702 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			702 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  | 
 | ||
|  |    fp_arith.c: floating-point math routines for the Linux-m68k | ||
|  |    floating point emulator. | ||
|  | 
 | ||
|  |    Copyright (c) 1998-1999 David Huggins-Daines. | ||
|  | 
 | ||
|  |    Somewhat based on the AlphaLinux floating point emulator, by David | ||
|  |    Mosberger-Tang. | ||
|  | 
 | ||
|  |    You may copy, modify, and redistribute this file under the terms of | ||
|  |    the GNU General Public License, version 2, or any later version, at | ||
|  |    your convenience. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "fp_emu.h"
 | ||
|  | #include "multi_arith.h"
 | ||
|  | #include "fp_arith.h"
 | ||
|  | 
 | ||
|  | const struct fp_ext fp_QNaN = | ||
|  | { | ||
|  | 	.exp = 0x7fff, | ||
|  | 	.mant = { .m64 = ~0 } | ||
|  | }; | ||
|  | 
 | ||
|  | const struct fp_ext fp_Inf = | ||
|  | { | ||
|  | 	.exp = 0x7fff, | ||
|  | }; | ||
|  | 
 | ||
|  | /* let's start with the easy ones */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fabs(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fabs\n"); | ||
|  | 
 | ||
|  | 	fp_monadic_check(dest, src); | ||
|  | 
 | ||
|  | 	dest->sign = 0; | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fneg(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fneg\n"); | ||
|  | 
 | ||
|  | 	fp_monadic_check(dest, src); | ||
|  | 
 | ||
|  | 	dest->sign = !dest->sign; | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | /* Now, the slightly harder ones */ | ||
|  | 
 | ||
|  | /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB,
 | ||
|  |    FDSUB, and FCMP instructions. */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fadd(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	int diff; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fadd\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	if (IS_INF(dest)) { | ||
|  | 		/* infinity - infinity == NaN */ | ||
|  | 		if (IS_INF(src) && (src->sign != dest->sign)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		fp_copy_ext(dest, src); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (IS_ZERO(dest)) { | ||
|  | 		if (IS_ZERO(src)) { | ||
|  | 			if (src->sign != dest->sign) { | ||
|  | 				if (FPDATA->rnd == FPCR_ROUND_RM) | ||
|  | 					dest->sign = 1; | ||
|  | 				else | ||
|  | 					dest->sign = 0; | ||
|  | 			} | ||
|  | 		} else | ||
|  | 			fp_copy_ext(dest, src); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	dest->lowmant = src->lowmant = 0; | ||
|  | 
 | ||
|  | 	if ((diff = dest->exp - src->exp) > 0) | ||
|  | 		fp_denormalize(src, diff); | ||
|  | 	else if ((diff = -diff) > 0) | ||
|  | 		fp_denormalize(dest, diff); | ||
|  | 
 | ||
|  | 	if (dest->sign == src->sign) { | ||
|  | 		if (fp_addmant(dest, src)) | ||
|  | 			if (!fp_addcarry(dest)) | ||
|  | 				return dest; | ||
|  | 	} else { | ||
|  | 		if (dest->mant.m64 < src->mant.m64) { | ||
|  | 			fp_submant(dest, src, dest); | ||
|  | 			dest->sign = !dest->sign; | ||
|  | 		} else | ||
|  | 			fp_submant(dest, dest, src); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB
 | ||
|  |    instructions. | ||
|  | 
 | ||
|  |    Remember that the arguments are in assembler-syntax order! */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fsub(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fsub "); | ||
|  | 
 | ||
|  | 	src->sign = !src->sign; | ||
|  | 	return fp_fadd(dest, src); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fcmp(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fcmp "); | ||
|  | 
 | ||
|  | 	FPDATA->temp[1] = *dest; | ||
|  | 	src->sign = !src->sign; | ||
|  | 	return fp_fadd(&FPDATA->temp[1], src); | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_ftst(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "ftst\n"); | ||
|  | 
 | ||
|  | 	(void)dest; | ||
|  | 
 | ||
|  | 	return src; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fmul(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	union fp_mant128 temp; | ||
