199 lines
		
	
	
	
		
			6.5 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
		
		
			
		
	
	
			199 lines
		
	
	
	
		
			6.5 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
|   | /* | ||
|  |  * Optimized version of the strlen_user() function | ||
|  |  * | ||
|  |  * Inputs: | ||
|  |  *	in0	address of buffer | ||
|  |  * | ||
|  |  * Outputs: | ||
|  |  *	ret0	0 in case of fault, strlen(buffer)+1 otherwise | ||
|  |  * | ||
|  |  * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co | ||
|  |  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | ||
|  |  *	Stephane Eranian <eranian@hpl.hp.com>
 | ||
|  |  * | ||
|  |  * 01/19/99 S.Eranian heavily enhanced version (see details below) | ||
|  |  * 09/24/99 S.Eranian added speculation recovery code | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <asm/asmmacro.h> | ||
|  | 
 | ||
|  | // | ||
|  | // int strlen_user(char *) | ||
|  | // ------------------------ | ||
|  | // Returns: | ||
|  | //	- length of string + 1 | ||
|  | //	- 0 in case an exception is raised | ||
|  | // | ||
|  | // This is an enhanced version of the basic strlen_user. it includes a | ||
|  | // combination of compute zero index (czx), parallel comparisons, speculative | ||
|  | // loads and loop unroll using rotating registers. | ||
|  | // | ||
|  | // General Ideas about the algorithm: | ||
|  | //	  The goal is to look at the string in chunks of 8 bytes. | ||
|  | //	  so we need to do a few extra checks at the beginning because the | ||
|  | //	  string may not be 8-byte aligned. In this case we load the 8byte | ||
|  | //	  quantity which includes the start of the string and mask the unused | ||
|  | //	  bytes with 0xff to avoid confusing czx. | ||
|  | //	  We use speculative loads and software pipelining to hide memory | ||
|  | //	  latency and do read ahead safely. This way we defer any exception. | ||
|  | // | ||
|  | //	  Because we don't want the kernel to be relying on particular | ||
|  | //	  settings of the DCR register, we provide recovery code in case | ||
|  | //	  speculation fails. The recovery code is going to "redo" the work using | ||
|  | //	  only normal loads. If we still get a fault then we return an | ||
|  | //	  error (ret0=0). Otherwise we return the strlen+1 as usual. | ||
|  | //	  The fact that speculation may fail can be caused, for instance, by | ||
|  | //	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e., | ||
|  | //	  a NaT bit will be set if the translation is not present. The normal | ||
|  | //	  load, on the other hand, will cause the translation to be inserted | ||
|  | //	  if the mapping exists. | ||
|  | // | ||
|  | //	  It should be noted that we execute recovery code only when we need | ||
|  | //	  to use the data that has been speculatively loaded: we don't execute | ||
|  | //	  recovery code on pure read ahead data. | ||
|  | // | ||
|  | // Remarks: | ||
|  | //	- the cmp r0,r0 is used as a fast way to initialize a predicate | ||
|  | //	  register to 1. This is required to make sure that we get the parallel | ||
|  | //	  compare correct. | ||
|  | // | ||
|  | //	- we don't use the epilogue counter to exit the loop but we need to set | ||
|  | //	  it to zero beforehand. | ||
|  | // | ||
|  | //	- after the loop we must test for Nat values because neither the | ||
|  | //	  czx nor cmp instruction raise a NaT consumption fault. We must be | ||
|  | //	  careful not to look too far for a Nat for which we don't care. | ||
|  | //	  For instance we don't need to look at a NaT in val2 if the zero byte | ||
|  | //	  was in val1. | ||
|  | // | ||
|  | //	- Clearly performance tuning is required. | ||
|  | // | ||
|  | 
 | ||
|  | #define saved_pfs	r11 | ||
|  | #define	tmp		r10 | ||
|  | #define base		r16 | ||
|  | #define orig		r17 | ||
|  | #define saved_pr	r18 | ||
|  | #define src		r19 | ||
|  | #define mask		r20 | ||
|  | #define val		r21 | ||
|  | #define val1		r22 | ||
|  | #define val2		r23 | ||
|  | 
 | ||
|  | GLOBAL_ENTRY(__strlen_user) | ||
|  | 	.prologue | ||
|  | 	.save ar.pfs, saved_pfs | ||
|  | 	alloc saved_pfs=ar.pfs,11,0,0,8 | ||
|  | 
 | ||
|  | 	.rotr v[2], w[2]	// declares our 4 aliases | ||
|  | 
 | ||
|  | 	extr.u tmp=in0,0,3	// tmp=least significant 3 bits | ||
|  | 	mov orig=in0		// keep trackof initial byte address | ||
|  | 	dep src=0,in0,0,3	// src=8byte-aligned in0 address | ||
|  | 	.save pr, saved_pr | ||
