%)
Success 2 Max         27.00 (  0.00%)       30.00 (-11.11%)       36.00 (-33.33%)       37.00 (-37.04%)       39.00 (-44.44%)
Success 3 Min         62.00 (  0.00%)       62.00 (  0.00%)       85.00 (-37.10%)       75.00 (-20.97%)       64.00 ( -3.23%)
Success 3 Mean        66.30 (  0.00%)       65.50 (  1.21%)       85.60 (-29.11%)       83.40 (-25.79%)       83.50 (-25.94%)
Success 3 Max         70.00 (  0.00%)       69.00 (  1.43%)       87.00 (-24.29%)       86.00 (-22.86%)       87.00 (-24.29%)
            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
               2-thp       3-thp       4-thp       5-thp       6-thp
User         6547.93     6475.85     6265.54     6289.46     6189.96
System       1053.42     1047.28     1043.23     1042.73     1038.73
Elapsed      1835.43     1821.96     1908.67     1912.74     1956.38
                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                                 2-thp       3-thp       4-thp       5-thp       6-thp
Minor Faults                 256805673   253106328   253222299   249830289   251184418
Major Faults                       395         375         423         434         448
Swap Ins                            12          10          10          12           9
Swap Outs                          530         537         487         455         415
Direct pages scanned             71859       86046      153244      152764      190713
Kswapd pages scanned           1900994     1870240     1898012     1892864     1880520
Kswapd pages reclaimed         1897814     1867428     1894939     1890125     1877924
Direct pages reclaimed           71766       85908      153167      152643      190600
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity               1029.000    1067.782    1000.091     991.049     951.218
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                 38.897      49.127      80.747      79.983      96.468
Percentage direct scans             3%          4%          7%          7%          9%
Zone normal velocity           351.377     372.494     348.910     341.689     335.310
Zone dma32 velocity            716.520     744.414     731.928     729.343     712.377
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         669.300     604.000     545.700     538.900     429.900
Page writes file                   138          66          58          83          14
Page writes anon                   530         537         487         455         415
Page reclaim immediate             806         655         772         548         517
Sector Reads                   2711956     2703239     2811602     2818248     2839459
Sector Writes                 12163238    12018662    12038248    11954736    11994892
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1385088     1388364     1507968     1513292     1558656
Direct inode steals               1739        2564        4622        5496        6007
Kswapd inode steals              47461       46406       47804       48013       48466
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                    110          82          84          69          70
THP collapse alloc                 445         482         467         462         539
THP splits                           6           5           4           5           3
THP fault fallback                   3           0           0           0           0
THP collapse fail                   15          14          14          14          13
Compaction stalls                  659         685        1033        1073        1111
Compaction success                 222         225         410         427         456
Compaction failures                436         460         622         646         655
Page migrate success            446594      439978     1085640     1095062     1131716
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      1029475     1013490     2453074     2482698     2565400
Compaction migrate scanned     9955461    11344259    24375202    27978356    30494204
Compaction free scanned       27715272    28544654    80150615    82898631    85756132
Compaction cost                    552         555        1344        1379        1436
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0
There are some differences from the previous results for THP-like allocations:
- Here, the bad result for unpatched kernel in phase 3 is much more
  consistent to be between 65-70% and not related to the "regression" in
  3.12.  Still there is the improvement from patch 4 onwards, which brings
  it on par with simple GFP_HIGHUSER_MOVABLE allocations.
- Compaction costs have increased, but nowhere near as much as the
  non-THP case.  Again, the patches should be worth the gained
  determininsm.
- Patches 5 and 6 somewhat increase the number of migrate-scanned pages.
   This is most likely due to __GFP_NO_KSWAPD flag, which means the cached
  pfn's and pageblock skip bits are not reset by kswapd that often (at
  least in phase 3 where no concurrent activity would wake up kswapd) and
  the patches thus help the sync-after-async compaction.  It doesn't
  however show that the sync compaction would help so much with success
  rates, which can be again seen as a limitation of the benchmark
  scenario.
This patch (of 6):
Add two tracepoints for compaction begin and end of a zone.  Using this it
is possible to calculate how much time a workload is spending within
compaction and potentially debug problems related to cached pfns for
scanning.  In combination with the direct reclaim and slab trace points it
should be possible to estimate most allocation-related overhead for a
workload.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
											