|  | 	int exp; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fmul\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* calculate the correct sign now, as it's necessary for infinities */ | ||
|  | 	dest->sign = src->sign ^ dest->sign; | ||
|  | 
 | ||
|  | 	/* Handle infinities */ | ||
|  | 	if (IS_INF(dest)) { | ||
|  | 		if (IS_ZERO(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		if (IS_ZERO(dest)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		else | ||
|  | 			fp_copy_ext(dest, src); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Of course, as we all know, zero * anything = zero.  You may
 | ||
|  | 	   not have known that it might be a positive or negative | ||
|  | 	   zero... */ | ||
|  | 	if (IS_ZERO(dest) || IS_ZERO(src)) { | ||
|  | 		dest->exp = 0; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 		dest->lowmant = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	exp = dest->exp + src->exp - 0x3ffe; | ||
|  | 
 | ||
|  | 	/* shift up the mantissa for denormalized numbers,
 | ||
|  | 	   so that the highest bit is set, this makes the | ||
|  | 	   shift of the result below easier */ | ||
|  | 	if ((long)dest->mant.m32[0] >= 0) | ||
|  | 		exp -= fp_overnormalize(dest); | ||
|  | 	if ((long)src->mant.m32[0] >= 0) | ||
|  | 		exp -= fp_overnormalize(src); | ||
|  | 
 | ||
|  | 	/* now, do a 64-bit multiply with expansion */ | ||
|  | 	fp_multiplymant(&temp, dest, src); | ||
|  | 
 | ||
|  | 	/* normalize it back to 64 bits and stuff it back into the
 | ||
|  | 	   destination struct */ | ||
|  | 	if ((long)temp.m32[0] > 0) { | ||
|  | 		exp--; | ||
|  | 		fp_putmant128(dest, &temp, 1); | ||
|  | 	} else | ||
|  | 		fp_putmant128(dest, &temp, 0); | ||
|  | 
 | ||
|  | 	if (exp >= 0x7fff) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	dest->exp = exp; | ||
|  | 	if (exp < 0) { | ||
|  | 		fp_set_sr(FPSR_EXC_UNFL); | ||
|  | 		fp_denormalize(dest, -exp); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and
 | ||
|  |    FSGLDIV instructions. | ||
|  | 
 | ||
|  |    Note that the order of the operands is counter-intuitive: instead | ||
|  |    of src / dest, the result is actually dest / src. */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fdiv(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	union fp_mant128 temp; | ||
|  | 	int exp; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fdiv\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* calculate the correct sign now, as it's necessary for infinities */ | ||
|  | 	dest->sign = src->sign ^ dest->sign; | ||
|  | 
 | ||
|  | 	/* Handle infinities */ | ||
|  | 	if (IS_INF(dest)) { | ||
|  | 		/* infinity / infinity = NaN (quiet, as always) */ | ||
|  | 		if (IS_INF(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		/* infinity / anything else = infinity (with approprate sign) */ | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		/* anything / infinity = zero (with appropriate sign) */ | ||
|  | 		dest->exp = 0; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 		dest->lowmant = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* zeroes */ | ||
|  | 	if (IS_ZERO(dest)) { | ||
|  | 		/* zero / zero = NaN */ | ||
|  | 		if (IS_ZERO(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		/* zero / anything else = zero */ | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_ZERO(src)) { | ||
|  | 		/* anything / zero = infinity (with appropriate sign) */ | ||
|  | 		fp_set_sr(FPSR_EXC_DZ); | ||
|  | 		dest->exp = 0x7fff; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	exp = dest->exp - src->exp + 0x3fff; | ||
|  | 
 | ||
|  | 	/* shift up the mantissa for denormalized numbers,
 | ||
|  | 	   so that the highest bit is set, this makes lots | ||
|  | 	   of things below easier */ | ||
|  | 	if ((long)dest->mant.m32[0] >= 0) | ||
|  | 		exp -= fp_overnormalize(dest); | ||
|  | 	if ((long)src->mant.m32[0] >= 0) | ||
|  | 		exp -= fp_overnormalize(src); | ||
|  | 
 | ||
|  | 	/* now, do the 64-bit divide */ | ||
|  | 	fp_dividemant(&temp, dest, src); | ||
|  | 
 | ||
|  | 	/* normalize it back to 64 bits and stuff it back into the
 | ||
