404 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			404 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * This file is part of the Chelsio FCoE driver for Linux. | ||
|  |  * | ||
|  |  * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved. | ||
|  |  * | ||
|  |  * This software is available to you under a choice of one of two | ||
|  |  * licenses.  You may choose to be licensed under the terms of the GNU | ||
|  |  * General Public License (GPL) Version 2, available from the file | ||
|  |  * OpenIB.org BSD license below: | ||
|  |  * | ||
|  |  *     Redistribution and use in source and binary forms, with or | ||
|  |  *     without modification, are permitted provided that the following | ||
|  |  *     conditions are met: | ||
|  |  * | ||
|  |  *      - Redistributions of source code must retain the above | ||
|  |  *        copyright notice, this list of conditions and the following | ||
|  |  *      - Redistributions in binary form must reproduce the above | ||
|  |  *        copyright notice, this list of conditions and the following | ||
|  |  *        disclaimer in the documentation and/or other materials | ||
|  |  *        provided with the distribution. | ||
|  |  * | ||
|  |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
|  |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
|  |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
|  |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
|  |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
|  |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
|  |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
|  |  * SOFTWARE. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "csio_hw.h"
 | ||
|  | #include "csio_init.h"
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return the specified PCI-E Configuration Space register from our Physical | ||
|  |  * Function.  We try first via a Firmware LDST Command since we prefer to let | ||
|  |  * the firmware own all of these registers, but if that fails we go for it | ||
|  |  * directly ourselves. | ||
|  |  */ | ||
|  | static uint32_t | ||
|  | csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg) | ||
|  | { | ||
|  | 	u32 val = 0; | ||
|  | 	struct csio_mb *mbp; | ||
|  | 	int rv; | ||
|  | 	struct fw_ldst_cmd *ldst_cmd; | ||
|  | 
 | ||
|  | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | ||
|  | 	if (!mbp) { | ||
|  | 		CSIO_INC_STATS(hw, n_err_nomem); | ||
|  | 		pci_read_config_dword(hw->pdev, reg, &val); | ||
|  | 		return val; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg); | ||
|  | 	rv = csio_mb_issue(hw, mbp); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * If the LDST Command suucceeded, exctract the returned register | ||
|  | 	 * value.  Otherwise read it directly ourself. | ||
|  | 	 */ | ||
|  | 	if (rv == 0) { | ||
|  | 		ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb); | ||
|  | 		val = ntohl(ldst_cmd->u.pcie.data[0]); | ||
|  | 	} else | ||
|  | 		pci_read_config_dword(hw->pdev, reg, &val); | ||
|  | 
 | ||
|  | 	mempool_free(mbp, hw->mb_mempool); | ||
|  | 
 | ||
|  | 	return val; | ||
|  | } | ||
|  | 
 | ||
|  | static int | ||
|  | csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win) | ||
|  | { | ||
|  | 	u32 bar0; | ||
|  | 	u32 mem_win_base; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Truncation intentional: we only read the bottom 32-bits of the | ||
|  | 	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to | ||
|  | 	 * read BAR0 instead of using pci_resource_start() because we could be | ||
|  | 	 * operating from within a Virtual Machine which is trapping our | ||
|  | 	 * accesses to our Configuration Space and we need to set up the PCI-E | ||
|  | 	 * Memory Window decoders with the actual addresses which will be | ||
|  | 	 * coming across the PCI-E link. | ||
|  | 	 */ | ||
|  | 	bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0); | ||
|  | 	bar0 &= PCI_BASE_ADDRESS_MEM_MASK; | ||
|  | 
 | ||
|  | 	mem_win_base = bar0 + MEMWIN_BASE; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Set up memory window for accessing adapter memory ranges.  (Read | ||
|  | 	 * back MA register to ensure that changes propagate before we attempt | ||
|  | 	 * to use the new values.) | ||
|  | 	 */ | ||
|  | 	csio_wr_reg32(hw, mem_win_base | BIR(0) | | ||
