452 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			452 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/* 
							 | 
						||
| 
								 | 
							
								 * Cryptographic API.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * AES Cipher Algorithm.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Based on Brian Gladman's code.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Linux developers:
							 | 
						||
| 
								 | 
							
								 *  Alexander Kjeldaas <astor@fast.no>
							 | 
						||
| 
								 | 
							
								 *  Herbert Valerio Riedel <hvr@hvrlab.org>
							 | 
						||
| 
								 | 
							
								 *  Kyle McMartin <kyle@debian.org>
							 | 
						||
| 
								 | 
							
								 *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * ---------------------------------------------------------------------------
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
							 | 
						||
| 
								 | 
							
								 * All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * LICENSE TERMS
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The free distribution and use of this software in both source and binary
							 | 
						||
| 
								 | 
							
								 * form is allowed (with or without changes) provided that:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *   1. distributions of this source code include the above copyright
							 | 
						||
| 
								 | 
							
								 *      notice, this list of conditions and the following disclaimer;
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *   2. distributions in binary form include the above copyright
							 | 
						||
| 
								 | 
							
								 *      notice, this list of conditions and the following disclaimer
							 | 
						||
| 
								 | 
							
								 *      in the documentation and/or other associated materials;
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *   3. the copyright holder's name is not used to endorse products
							 | 
						||
| 
								 | 
							
								 *      built using this software without specific written permission.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * ALTERNATIVELY, provided that this notice is retained in full, this product
							 | 
						||
| 
								 | 
							
								 * may be distributed under the terms of the GNU General Public License (GPL),
							 | 
						||
| 
								 | 
							
								 * in which case the provisions of the GPL apply INSTEAD OF those given above.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * DISCLAIMER
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This software is provided 'as is' with no explicit or implied warranties
							 | 
						||
| 
								 | 
							
								 * in respect of its properties, including, but not limited to, correctness
							 | 
						||
| 
								 | 
							
								 * and/or fitness for purpose.
							 | 
						||
| 
								 | 
							
								 * ---------------------------------------------------------------------------
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Some changes from the Gladman version:
							 | 
						||
| 
								 | 
							
								    s/RIJNDAEL(e_key)/E_KEY/g
							 | 
						||
| 
								 | 
							
								    s/RIJNDAEL(d_key)/D_KEY/g
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <linux/module.h>
							 | 
						||
| 
								 | 
							
								#include <linux/init.h>
							 | 
						||
| 
								 | 
							
								#include <linux/types.h>
							 | 
						||
| 
								 | 
							
								#include <linux/errno.h>
							 | 
						||
| 
								 | 
							
								#include <linux/crypto.h>
							 | 
						||
| 
								 | 
							
								#include <asm/byteorder.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define AES_MIN_KEY_SIZE	16
							 | 
						||
| 
								 | 
							
								#define AES_MAX_KEY_SIZE	32
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define AES_BLOCK_SIZE		16
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								inline static u8
							 | 
						||
| 
								 | 
							
								byte(const u32 x, const unsigned n)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return x >> (n << 3);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define u32_in(x) le32_to_cpu(*(const u32 *)(x))
							 | 
						||
| 
								 | 
							
								#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct aes_ctx {
							 | 
						||
| 
								 | 
							
									int key_length;
							 | 
						||
| 
								 | 
							
									u32 E[60];
							 | 
						||
| 
								 | 
							
									u32 D[60];
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define E_KEY ctx->E
							 | 
						||
| 
								 | 
							
								#define D_KEY ctx->D
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static u8 pow_tab[256] __initdata;
							 | 
						||
| 
								 | 
							
								static u8 log_tab[256] __initdata;
							 | 
						||
| 
								 | 
							
								static u8 sbx_tab[256] __initdata;
							 | 
						||
| 
								 | 
							
								static u8 isb_tab[256] __initdata;
							 | 
						||
| 
								 | 
							
								static u32 rco_tab[10];
							 | 
						||
| 
								 | 
							
								static u32 ft_tab[4][256];
							 | 
						||
| 
								 | 
							
								static u32 it_tab[4][256];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static u32 fl_tab[4][256];
							 | 
						||
| 
								 | 
							
								static u32 il_tab[4][256];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static inline u8 __init
							 | 
						||
| 
								 | 
							
								f_mult (u8 a, u8 b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									u8 aa = log_tab[a], cc = aa + log_tab[b];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return pow_tab[cc + (cc < aa ? 1 : 0)];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define f_rn(bo, bi, n, k)					\
							 | 
						||
| 
								 | 
							
								    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
							 | 
						||
| 
								 | 
							
								             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
							 | 
						||
| 
								 | 
							
								             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
							 | 
						||
| 
								 | 
							