|  | 	mov saved_pr=pr		// preserve predicates (rotation) | ||
|  | 	;;
 | ||
|  | 
 | ||
|  | 	.body | ||
|  | 
 | ||
|  | 	ld8.s v[1]=[src],8	// load the initial 8bytes (must speculate) | ||
|  | 	shl tmp=tmp,3		// multiply by 8bits/byte | ||
|  | 	mov mask=-1		// our mask | ||
|  | 	;;
 | ||
|  | 	ld8.s w[1]=[src],8	// load next 8 bytes in 2nd pipeline | ||
|  | 	cmp.eq p6,p0=r0,r0	// sets p6 (required because of // cmp.and) | ||
|  | 	sub tmp=64,tmp		// how many bits to shift our mask on the right | ||
|  | 	;;
 | ||
|  | 	shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part | ||
|  | 	mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs) | ||
|  | 	;;
 | ||
|  | 	add base=-16,src	// keep track of aligned base | ||
|  | 	chk.s v[1], .recover	// if already NaT, then directly skip to recover | ||
|  | 	or v[1]=v[1],mask	// now we have a safe initial byte pattern | ||
|  | 	;;
 | ||
|  | 1: | ||
|  | 	ld8.s v[0]=[src],8	// speculatively load next | ||
|  | 	czx1.r val1=v[1]	// search 0 byte from right | ||
|  | 	czx1.r val2=w[1]	// search 0 byte from right following 8bytes | ||
|  | 	;;
 | ||
|  | 	ld8.s w[0]=[src],8	// speculatively load next to next | ||
|  | 	cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8 | ||
|  | 	cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8 | ||
|  | (p6)	br.wtop.dptk.few 1b	// loop until p6 == 0 | ||
|  | 	;;
 | ||
|  | 	// | ||
|  | 	// We must return try the recovery code iff | ||
|  | 	// val1_is_nat || (val1==8 && val2_is_nat) | ||
|  | 	// | ||
|  | 	// XXX Fixme | ||
|  | 	//	- there must be a better way of doing the test | ||
|  | 	// | ||
|  | 	cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate) | ||
|  | 	tnat.nz p6,p7=val1	// test NaT on val1 | ||
|  | (p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT | ||
|  | 	;;
 | ||
|  | 	// | ||
|  | 	// if we come here p7 is true, i.e., initialized for // cmp | ||
|  | 	// | ||
|  | 	cmp.eq.and  p7,p0=8,val1// val1==8? | ||
|  | 	tnat.nz.and p7,p0=val2	// test NaT if val2 | ||
|  | (p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT | ||
|  | 	;;
 | ||
|  | (p8)	mov val1=val2		// val2 contains the value | ||
|  | (p8)	adds src=-16,src	// correct position when 3 ahead | ||
|  | (p9)	adds src=-24,src	// correct position when 4 ahead | ||
|  | 	;;
 | ||
|  | 	sub ret0=src,orig	// distance from origin | ||
|  | 	sub tmp=7,val1		// 7=8-1 because this strlen returns strlen+1 | ||
|  | 	mov pr=saved_pr,0xffffffffffff0000 | ||
|  | 	;;
 | ||
|  | 	sub ret0=ret0,tmp	// length=now - back -1 | ||
|  | 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | ||
|  | 	br.ret.sptk.many rp	// end of normal execution | ||
|  | 
 | ||
|  | 	// | ||
|  | 	// Outlined recovery code when speculation failed | ||
|  | 	// | ||
|  | 	// This time we don't use speculation and rely on the normal exception | ||
|  | 	// mechanism. that's why the loop is not as good as the previous one | ||
|  | 	// because read ahead is not possible | ||
|  | 	// | ||
|  | 	// XXX Fixme | ||
|  | 	//	- today we restart from the beginning of the string instead | ||
|  | 	//	  of trying to continue where we left off. | ||
|  | 	// | ||
|  | .recover: | ||
|  | 	EX(.Lexit1, ld8 val=[base],8)	// load the initial bytes | ||
|  | 	;;
 | ||
|  | 	or val=val,mask			// remask first bytes | ||
|  | 	cmp.eq p0,p6=r0,r0		// nullify first ld8 in loop | ||
|  | 	;;
 | ||
|  | 	// | ||
|  | 	// ar.ec is still zero here | ||
|  | 	// | ||
|  | 2: | ||
|  | 	EX(.Lexit1, (p6) ld8 val=[base],8) | ||
|  | 	;;
 | ||
|  | 	czx1.r val1=val		// search 0 byte from right | ||
|  | 	;;
 | ||
|  | 	cmp.eq p6,p0=8,val1	// val1==8 ? | ||
|  | (p6)	br.wtop.dptk.few 2b	// loop until p6 == 0 | ||
|  | 	;;
 | ||
|  | 	sub ret0=base,orig	// distance from base | ||
|  | 	sub tmp=7,val1		// 7=8-1 because this strlen returns strlen+1 | ||
|  | 	mov pr=saved_pr,0xffffffffffff0000 | ||
|  | 	;;
 | ||
|  | 	sub ret0=ret0,tmp	// length=now - back -1 | ||
|  | 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | ||
|  | 	br.ret.sptk.many rp	// end of successful recovery code | ||
|  | 
 | ||
|  | 	// | ||
|  | 	// We failed even on the normal load (called from exception handler) | ||
|  | 	// | ||
|  | .Lexit1: | ||
|  | 	mov ret0=0 | ||
|  | 	mov pr=saved_pr,0xffffffffffff0000 | ||
|  | 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what | ||
|  | 	br.ret.sptk.many rp | ||
|  | END(__strlen_user) |