193 lines
		
	
	
	
		
			6.3 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
		
		
			
		
	
	
			193 lines
		
	
	
	
		
			6.3 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Optimized version of the standard strlen() function
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Inputs:
							 | 
						||
| 
								 | 
							
								 *	in0	address of string
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Outputs:
							 | 
						||
| 
								 | 
							
								 *	ret0	the number of characters in the string (0 if empty string)
							 | 
						||
| 
								 | 
							
								 *	does not count the \0
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright (C) 1999, 2001 Hewlett-Packard Co
							 | 
						||
| 
								 | 
							
								 *	Stephane Eranian <eranian@hpl.hp.com>
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * 09/24/99 S.Eranian add speculation recovery code
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <asm/asmmacro.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This is an enhanced version of the basic strlen. it includes a combination
							 | 
						||
| 
								 | 
							
								// of compute zero index (czx), parallel comparisons, speculative loads and
							 | 
						||
| 
								 | 
							
								// loop unroll using rotating registers.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// General Ideas about the algorithm:
							 | 
						||
| 
								 | 
							
								//	  The goal is to look at the string in chunks of 8 bytes.
							 | 
						||
| 
								 | 
							
								//	  so we need to do a few extra checks at the beginning because the
							 | 
						||
| 
								 | 
							
								//	  string may not be 8-byte aligned. In this case we load the 8byte
							 | 
						||
| 
								 | 
							
								//	  quantity which includes the start of the string and mask the unused
							 | 
						||
| 
								 | 
							
								//	  bytes with 0xff to avoid confusing czx.
							 | 
						||
| 
								 | 
							
								//	  We use speculative loads and software pipelining to hide memory
							 | 
						||
| 
								 | 
							
								//	  latency and do read ahead safely. This way we defer any exception.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	  Because we don't want the kernel to be relying on particular
							 | 
						||
| 
								 | 
							
								//	  settings of the DCR register, we provide recovery code in case
							 | 
						||
| 
								 | 
							
								//	  speculation fails. The recovery code is going to "redo" the work using
							 | 
						||
| 
								 | 
							
								//	  only normal loads. If we still get a fault then we generate a
							 | 
						||
| 
								 | 
							
								//	  kernel panic. Otherwise we return the strlen as usual.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	  The fact that speculation may fail can be caused, for instance, by
							 | 
						||
| 
								 | 
							
								//	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e.,
							 | 
						||
| 
								 | 
							
								//	  a NaT bit will be set if the translation is not present. The normal
							 | 
						||
| 
								 | 
							
								//	  load, on the other hand, will cause the translation to be inserted
							 | 
						||
| 
								 | 
							
								//	  if the mapping exists.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	  It should be noted that we execute recovery code only when we need
							 | 
						||
| 
								 | 
							
								//	  to use the data that has been speculatively loaded: we don't execute
							 | 
						||
| 
								 | 
							
								//	  recovery code on pure read ahead data.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Remarks:
							 | 
						||
| 
								 | 
							
								//	- the cmp r0,r0 is used as a fast way to initialize a predicate
							 | 
						||
| 
								 | 
							
								//	  register to 1. This is required to make sure that we get the parallel
							 | 
						||
| 
								 | 
							
								//	  compare correct.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	- we don't use the epilogue counter to exit the loop but we need to set
							 | 
						||
| 
								 | 
							
								//	  it to zero beforehand.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	- after the loop we must test for Nat values because neither the
							 | 
						||
| 
								 | 
							
								//	  czx nor cmp instruction raise a NaT consumption fault. We must be
							 | 
						||
| 
								 | 
							
								//	  careful not to look too far for a Nat for which we don't care.
							 | 
						||
| 
								 | 
							
								//	  For instance we don't need to look at a NaT in val2 if the zero byte
							 | 
						||
| 
								 | 
							
								//	  was in val1.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//	- Clearly performance tuning is required.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								#define saved_pfs	r11
							 | 
						||
| 
								 | 
							
								#define	tmp		r10
							 | 
						||
| 
								 | 
							
								#define base		r16
							 | 
						||
| 
								 | 
							
								#define orig		r17
							 | 
						||
| 
								 | 
							
								#define saved_pr	r18
							 | 
						||
| 
								 | 
							
								#define src		r19
							 | 
						||
| 
								 | 
							
								#define mask		r20
							 | 
						||
| 
								 | 
							
								#define val		r21
							 | 
						||
| 
								 | 
							
								#define val1		r22
							 | 
						||
| 
								 | 
							
								#define val2		r23
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								GLOBAL_ENTRY(strlen)
							 | 
						||
| 
								 | 
							
									.prologue
							 | 
						||
| 
								 | 
							
									.save ar.pfs, saved_pfs
							 | 
						||
| 
								 | 
							
									alloc saved_pfs=ar.pfs,11,0,0,8 // rotating must be multiple of 8
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									.rotr v[2], w[2]	// declares our 4 aliases
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									extr.u tmp=in0,0,3	// tmp=least significant 3 bits
							 | 
						||
| 
								 | 
							
									mov orig=in0		// keep trackof initial byte address
							 | 
						||
| 
								 | 
							
									dep src=0,in0,0,3	// src=8byte-aligned in0 address
							 | 
						||
| 
								 | 
							