								             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define i_rn(bo, bi, n, k)					\
							 | 
						||
| 
								 | 
							
								    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
							 | 
						||
| 
								 | 
							
								             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
							 | 
						||
| 
								 | 
							
								             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
							 | 
						||
| 
								 | 
							
								             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define ls_box(x)				\
							 | 
						||
| 
								 | 
							
								    ( fl_tab[0][byte(x, 0)] ^			\
							 | 
						||
| 
								 | 
							
								      fl_tab[1][byte(x, 1)] ^			\
							 | 
						||
| 
								 | 
							
								      fl_tab[2][byte(x, 2)] ^			\
							 | 
						||
| 
								 | 
							
								      fl_tab[3][byte(x, 3)] )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define f_rl(bo, bi, n, k)					\
							 | 
						||
| 
								 | 
							
								    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
							 | 
						||
| 
								 | 
							
								             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
							 | 
						||
| 
								 | 
							
								             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
							 | 
						||
| 
								 | 
							
								             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define i_rl(bo, bi, n, k)					\
							 | 
						||
| 
								 | 
							
								    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
							 | 
						||
| 
								 | 
							
								             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
							 | 
						||
| 
								 | 
							
								             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
							 | 
						||
| 
								 | 
							
								             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void __init
							 | 
						||
| 
								 | 
							
								gen_tabs (void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									u32 i, t;
							 | 
						||
| 
								 | 
							
									u8 p, q;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* log and power tables for GF(2**8) finite field with
							 | 
						||
| 
								 | 
							
									   0x011b as modular polynomial - the simplest primitive
							 | 
						||
| 
								 | 
							
									   root is 0x03, used here to generate the tables */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (i = 0, p = 1; i < 256; ++i) {
							 | 
						||
| 
								 | 
							
										pow_tab[i] = (u8) p;
							 | 
						||
| 
								 | 
							
										log_tab[p] = (u8) i;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									log_tab[1] = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (i = 0, p = 1; i < 10; ++i) {
							 | 
						||
| 
								 | 
							
										rco_tab[i] = p;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (i = 0; i < 256; ++i) {
							 | 
						||
| 
								 | 
							
										p = (i ? pow_tab[255 - log_tab[i]] : 0);
							 | 
						||
| 
								 | 
							
										q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
							 | 
						||
| 
								 | 
							
										p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
							 | 
						||
| 
								 | 
							
										sbx_tab[i] = p;
							 | 
						||
| 
								 | 
							
										isb_tab[p] = (u8) i;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (i = 0; i < 256; ++i) {
							 | 
						||
| 
								 | 
							
										p = sbx_tab[i];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										t = p;
							 | 
						||
| 
								 | 
							
										fl_tab[0][i] = t;
							 | 
						||
| 
								 | 
							
										fl_tab[1][i] = rol32(t, 8);
							 | 
						||
| 
								 | 
							
										fl_tab[2][i] = rol32(t, 16);
							 | 
						||
| 
								 | 
							
										fl_tab[3][i] = rol32(t, 24);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										t = ((u32) ff_mult (2, p)) |
							 | 
						||
| 
								 | 
							
										    ((u32) p << 8) |
							 | 
						||
| 
								 | 
							
										    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										ft_tab[0][i] = t;
							 | 
						||
| 
								 | 
							
										ft_tab[1][i] = rol32(t, 8);
							 | 
						||
| 
								 | 
							
										ft_tab[2][i] = rol32(t, 16);
							 | 
						||
| 
								 | 
							
										ft_tab[3][i] = rol32(t, 24);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										p = isb_tab[i];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										t = p;
							 | 
						||
| 
								 | 
							
										il_tab[0][i] = t;
							 | 
						||
| 
								 | 
							
										il_tab[1][i] = rol32(t, 8);
							 | 
						||
| 
								 | 
							
										il_tab[2][i] = rol32(t, 16);
							 | 
						||
| 
								 | 
							
										il_tab[3][i] = rol32(t, 24);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										t = ((u32) ff_mult (14, p)) |
							 | 
						||
| 
								 | 
							