|  | 	   destination struct */ | ||
|  | 	if (!temp.m32[0]) { | ||
|  | 		exp--; | ||
|  | 		fp_putmant128(dest, &temp, 32); | ||
|  | 	} else | ||
|  | 		fp_putmant128(dest, &temp, 31); | ||
|  | 
 | ||
|  | 	if (exp >= 0x7fff) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	dest->exp = exp; | ||
|  | 	if (exp < 0) { | ||
|  | 		fp_set_sr(FPSR_EXC_UNFL); | ||
|  | 		fp_denormalize(dest, -exp); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	int exp; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fsglmul\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* calculate the correct sign now, as it's necessary for infinities */ | ||
|  | 	dest->sign = src->sign ^ dest->sign; | ||
|  | 
 | ||
|  | 	/* Handle infinities */ | ||
|  | 	if (IS_INF(dest)) { | ||
|  | 		if (IS_ZERO(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		if (IS_ZERO(dest)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		else | ||
|  | 			fp_copy_ext(dest, src); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Of course, as we all know, zero * anything = zero.  You may
 | ||
|  | 	   not have known that it might be a positive or negative | ||
|  | 	   zero... */ | ||
|  | 	if (IS_ZERO(dest) || IS_ZERO(src)) { | ||
|  | 		dest->exp = 0; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 		dest->lowmant = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	exp = dest->exp + src->exp - 0x3ffe; | ||
|  | 
 | ||
|  | 	/* do a 32-bit multiply */ | ||
|  | 	fp_mul64(dest->mant.m32[0], dest->mant.m32[1], | ||
|  | 		 dest->mant.m32[0] & 0xffffff00, | ||
|  | 		 src->mant.m32[0] & 0xffffff00); | ||
|  | 
 | ||
|  | 	if (exp >= 0x7fff) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	dest->exp = exp; | ||
|  | 	if (exp < 0) { | ||
|  | 		fp_set_sr(FPSR_EXC_UNFL); | ||
|  | 		fp_denormalize(dest, -exp); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	int exp; | ||
|  | 	unsigned long quot, rem; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fsgldiv\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* calculate the correct sign now, as it's necessary for infinities */ | ||
|  | 	dest->sign = src->sign ^ dest->sign; | ||
|  | 
 | ||
|  | 	/* Handle infinities */ | ||
|  | 	if (IS_INF(dest)) { | ||
|  | 		/* infinity / infinity = NaN (quiet, as always) */ | ||
|  | 		if (IS_INF(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		/* infinity / anything else = infinity (with approprate sign) */ | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		/* anything / infinity = zero (with appropriate sign) */ | ||
|  | 		dest->exp = 0; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 		dest->lowmant = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* zeroes */ | ||
|  | 	if (IS_ZERO(dest)) { | ||
|  | 		/* zero / zero = NaN */ | ||
|  | 		if (IS_ZERO(src)) | ||
|  | 			fp_set_nan(dest); | ||
|  | 		/* zero / anything else = zero */ | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_ZERO(src)) { | ||
|  | 		/* anything / zero = infinity (with appropriate sign) */ | ||
|  | 		fp_set_sr(FPSR_EXC_DZ); | ||
|  | 		dest->exp = 0x7fff; | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 
 | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	exp = dest->exp - src->exp + 0x3fff; | ||
|  | 
 | ||
|  | 	dest->mant.m32[0] &= 0xffffff00; | ||
|  | 	src->mant.m32[0] &= 0xffffff00; | ||
|  | 
 | ||
|  | 	/* do the 32-bit divide */ | ||
|  | 	if (dest->mant.m32[0] >= src->mant.m32[0]) { | ||
|  | 		fp_sub64(dest->mant, src->mant); | ||
|  | 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | ||
|  | 		dest->mant.m32[0] = 0x80000000 | (quot >> 1); | ||
|  | 		dest->mant.m32[1] = (quot & 1) | rem;	/* only for rounding */ | ||
|  | 	} else { | ||
|  | 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | ||
|  | 		dest->mant.m32[0] = quot; | ||
|  | 		dest->mant.m32[1] = rem;		/* only for rounding */ | ||
|  | 		exp--; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (exp >= 0x7fff) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	dest->exp = exp; | ||
|  | 	if (exp < 0) { | ||
|  | 		fp_set_sr(FPSR_EXC_UNFL); | ||