|  | 			  WINDOW(ilog2(MEMWIN_APERTURE) - 10), | ||
|  | 			  PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); | ||
|  | 	csio_rd_reg32(hw, | ||
|  | 		      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Interrupt handler for the PCIE module. | ||
|  |  */ | ||
|  | static void | ||
|  | csio_t4_pcie_intr_handler(struct csio_hw *hw) | ||
|  | { | ||
|  | 	static struct intr_info sysbus_intr_info[] = { | ||
|  | 		{ RNPP, "RXNP array parity error", -1, 1 }, | ||
|  | 		{ RPCP, "RXPC array parity error", -1, 1 }, | ||
|  | 		{ RCIP, "RXCIF array parity error", -1, 1 }, | ||
|  | 		{ RCCP, "Rx completions control array parity error", -1, 1 }, | ||
|  | 		{ RFTP, "RXFT array parity error", -1, 1 }, | ||
|  | 		{ 0, NULL, 0, 0 } | ||
|  | 	}; | ||
|  | 	static struct intr_info pcie_port_intr_info[] = { | ||
|  | 		{ TPCP, "TXPC array parity error", -1, 1 }, | ||
|  | 		{ TNPP, "TXNP array parity error", -1, 1 }, | ||
|  | 		{ TFTP, "TXFT array parity error", -1, 1 }, | ||
|  | 		{ TCAP, "TXCA array parity error", -1, 1 }, | ||
|  | 		{ TCIP, "TXCIF array parity error", -1, 1 }, | ||
|  | 		{ RCAP, "RXCA array parity error", -1, 1 }, | ||
|  | 		{ OTDD, "outbound request TLP discarded", -1, 1 }, | ||
|  | 		{ RDPE, "Rx data parity error", -1, 1 }, | ||
|  | 		{ TDUE, "Tx uncorrectable data error", -1, 1 }, | ||
|  | 		{ 0, NULL, 0, 0 } | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	static struct intr_info pcie_intr_info[] = { | ||
|  | 		{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, | ||
|  | 		{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, | ||
|  | 		{ MSIDATAPERR, "MSI data parity error", -1, 1 }, | ||
|  | 		{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, | ||
|  | 		{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, | ||
|  | 		{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, | ||
|  | 		{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, | ||
|  | 		{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, | ||
|  | 		{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, | ||
|  | 		{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, | ||
|  | 		{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, | ||
|  | 		{ CREQPERR, "PCI CMD channel request parity error", -1, 1 }, | ||
|  | 		{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, | ||
|  | 		{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, | ||
|  | 		{ DREQPERR, "PCI DMA channel request parity error", -1, 1 }, | ||
|  | 		{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, | ||
|  | 		{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, | ||
|  | 		{ HREQPERR, "PCI HMA channel request parity error", -1, 1 }, | ||
|  | 		{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, | ||
|  | 		{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, | ||
|  | 		{ FIDPERR, "PCI FID parity error", -1, 1 }, | ||
|  | 		{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, | ||
|  | 		{ MATAGPERR, "PCI MA tag parity error", -1, 1 }, | ||
|  | 		{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, | ||
|  | 		{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, | ||
|  | 		{ RXWRPERR, "PCI Rx write parity error", -1, 1 }, | ||
|  | 		{ RPLPERR, "PCI replay buffer parity error", -1, 1 }, | ||
|  | 		{ PCIESINT, "PCI core secondary fault", -1, 1 }, | ||
|  | 		{ PCIEPINT, "PCI core primary fault", -1, 1 }, | ||
|  | 		{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, | ||
|  | 		  0 }, | ||
|  | 		{ 0, NULL, 0, 0 } | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	int fat; | ||
|  | 	fat = csio_handle_intr_status(hw, | ||
|  | 				      PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, | ||
|  | 				      sysbus_intr_info) + | ||
|  | 	      csio_handle_intr_status(hw, | ||
|  | 				      PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, | ||
|  | 				      pcie_port_intr_info) + | ||
|  | 	      csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info); | ||
|  | 	if (fat) | ||
|  | 		csio_hw_fatal_err(hw); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * csio_t4_flash_cfg_addr - return the address of the flash configuration file | ||
|  |  * @hw: the HW module | ||
|  |  * | ||
|  |  * Return the address within the flash where the Firmware Configuration | ||
|  |  * File is stored. | ||
|  |  */ | ||
|  | static unsigned int | ||