										 
											2014-01-21 15:51:05 -08:00
										 |  |  | 	trace_mm_compaction_end(ret); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:27 -07:00
										 |  |  | 	return ret; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | static unsigned long compact_zone_order(struct zone *zone, int order, | 
					
						
							|  |  |  | 		gfp_t gfp_mask, enum migrate_mode mode, bool *contended) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:27 -07:00
										 |  |  | 	unsigned long ret; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 	struct compact_control cc = { | 
					
						
							|  |  |  | 		.nr_freepages = 0, | 
					
						
							|  |  |  | 		.nr_migratepages = 0, | 
					
						
							|  |  |  | 		.order = order, | 
					
						
							|  |  |  | 		.migratetype = allocflags_to_migratetype(gfp_mask), | 
					
						
							|  |  |  | 		.zone = zone, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		.mode = mode, | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 	}; | 
					
						
							|  |  |  | 	INIT_LIST_HEAD(&cc.freepages); | 
					
						
							|  |  |  | 	INIT_LIST_HEAD(&cc.migratepages); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:27 -07:00
										 |  |  | 	ret = compact_zone(zone, &cc); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	VM_BUG_ON(!list_empty(&cc.freepages)); | 
					
						
							|  |  |  | 	VM_BUG_ON(!list_empty(&cc.migratepages)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	*contended = cc.contended; | 
					
						
							|  |  |  | 	return ret; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:31 -07:00
										 |  |  | int sysctl_extfrag_threshold = 500; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * try_to_compact_pages - Direct compact to satisfy a high-order allocation | 
					
						
							|  |  |  |  * @zonelist: The zonelist used for the current allocation | 
					
						
							|  |  |  |  * @order: The order of the current allocation | 
					
						
							|  |  |  |  * @gfp_mask: The GFP mask of the current allocation | 
					
						
							|  |  |  |  * @nodemask: The allowed nodes to allocate from | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  |  * @mode: The migration mode for async, sync light, or sync migration | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:31 -07:00
										 |  |  |  * @contended: Return value that is true if compaction was aborted due to lock contention | 
					
						
							|  |  |  |  * @page: Optionally capture a free page of the requested order during compaction | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  |  * | 
					
						
							|  |  |  |  * This is the main entry point for direct page compaction. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | unsigned long try_to_compact_pages(struct zonelist *zonelist, | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:57 -08:00
										 |  |  | 			int order, gfp_t gfp_mask, nodemask_t *nodemask, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 			enum migrate_mode mode, bool *contended) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 
					
						
							|  |  |  | 	int may_enter_fs = gfp_mask & __GFP_FS; | 
					
						
							|  |  |  | 	int may_perform_io = gfp_mask & __GFP_IO; | 
					
						
							|  |  |  | 	struct zoneref *z; | 
					
						
							|  |  |  | 	struct zone *zone; | 
					
						
							|  |  |  | 	int rc = COMPACT_SKIPPED; | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:05 -07:00
										 |  |  | 	int alloc_flags = 0; | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:29:09 -07:00
										 |  |  | 	/* Check if the GFP flags allow compaction */ | 
					
						
							| 
									
										
										
										
											2011-01-13 15:47:11 -08:00
										 |  |  | 	if (!order || !may_enter_fs || !may_perform_io) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 		return rc; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-12-20 15:05:06 -08:00
										 |  |  | 	count_compact_event(COMPACTSTALL); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:05 -07:00
										 |  |  | #ifdef CONFIG_CMA
 | 
					
						
							|  |  |  | 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
					
						
							|  |  |  | 		alloc_flags |= ALLOC_CMA; | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 	/* Compact each zone in the list */ | 
					
						
							|  |  |  | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, | 
					
						
							|  |  |  | 								nodemask) { | 
					
						
							|  |  |  | 		int status; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		status = compact_zone_order(zone, order, gfp_mask, mode, | 
					
						
							| 
									
										
										
										
											2013-01-11 14:32:16 -08:00
										 |  |  | 						contended); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 		rc = max(status, rc); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-01-13 15:45:56 -08:00
										 |  |  | 		/* If a normal allocation would succeed, stop compacting */ | 
					
						
							| 
									
										
										
										
											2012-10-08 16:32:05 -07:00
										 |  |  | 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, | 
					
						
							|  |  |  | 				      alloc_flags)) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:30 -07:00
										 |  |  | 			break; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return rc; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | /* Compact all zones within a node */ | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:33 -08:00
										 |  |  | static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	int zoneid; | 
					
						
							|  |  |  | 	struct zone *zone; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		zone = &pgdat->node_zones[zoneid]; | 
					
						
							|  |  |  | 		if (!populated_zone(zone)) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 		cc->nr_freepages = 0; | 
					
						
							|  |  |  | 		cc->nr_migratepages = 0; | 
					
						
							|  |  |  | 		cc->zone = zone; | 
					
						
							|  |  |  | 		INIT_LIST_HEAD(&cc->freepages); | 
					
						
							|  |  |  | 		INIT_LIST_HEAD(&cc->migratepages); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:54 -07:00
										 |  |  | 		if (cc->order == -1 || !compaction_deferred(zone, cc->order)) | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 			compact_zone(zone, cc); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 		if (cc->order > 0) { | 
					
						
							| 
									
										
										