										    ((u32) ff_mult (9, p) << 8) |
							 | 
						||
| 
								 | 
							
										    ((u32) ff_mult (13, p) << 16) |
							 | 
						||
| 
								 | 
							
										    ((u32) ff_mult (11, p) << 24);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										it_tab[0][i] = t;
							 | 
						||
| 
								 | 
							
										it_tab[1][i] = rol32(t, 8);
							 | 
						||
| 
								 | 
							
										it_tab[2][i] = rol32(t, 16);
							 | 
						||
| 
								 | 
							
										it_tab[3][i] = rol32(t, 24);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define imix_col(y,x)       \
							 | 
						||
| 
								 | 
							
								    u   = star_x(x);        \
							 | 
						||
| 
								 | 
							
								    v   = star_x(u);        \
							 | 
						||
| 
								 | 
							
								    w   = star_x(v);        \
							 | 
						||
| 
								 | 
							
								    t   = w ^ (x);          \
							 | 
						||
| 
								 | 
							
								   (y)  = u ^ v ^ w;        \
							 | 
						||
| 
								 | 
							
								   (y) ^= ror32(u ^ t,  8) ^ \
							 | 
						||
| 
								 | 
							
								          ror32(v ^ t, 16) ^ \
							 | 
						||
| 
								 | 
							
								          ror32(t,24)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* initialise the key schedule from the user supplied key */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define loop4(i)                                    \
							 | 
						||
| 
								 | 
							
								{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define loop6(i)                                    \
							 | 
						||
| 
								 | 
							
								{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define loop8(i)                                    \
							 | 
						||
| 
								 | 
							
								{   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
							 | 
						||
| 
								 | 
							
								    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
							 | 
						||
| 
								 | 
							
								    E_KEY[8 * i + 12] = t;                \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
							 | 
						||
| 
								 | 
							
								    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int
							 | 
						||
| 
								 | 
							
								aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									struct aes_ctx *ctx = ctx_arg;
							 | 
						||
| 
								 | 
							
									u32 i, t, u, v, w;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (key_len != 16 && key_len != 24 && key_len != 32) {
							 | 
						||
| 
								 | 
							
										*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
							 | 
						||
| 
								 | 
							
										return -EINVAL;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									ctx->key_length = key_len;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									E_KEY[0] = u32_in (in_key);
							 | 
						||
| 
								 | 
							
									E_KEY[1] = u32_in (in_key + 4);
							 | 
						||
| 
								 | 
							
									E_KEY[2] = u32_in (in_key + 8);
							 | 
						||
| 
								 | 
							
									E_KEY[3] = u32_in (in_key + 12);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									switch (key_len) {
							 | 
						||
| 
								 | 
							
									case 16:
							 | 
						||
| 
								 | 
							
										t = E_KEY[3];
							 | 
						||
| 
								 | 
							
										for (i = 0; i < 10; ++i)
							 | 
						||
| 
								 | 
							
											loop4 (i);
							 | 
						||
| 
								 | 
							
										break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									case 24:
							 | 
						||
| 
								 | 
							
										E_KEY[4] = u32_in (in_key + 16);
							 | 
						||
| 
								 | 
							
										t = E_KEY[5] = u32_in (in_key + 20);
							 | 
						||
| 
								 | 
							
										for (i = 0; i < 8; ++i)
							 | 
						||
| 
								 | 
							
											loop6 (i);
							 | 
						||
| 
								 | 
							
										break;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									case 32:
							 | 
						||
| 
								 | 
							
										E_KEY[4] = u32_in (in_key + 16);
							 | 
						||
| 
								 | 
							
										E_KEY[5] = u32_in (in_key + 20);
							 | 
						||
| 
								 | 
							
										E_KEY[6] = u32_in (in_key + 24);
							 | 
						||
| 
								 | 
							
										t = E_KEY[7] = u32_in (in_key + 28);
							 | 
						||
| 
								 | 
							
										for (i = 0; i < 7; ++i)
							 | 
						||
| 
								 | 
							
											loop8 (i);
							 | 
						||
| 
								 | 
							
										break;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									D_KEY[0] = E_KEY[0];
							 | 
						||
| 
								 | 
							
									D_KEY[1] = E_KEY[1];
							 | 
						||
| 
								 | 
							
									D_KEY[2] = E_KEY[2];
							 | 
						||
| 
								 | 
							
									D_KEY[3] = E_KEY[3];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (i = 4; i < key_len + 24; ++i) {
							 | 
						||
| 
								 | 
							
										imix_col (D_KEY[i], E_KEY[i]);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* encrypt a block of text */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define f_nround(bo, bi, k) \
							 | 
						||
| 
								 | 
							
								    f_rn(bo, bi, 0, k);     \
							 | 
						||
| 
								 | 
							
								    f_rn(bo, bi, 1, k);     \
							 | 
						||
| 
								 | 
							
								    f_rn(bo, bi, 2, k);     \
							 | 
						||
| 
								 | 
							
								    f_rn(bo, bi, 3, k);     \
							 | 
						||
| 
								 | 
							
								    k += 4
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define f_lround(bo, bi, k) \
							 | 
						||
| 
								 | 
							
								    f_rl(bo, bi, 0, k);     \
							 | 
						||
| 
								 | 
							
								    f_rl(bo, bi, 1, k);     \
							 | 
						||
| 
								 | 
							
								    f_rl(bo, bi, 2, k);     \
							 | 
						||
| 
								 | 
							
								    f_rl(bo, bi, 3, k)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const struct aes_ctx *ctx = ctx_arg;
							 | 
						||
| 
								 | 
							