|  | csio_t4_flash_cfg_addr(struct csio_hw *hw) | ||
|  | { | ||
|  | 	return FLASH_CFG_OFFSET; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *      csio_t4_mc_read - read from MC through backdoor accesses | ||
|  |  *      @hw: the hw module | ||
|  |  *      @idx: not used for T4 adapter | ||
|  |  *      @addr: address of first byte requested | ||
|  |  *      @data: 64 bytes of data containing the requested address | ||
|  |  *      @ecc: where to store the corresponding 64-bit ECC word | ||
|  |  * | ||
|  |  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address | ||
|  |  *      that covers the requested address @addr.  If @parity is not %NULL it | ||
|  |  *      is assigned the 64-bit ECC word for the read data. | ||
|  |  */ | ||
|  | static int | ||
|  | csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, | ||
|  | 		uint64_t *ecc) | ||
|  | { | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST) | ||
|  | 		return -EBUSY; | ||
|  | 	csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR); | ||
|  | 	csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN); | ||
|  | 	csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN); | ||
|  | 	csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1), | ||
|  | 		      MC_BIST_CMD); | ||
|  | 	i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST, | ||
|  | 				     0, 10, 1, NULL); | ||
|  | 	if (i) | ||
|  | 		return i; | ||
|  | 
 | ||
|  | #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
 | ||
|  | 
 | ||
|  | 	for (i = 15; i >= 0; i--) | ||
|  | 		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); | ||
|  | 	if (ecc) | ||
|  | 		*ecc = csio_rd_reg64(hw, MC_DATA(16)); | ||
|  | #undef MC_DATA
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *      csio_t4_edc_read - read from EDC through backdoor accesses | ||
|  |  *      @hw: the hw module | ||
|  |  *      @idx: which EDC to access | ||
|  |  *      @addr: address of first byte requested | ||
|  |  *      @data: 64 bytes of data containing the requested address | ||
|  |  *      @ecc: where to store the corresponding 64-bit ECC word | ||
|  |  * | ||
|  |  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address | ||
|  |  *      that covers the requested address @addr.  If @parity is not %NULL it | ||
|  |  *      is assigned the 64-bit ECC word for the read data. | ||
|  |  */ | ||
|  | static int | ||
|  | csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, | ||
|  | 		uint64_t *ecc) | ||
|  | { | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	idx *= EDC_STRIDE; | ||
|  | 	if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST) | ||
|  | 		return -EBUSY; | ||
|  | 	csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx); | ||
|  | 	csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx); | ||
|  | 	csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx); | ||
|  | 	csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST, | ||
|  | 		      EDC_BIST_CMD + idx); | ||
|  | 	i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST, | ||
|  | 				     0, 10, 1, NULL); | ||
|  | 	if (i) | ||
|  | 		return i; | ||
|  | 
 | ||
|  | #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
 | ||
|  | 
 | ||
|  | 	for (i = 15; i >= 0; i--) | ||
|  | 		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); | ||
|  | 	if (ecc) | ||
|  | 		*ecc = csio_rd_reg64(hw, EDC_DATA(16)); | ||
|  | #undef EDC_DATA
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window | ||
|  |  * @hw: the csio_hw | ||
|  |  * @win: PCI-E memory Window to use | ||
|  |  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1 | ||
|  |  * @addr: address within indicated memory type | ||
|  |  * @len: amount of memory to transfer | ||
|  |  * @buf: host memory buffer | ||
|  |  * @dir: direction of transfer 1 => read, 0 => write | ||
|  |  * | ||
|  |  * Reads/writes an [almost] arbitrary memory region in the firmware: the | ||
|  |  * firmware memory address, length and host buffer must be aligned on | ||
|  |  * 32-bit boudaries.  The memory is transferred as a raw byte sequence | ||
|  |  * from/to the firmware's memory.  If this memory contains data | ||
|  |  * structures which contain multi-byte integers, it's the callers | ||
|  |  * responsibility to perform appropriate byte order conversions. | ||
|  |  */ | ||