|  | 		fp_denormalize(dest, -exp); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | /* fp_roundint: Internal rounding function for use by several of these
 | ||
|  |    emulated instructions. | ||
|  | 
 | ||
|  |    This one rounds off the fractional part using the rounding mode | ||
|  |    specified. */ | ||
|  | 
 | ||
|  | static void fp_roundint(struct fp_ext *dest, int mode) | ||
|  | { | ||
|  | 	union fp_mant64 oldmant; | ||
|  | 	unsigned long mask; | ||
|  | 
 | ||
|  | 	if (!fp_normalize_ext(dest)) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	/* infinities and zeroes */ | ||
|  | 	if (IS_INF(dest) || IS_ZERO(dest)) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	/* first truncate the lower bits */ | ||
|  | 	oldmant = dest->mant; | ||
|  | 	switch (dest->exp) { | ||
|  | 	case 0 ... 0x3ffe: | ||
|  | 		dest->mant.m64 = 0; | ||
|  | 		break; | ||
|  | 	case 0x3fff ... 0x401e: | ||
|  | 		dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); | ||
|  | 		dest->mant.m32[1] = 0; | ||
|  | 		if (oldmant.m64 == dest->mant.m64) | ||
|  | 			return; | ||
|  | 		break; | ||
|  | 	case 0x401f ... 0x403e: | ||
|  | 		dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); | ||
|  | 		if (oldmant.m32[1] == dest->mant.m32[1]) | ||
|  | 			return; | ||
|  | 		break; | ||
|  | 	default: | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	fp_set_sr(FPSR_EXC_INEX2); | ||
|  | 
 | ||
|  | 	/* We might want to normalize upwards here... however, since
 | ||
|  | 	   we know that this is only called on the output of fp_fdiv, | ||
|  | 	   or with the input to fp_fint or fp_fintrz, and the inputs | ||
|  | 	   to all these functions are either normal or denormalized | ||
|  | 	   (no subnormals allowed!), there's really no need. | ||
|  | 
 | ||
|  | 	   In the case of fp_fdiv, observe that 0x80000000 / 0xffff = | ||
|  | 	   0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the | ||
|  | 	   smallest possible normal dividend and the largest possible normal | ||
|  | 	   divisor will still produce a normal quotient, therefore, (normal | ||
|  | 	   << 64) / normal is normal in all cases) */ | ||
|  | 
 | ||
|  | 	switch (mode) { | ||
|  | 	case FPCR_ROUND_RN: | ||
|  | 		switch (dest->exp) { | ||
|  | 		case 0 ... 0x3ffd: | ||
|  | 			return; | ||
|  | 		case 0x3ffe: | ||
|  | 			/* As noted above, the input is always normal, so the
 | ||
|  | 			   guard bit (bit 63) is always set.  therefore, the | ||
|  | 			   only case in which we will NOT round to 1.0 is when | ||
|  | 			   the input is exactly 0.5. */ | ||
|  | 			if (oldmant.m64 == (1ULL << 63)) | ||
|  | 				return; | ||
|  | 			break; | ||
|  | 		case 0x3fff ... 0x401d: | ||
|  | 			mask = 1 << (0x401d - dest->exp); | ||
|  | 			if (!(oldmant.m32[0] & mask)) | ||
|  | 				return; | ||
|  | 			if (oldmant.m32[0] & (mask << 1)) | ||
|  | 				break; | ||
|  | 			if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && | ||
|  | 					!oldmant.m32[1]) | ||
|  | 				return; | ||
|  | 			break; | ||
|  | 		case 0x401e: | ||
|  | 			if (!(oldmant.m32[1] >= 0)) | ||
|  | 				return; | ||
|  | 			if (oldmant.m32[0] & 1) | ||
|  | 				break; | ||
|  | 			if (!(oldmant.m32[1] << 1)) | ||
|  | 				return; | ||
|  | 			break; | ||
|  | 		case 0x401f ... 0x403d: | ||
|  | 			mask = 1 << (0x403d - dest->exp); | ||
|  | 			if (!(oldmant.m32[1] & mask)) | ||
|  | 				return; | ||
|  | 			if (oldmant.m32[1] & (mask << 1)) | ||
|  | 				break; | ||
|  | 			if (!(oldmant.m32[1] << (dest->exp - 0x401d))) | ||
|  | 				return; | ||
|  | 			break; | ||
|  | 		default: | ||
|  | 			return; | ||
|  | 		} | ||
|  | 		break; | ||
|  | 	case FPCR_ROUND_RZ: | ||
|  | 		return; | ||
|  | 	default: | ||
|  | 		if (dest->sign ^ (mode - FPCR_ROUND_RM)) | ||
|  | 			break; | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	switch (dest->exp) { | ||
|  | 	case 0 ... 0x3ffe: | ||
|  | 		dest->exp = 0x3fff; | ||
|  | 		dest->mant.m64 = 1ULL << 63; | ||
|  | 		break; | ||
|  | 	case 0x3fff ... 0x401e: | ||
|  | 		mask = 1 << (0x401e - dest->exp); | ||
|  | 		if (dest->mant.m32[0] += mask) | ||
|  | 			break; | ||