									u32 b0[4], b1[4];
							 | 
						||
| 
								 | 
							
									const u32 *kp = E_KEY + 4;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									b0[0] = u32_in (in) ^ E_KEY[0];
							 | 
						||
| 
								 | 
							
									b0[1] = u32_in (in + 4) ^ E_KEY[1];
							 | 
						||
| 
								 | 
							
									b0[2] = u32_in (in + 8) ^ E_KEY[2];
							 | 
						||
| 
								 | 
							
									b0[3] = u32_in (in + 12) ^ E_KEY[3];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (ctx->key_length > 24) {
							 | 
						||
| 
								 | 
							
										f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
										f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (ctx->key_length > 16) {
							 | 
						||
| 
								 | 
							
										f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
										f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									f_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									f_lround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									u32_out (out, b0[0]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 4, b0[1]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 8, b0[2]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 12, b0[3]);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* decrypt a block of text */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define i_nround(bo, bi, k) \
							 | 
						||
| 
								 | 
							
								    i_rn(bo, bi, 0, k);     \
							 | 
						||
| 
								 | 
							
								    i_rn(bo, bi, 1, k);     \
							 | 
						||
| 
								 | 
							
								    i_rn(bo, bi, 2, k);     \
							 | 
						||
| 
								 | 
							
								    i_rn(bo, bi, 3, k);     \
							 | 
						||
| 
								 | 
							
								    k -= 4
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define i_lround(bo, bi, k) \
							 | 
						||
| 
								 | 
							
								    i_rl(bo, bi, 0, k);     \
							 | 
						||
| 
								 | 
							
								    i_rl(bo, bi, 1, k);     \
							 | 
						||
| 
								 | 
							
								    i_rl(bo, bi, 2, k);     \
							 | 
						||
| 
								 | 
							
								    i_rl(bo, bi, 3, k)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const struct aes_ctx *ctx = ctx_arg;
							 | 
						||
| 
								 | 
							
									u32 b0[4], b1[4];
							 | 
						||
| 
								 | 
							
									const int key_len = ctx->key_length;
							 | 
						||
| 
								 | 
							
									const u32 *kp = D_KEY + key_len + 20;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
							 | 
						||
| 
								 | 
							
									b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
							 | 
						||
| 
								 | 
							
									b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
							 | 
						||
| 
								 | 
							
									b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (key_len > 24) {
							 | 
						||
| 
								 | 
							
										i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
										i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (key_len > 16) {
							 | 
						||
| 
								 | 
							
										i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
										i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
									i_nround (b1, b0, kp);
							 | 
						||
| 
								 | 
							
									i_lround (b0, b1, kp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									u32_out (out, b0[0]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 4, b0[1]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 8, b0[2]);
							 | 
						||
| 
								 | 
							
									u32_out (out + 12, b0[3]);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static struct crypto_alg aes_alg = {
							 | 
						||
| 
								 | 
							
									.cra_name		=	"aes",
							 | 
						||
| 
								 | 
							
									.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
							 | 
						||
| 
								 | 
							
									.cra_blocksize		=	AES_BLOCK_SIZE,
							 | 
						||
| 
								 | 
							
									.cra_ctxsize		=	sizeof(struct aes_ctx),
							 | 
						||
| 
								 | 
							
									.cra_module		=	THIS_MODULE,
							 | 
						||
| 
								 | 
							
									.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
							 | 
						||
| 
								 | 
							
									.cra_u			=	{
							 | 
						||
| 
								 | 
							
										.cipher = {
							 | 
						||
| 
								 | 
							
											.cia_min_keysize	=	AES_MIN_KEY_SIZE,
							 | 
						||
| 
								 | 
							
											.cia_max_keysize	=	AES_MAX_KEY_SIZE,
							 | 
						||
| 
								 | 
							
											.cia_setkey	   	= 	aes_set_key,
							 | 
						||
| 
								 | 
							
											.cia_encrypt	 	=	aes_encrypt,
							 | 
						||
| 
								 | 
							
											.cia_decrypt	  	=	aes_decrypt
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int __init aes_init(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									gen_tabs();
							 | 
						||
| 
								 | 
							
									return crypto_register_alg(&aes_alg);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void __exit aes_fini(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									crypto_unregister_alg(&aes_alg);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								module_init(aes_init);
							 | 
						||
| 
								 | 
							
								module_exit(aes_fini);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
							 | 
						||
| 
								 | 
							
								MODULE_LICENSE("Dual BSD/GPL");
							 | 
						||
| 
								 | 
							
								
							 |