										
											2014-01-21 15:51:07 -08:00
										 |  |  | 			if (zone_watermark_ok(zone, cc->order, | 
					
						
							|  |  |  | 						low_wmark_pages(zone), 0, 0)) | 
					
						
							|  |  |  | 				compaction_defer_reset(zone, cc->order, false); | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 		VM_BUG_ON(!list_empty(&cc->freepages)); | 
					
						
							|  |  |  | 		VM_BUG_ON(!list_empty(&cc->migratepages)); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:33 -08:00
										 |  |  | void compact_pgdat(pg_data_t *pgdat, int order) | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	struct compact_control cc = { | 
					
						
							|  |  |  | 		.order = order, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		.mode = MIGRATE_ASYNC, | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-09-11 14:22:19 -07:00
										 |  |  | 	if (!order) | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:33 -08:00
										 |  |  | 	__compact_pgdat(pgdat, &cc); | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:33 -08:00
										 |  |  | static void compact_node(int nid) | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	struct compact_control cc = { | 
					
						
							|  |  |  | 		.order = -1, | 
					
						
							| 
									
										
										
										
											2014-06-04 16:08:28 -07:00
										 |  |  | 		.mode = MIGRATE_SYNC, | 
					
						
							| 
									
										
										
										
											2014-04-03 14:47:23 -07:00
										 |  |  | 		.ignore_skip_hint = true, | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-22 16:32:33 -08:00
										 |  |  | 	__compact_pgdat(NODE_DATA(nid), &cc); | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:52 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | /* Compact all nodes in the system */ | 
					
						
							| 
									
										
										
										
											2013-01-11 14:31:47 -08:00
										 |  |  | static void compact_nodes(void) | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | { | 
					
						
							|  |  |  | 	int nid; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:53 -07:00
										 |  |  | 	/* Flush pending updates to the LRU lists */ | 
					
						
							|  |  |  | 	lru_add_drain_all(); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 	for_each_online_node(nid) | 
					
						
							|  |  |  | 		compact_node(nid); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The written value is actually unused, all memory is compacted */ | 
					
						
							|  |  |  | int sysctl_compact_memory; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* This is the entry point for compacting all nodes via /proc/sys/vm */ | 
					
						
							|  |  |  | int sysctl_compaction_handler(struct ctl_table *table, int write, | 
					
						
							|  |  |  | 			void __user *buffer, size_t *length, loff_t *ppos) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	if (write) | 
					
						
							| 
									
										
										
										
											2013-01-11 14:31:47 -08:00
										 |  |  | 		compact_nodes(); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:28 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	return 0; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:31 -07:00
										 |  |  | int sysctl_extfrag_handler(struct ctl_table *table, int write, | 
					
						
							|  |  |  | 			void __user *buffer, size_t *length, loff_t *ppos) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	proc_dointvec_minmax(table, write, buffer, length, ppos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
 | 
					
						
							| 
									
										
										
										
											2014-04-03 14:48:01 -07:00
										 |  |  | static ssize_t sysfs_compact_node(struct device *dev, | 
					
						
							| 
									
										
										
										
											2011-12-21 14:48:43 -08:00
										 |  |  | 			struct device_attribute *attr, | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | 			const char *buf, size_t count) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2012-03-21 16:33:53 -07:00
										 |  |  | 	int nid = dev->id; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { | 
					
						
							|  |  |  | 		/* Flush pending updates to the LRU lists */ | 
					
						
							|  |  |  | 		lru_add_drain_all(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		compact_node(nid); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	return count; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2011-12-21 14:48:43 -08:00
										 |  |  | static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | int compaction_register_node(struct node *node) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2011-12-21 14:48:43 -08:00
										 |  |  | 	return device_create_file(&node->dev, &dev_attr_compact); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void compaction_unregister_node(struct node *node) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2011-12-21 14:48:43 -08:00
										 |  |  | 	return device_remove_file(&node->dev, &dev_attr_compact); | 
					
						
							| 
									
										
										
										
											2010-05-24 14:32:29 -07:00
										 |  |  | } | 
					
						
							|  |  |  | #endif /* CONFIG_SYSFS && CONFIG_NUMA */
 | 
					
						
							| 
									
										
										
										
											2011-12-29 13:09:50 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | #endif /* CONFIG_COMPACTION */
 |