|  | static int | ||
|  | csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr, | ||
|  | 		u32 len, uint32_t *buf, int dir) | ||
|  | { | ||
|  | 	u32 pos, start, offset, memoffset, bar0; | ||
|  | 	u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Argument sanity checks ... | ||
|  | 	 */ | ||
|  | 	if ((addr & 0x3) || (len & 0x3)) | ||
|  | 		return -EINVAL; | ||
|  | 
 | ||
|  | 	/* Offset into the region of memory which is being accessed
 | ||
|  | 	 * MEM_EDC0 = 0 | ||
|  | 	 * MEM_EDC1 = 1 | ||
|  | 	 * MEM_MC   = 2 -- T4 | ||
|  | 	 */ | ||
|  | 	edc_size  = EDRAM_SIZE_GET(csio_rd_reg32(hw, MA_EDRAM0_BAR)); | ||
|  | 	if (mtype != MEM_MC1) | ||
|  | 		memoffset = (mtype * (edc_size * 1024 * 1024)); | ||
|  | 	else { | ||
|  | 		mc_size = EXT_MEM_SIZE_GET(csio_rd_reg32(hw, | ||
|  | 							 MA_EXT_MEMORY_BAR)); | ||
|  | 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Determine the PCIE_MEM_ACCESS_OFFSET */ | ||
|  | 	addr = addr + memoffset; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Each PCI-E Memory Window is programmed with a window size -- or | ||
|  | 	 * "aperture" -- which controls the granularity of its mapping onto | ||
|  | 	 * adapter memory.  We need to grab that aperture in order to know | ||
|  | 	 * how to use the specified window.  The window is also programmed | ||
|  | 	 * with the base address of the Memory Window in BAR0's address | ||
|  | 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5 | ||
|  | 	 * the address is relative to BAR0. | ||
|  | 	 */ | ||
|  | 	mem_reg = csio_rd_reg32(hw, | ||
|  | 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); | ||
|  | 	mem_aperture = 1 << (WINDOW(mem_reg) + 10); | ||
|  | 	mem_base = GET_PCIEOFST(mem_reg) << 10; | ||
|  | 
 | ||
|  | 	bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0); | ||
|  | 	bar0 &= PCI_BASE_ADDRESS_MEM_MASK; | ||
|  | 	mem_base -= bar0; | ||
|  | 
 | ||
|  | 	start = addr & ~(mem_aperture-1); | ||
|  | 	offset = addr - start; | ||
|  | 
 | ||
|  | 	csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n", | ||
|  | 		 mem_reg, mem_aperture); | ||
|  | 	csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n", | ||
|  | 		 mem_base, memoffset); | ||
|  | 	csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n", | ||
|  | 		 bar0, start, offset); | ||
|  | 	csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n", | ||
|  | 		 mtype, addr, len); | ||
|  | 
 | ||
|  | 	for (pos = start; len > 0; pos += mem_aperture, offset = 0) { | ||
|  | 		/*
 | ||
|  | 		 * Move PCI-E Memory Window to our current transfer | ||
|  | 		 * position.  Read it back to ensure that changes propagate | ||
|  | 		 * before we attempt to use the new value. | ||
|  | 		 */ | ||
|  | 		csio_wr_reg32(hw, pos, | ||
|  | 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); | ||
|  | 		csio_rd_reg32(hw, | ||
|  | 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); | ||
|  | 
 | ||
|  | 		while (offset < mem_aperture && len > 0) { | ||
|  | 			if (dir) | ||
|  | 				*buf++ = csio_rd_reg32(hw, mem_base + offset); | ||
|  | 			else | ||
|  | 				csio_wr_reg32(hw, *buf++, mem_base + offset); | ||
|  | 
 | ||
|  | 			offset += sizeof(__be32); | ||
|  | 			len -= sizeof(__be32); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values | ||
|  |  * @hw: the csio_hw | ||
|  |  * | ||
|  |  * This function creates files in the debugfs with external memory region MC. | ||
|  |  */ | ||
|  | static void | ||
|  | csio_t4_dfs_create_ext_mem(struct csio_hw *hw) | ||
|  | { | ||
|  | 	u32 size; | ||
|  | 	int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE); | ||
|  | 	if (i & EXT_MEM_ENABLE) { | ||
|  | 		size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR); | ||
|  | 		csio_add_debugfs_mem(hw, "mc", MEM_MC, | ||
|  | 				     EXT_MEM_SIZE_GET(size)); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /* T4 adapter specific function */ | ||
|  | struct csio_hw_chip_ops t4_ops = { | ||
|  | 	.chip_set_mem_win		= csio_t4_set_mem_win, | ||
|  | 	.chip_pcie_intr_handler		= csio_t4_pcie_intr_handler, | ||
|  | 	.chip_flash_cfg_addr		= csio_t4_flash_cfg_addr, | ||
|  | 	.chip_mc_read			= csio_t4_mc_read, | ||
|  | 	.chip_edc_read			= csio_t4_edc_read, | ||
|  | 	.chip_memory_rw			= csio_t4_memory_rw, | ||
|  | 	.chip_dfs_create_ext_mem	= csio_t4_dfs_create_ext_mem, | ||
|  | }; |