									.save pr, saved_pr
							 | 
						||
| 
								 | 
							
									mov saved_pr=pr		// preserve predicates (rotation)
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									.body
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									ld8 v[1]=[src],8	// must not speculate: can fail here
							 | 
						||
| 
								 | 
							
									shl tmp=tmp,3		// multiply by 8bits/byte
							 | 
						||
| 
								 | 
							
									mov mask=-1		// our mask
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									ld8.s w[1]=[src],8	// speculatively load next
							 | 
						||
| 
								 | 
							
									cmp.eq p6,p0=r0,r0	// sets p6 to true for cmp.and
							 | 
						||
| 
								 | 
							
									sub tmp=64,tmp		// how many bits to shift our mask on the right
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part
							 | 
						||
| 
								 | 
							
									mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs)
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									add base=-16,src	// keep track of aligned base
							 | 
						||
| 
								 | 
							
									or v[1]=v[1],mask	// now we have a safe initial byte pattern
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
								1:
							 | 
						||
| 
								 | 
							
									ld8.s v[0]=[src],8	// speculatively load next
							 | 
						||
| 
								 | 
							
									czx1.r val1=v[1]	// search 0 byte from right
							 | 
						||
| 
								 | 
							
									czx1.r val2=w[1]	// search 0 byte from right following 8bytes
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									ld8.s w[0]=[src],8	// speculatively load next to next
							 | 
						||
| 
								 | 
							
									cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8
							 | 
						||
| 
								 | 
							
									cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8
							 | 
						||
| 
								 | 
							
								(p6)	br.wtop.dptk 1b		// loop until p6 == 0
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// We must return try the recovery code iff
							 | 
						||
| 
								 | 
							
									// val1_is_nat || (val1==8 && val2_is_nat)
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// XXX Fixme
							 | 
						||
| 
								 | 
							
									//	- there must be a better way of doing the test
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate)
							 | 
						||
| 
								 | 
							
									tnat.nz p6,p7=val1	// test NaT on val1
							 | 
						||
| 
								 | 
							
								(p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// if we come here p7 is true, i.e., initialized for // cmp
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									cmp.eq.and  p7,p0=8,val1// val1==8?
							 | 
						||
| 
								 | 
							
									tnat.nz.and p7,p0=val2	// test NaT if val2
							 | 
						||
| 
								 | 
							
								(p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
								(p8)	mov val1=val2		// the other test got us out of the loop
							 | 
						||
| 
								 | 
							
								(p8)	adds src=-16,src	// correct position when 3 ahead
							 | 
						||
| 
								 | 
							
								(p9)	adds src=-24,src	// correct position when 4 ahead
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									sub ret0=src,orig	// distance from base
							 | 
						||
| 
								 | 
							
									sub tmp=8,val1		// which byte in word
							 | 
						||
| 
								 | 
							
									mov pr=saved_pr,0xffffffffffff0000
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									sub ret0=ret0,tmp	// adjust
							 | 
						||
| 
								 | 
							
									mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
							 | 
						||
| 
								 | 
							
									br.ret.sptk.many rp	// end of normal execution
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// Outlined recovery code when speculation failed
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// This time we don't use speculation and rely on the normal exception
							 | 
						||
| 
								 | 
							
									// mechanism. that's why the loop is not as good as the previous one
							 | 
						||
| 
								 | 
							
									// because read ahead is not possible
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// IMPORTANT:
							 | 
						||
| 
								 | 
							
									// Please note that in the case of strlen() as opposed to strlen_user()
							 | 
						||
| 
								 | 
							
									// we don't use the exception mechanism, as this function is not
							 | 
						||
| 
								 | 
							
									// supposed to fail. If that happens it means we have a bug and the
							 | 
						||
| 
								 | 
							
									// code will cause of kernel fault.
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// XXX Fixme
							 | 
						||
| 
								 | 
							
									//	- today we restart from the beginning of the string instead
							 | 
						||
| 
								 | 
							
									//	  of trying to continue where we left off.
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
								.recover:
							 | 
						||
| 
								 | 
							
									ld8 val=[base],8	// will fail if unrecoverable fault
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									or val=val,mask		// remask first bytes
							 | 
						||
| 
								 | 
							
									cmp.eq p0,p6=r0,r0	// nullify first ld8 in loop
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
									// ar.ec is still zero here
							 | 
						||
| 
								 | 
							
									//
							 | 
						||
| 
								 | 
							
								2:
							 | 
						||
| 
								 | 
							
								(p6)	ld8 val=[base],8	// will fail if unrecoverable fault
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									czx1.r val1=val		// search 0 byte from right
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									cmp.eq p6,p0=8,val1	// val1==8 ?
							 | 
						||
| 
								 | 
							
								(p6)	br.wtop.dptk 2b		// loop until p6 == 0
							 | 
						||
| 
								 | 
							
									;;			// (avoid WAW on p63)
							 | 
						||
| 
								 | 
							
									sub ret0=base,orig	// distance from base
							 | 
						||
| 
								 | 
							
									sub tmp=8,val1
							 | 
						||
| 
								 | 
							
									mov pr=saved_pr,0xffffffffffff0000
							 | 
						||
| 
								 | 
							
									;;
							 | 
						||
| 
								 | 
							
									sub ret0=ret0,tmp	// length=now - back -1
							 | 
						||
| 
								 | 
							
									mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
							 | 
						||
| 
								 | 
							
									br.ret.sptk.many rp	// end of successful recovery code
							 | 
						||
| 
								 | 
							
								END(strlen)
							 |