|  | 		dest->mant.m32[0] = 0x80000000; | ||
|  | 		dest->exp++; | ||
|  | 		break; | ||
|  | 	case 0x401f ... 0x403e: | ||
|  | 		mask = 1 << (0x403e - dest->exp); | ||
|  | 		if (dest->mant.m32[1] += mask) | ||
|  | 			break; | ||
|  | 		if (dest->mant.m32[0] += 1) | ||
|  |                         break; | ||
|  | 		dest->mant.m32[0] = 0x80000000; | ||
|  |                 dest->exp++; | ||
|  | 		break; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /* modrem_kernel: Implementation of the FREM and FMOD instructions
 | ||
|  |    (which are exactly the same, except for the rounding used on the | ||
|  |    intermediate value) */ | ||
|  | 
 | ||
|  | static struct fp_ext * | ||
|  | modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) | ||
|  | { | ||
|  | 	struct fp_ext tmp; | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* Infinities and zeros */ | ||
|  | 	if (IS_INF(dest) || IS_ZERO(src)) { | ||
|  | 		fp_set_nan(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_ZERO(dest) || IS_INF(src)) | ||
|  | 		return dest; | ||
|  | 
 | ||
|  | 	/* FIXME: there is almost certainly a smarter way to do this */ | ||
|  | 	fp_copy_ext(&tmp, dest); | ||
|  | 	fp_fdiv(&tmp, src);		/* NOTE: src might be modified */ | ||
|  | 	fp_roundint(&tmp, mode); | ||
|  | 	fp_fmul(&tmp, src); | ||
|  | 	fp_fsub(dest, &tmp); | ||
|  | 
 | ||
|  | 	/* set the quotient byte */ | ||
|  | 	fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | /* fp_fmod: Implements the kernel of the FMOD instruction.
 | ||
|  | 
 | ||
|  |    Again, the argument order is backwards.  The result, as defined in | ||
|  |    the Motorola manuals, is: | ||
|  | 
 | ||
|  |    fmod(src,dest) = (dest - (src * floor(dest / src))) */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fmod(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fmod\n"); | ||
|  | 	return modrem_kernel(dest, src, FPCR_ROUND_RZ); | ||
|  | } | ||
|  | 
 | ||
|  | /* fp_frem: Implements the kernel of the FREM instruction.
 | ||
|  | 
 | ||
|  |    frem(src,dest) = (dest - (src * round(dest / src))) | ||
|  |  */ | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_frem(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "frem\n"); | ||
|  | 	return modrem_kernel(dest, src, FPCR_ROUND_RN); | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fint(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fint\n"); | ||
|  | 
 | ||
|  | 	fp_copy_ext(dest, src); | ||
|  | 
 | ||
|  | 	fp_roundint(dest, FPDATA->rnd); | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fintrz(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	dprint(PINSTR, "fintrz\n"); | ||
|  | 
 | ||
|  | 	fp_copy_ext(dest, src); | ||
|  | 
 | ||
|  | 	fp_roundint(dest, FPCR_ROUND_RZ); | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 | ||
|  | struct fp_ext * | ||
|  | fp_fscale(struct fp_ext *dest, struct fp_ext *src) | ||
|  | { | ||
|  | 	int scale, oldround; | ||
|  | 
 | ||
|  | 	dprint(PINSTR, "fscale\n"); | ||
|  | 
 | ||
|  | 	fp_dyadic_check(dest, src); | ||
|  | 
 | ||
|  | 	/* Infinities */ | ||
|  | 	if (IS_INF(src)) { | ||
|  | 		fp_set_nan(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 	if (IS_INF(dest)) | ||
|  | 		return dest; | ||
|  | 
 | ||
|  | 	/* zeroes */ | ||
|  | 	if (IS_ZERO(src) || IS_ZERO(dest)) | ||
|  | 		return dest; | ||
|  | 
 | ||
|  | 	/* Source exponent out of range */ | ||
|  | 	if (src->exp >= 0x400c) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 		return dest; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* src must be rounded with round to zero. */ | ||
|  | 	oldround = FPDATA->rnd; | ||
|  | 	FPDATA->rnd = FPCR_ROUND_RZ; | ||
|  | 	scale = fp_conv_ext2long(src); | ||
|  | 	FPDATA->rnd = oldround; | ||
|  | 
 | ||
|  | 	/* new exponent */ | ||
|  | 	scale += dest->exp; | ||
|  | 
 | ||
|  | 	if (scale >= 0x7fff) { | ||
|  | 		fp_set_ovrflw(dest); | ||
|  | 	} else if (scale <= 0) { | ||
|  | 		fp_set_sr(FPSR_EXC_UNFL); | ||
|  | 		fp_denormalize(dest, -scale); | ||
|  | 	} else | ||
|  | 		dest->exp = scale; | ||
|  | 
 | ||
|  | 	return dest; | ||
|  | } | ||
|  | 
 |