260 lines
		
	
	
	
		
			7.3 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
		
		
			
		
	
	
			260 lines
		
	
	
	
		
			7.3 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
|   | /* | ||
|  |  * arch/alpha/lib/ev6-copy_user.S | ||
|  |  * | ||
|  |  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
 | ||
|  |  * | ||
|  |  * Copy to/from user space, handling exceptions as we go..  This | ||
|  |  * isn't exactly pretty. | ||
|  |  * | ||
|  |  * This is essentially the same as "memcpy()", but with a few twists. | ||
|  |  * Notably, we have to make sure that $0 is always up-to-date and | ||
|  |  * contains the right "bytes left to copy" value (and that it is updated | ||
|  |  * only _after_ a successful copy). There is also some rather minor | ||
|  |  * exception setup stuff.. | ||
|  |  * | ||
|  |  * NOTE! This is not directly C-callable, because the calling semantics are | ||
|  |  * different: | ||
|  |  * | ||
|  |  * Inputs: | ||
|  |  *	length in $0 | ||
|  |  *	destination address in $6 | ||
|  |  *	source address in $7 | ||
|  |  *	return address in $28 | ||
|  |  * | ||
|  |  * Outputs: | ||
|  |  *	bytes left to copy in $0 | ||
|  |  * | ||
|  |  * Clobbers: | ||
|  |  *	$1,$2,$3,$4,$5,$6,$7 | ||
|  |  * | ||
|  |  * Much of the information about 21264 scheduling/coding comes from: | ||
|  |  *	Compiler Writer's Guide for the Alpha 21264 | ||
|  |  *	abbreviated as 'CWG' in other comments here | ||
|  |  *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html | ||
|  |  * Scheduling notation: | ||
|  |  *	E	- either cluster | ||
|  |  *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
 | ||
|  |  *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
 | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Allow an exception for an insn; exit if we get one.  */ | ||
|  | #define EXI(x,y...)			\ | ||
|  | 	99: x,##y;			\ | ||
|  | 	.section __ex_table,"a";	\
 | ||
|  | 	.long 99b - .;			\
 | ||
|  | 	lda $31, $exitin-99b($31);	\
 | ||
|  | 	.previous | ||
|  | 
 | ||
|  | #define EXO(x,y...)			\ | ||
|  | 	99: x,##y;			\ | ||
|  | 	.section __ex_table,"a";	\
 | ||
|  | 	.long 99b - .;			\
 | ||
|  | 	lda $31, $exitout-99b($31);	\
 | ||
|  | 	.previous | ||
|  | 
 | ||
|  | 	.set noat
 | ||
|  | 	.align 4
 | ||
|  | 	.globl __copy_user
 | ||
|  | 	.ent __copy_user
 | ||
|  | 				# Pipeline info: Slotting & Comments | ||
|  | __copy_user: | ||
|  | 	.prologue 0
 | ||
|  | 	subq $0, 32, $1		# .. E  .. ..	: Is this going to be a small copy? | ||
|  | 	beq $0, $zerolength	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | 	and $6,7,$3		# .. .. .. E	: is leading dest misalignment | ||
|  | 	ble $1, $onebyteloop	# .. .. U  ..	: 1st branch : small amount of data | ||
|  | 	beq $3, $destaligned	# .. U  .. ..	: 2nd (one cycle fetcher stall) | ||
|  | 	subq $3, 8, $3		# E  .. .. ..	: L U U L : trip counter | ||
|  | /* | ||
|  |  * The fetcher stall also hides the 1 cycle cross-cluster stall for $3 (L --> U) | ||
|  |  * This loop aligns the destination a byte at a time | ||
|  |  * We know we have at least one trip through this loop | ||
|  |  */ | ||
|  | $aligndest: | ||
|  | 	EXI( ldbu $1,0($7) )	# .. .. .. L	: Keep loads separate from stores | ||
|  | 	addq $6,1,$6		# .. .. E  ..	: Section 3.8 in the CWG | ||
|  | 	addq $3,1,$3		# .. E  .. ..	: | ||
|  | 	nop			# E  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | /* | ||
|  |  * the -1 is to compensate for the inc($6) done in a previous quadpack | ||
|  |  * which allows us zero dependencies within either quadpack in the loop | ||
|  |  */ | ||
|  | 	EXO( stb $1,-1($6) )	# .. .. .. L	: | ||
|  | 	addq $7,1,$7		# .. .. E  ..	: Section 3.8 in the CWG | ||
|  | 	subq $0,1,$0		# .. E  .. ..	: | ||
|  | 	bne $3, $aligndest	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | /* | ||
|  |  * If we fell through into here, we have a minimum of 33 - 7 bytes | ||
|  |  * If we arrived via branch, we have a minimum of 32 bytes | ||
|  |  */ | ||
|  | $destaligned: | ||
|  | 	and $7,7,$1		# .. .. .. E	: Check _current_ source alignment | ||
|  | 	bic $0,7,$4		# .. .. E  ..	: number bytes as a quadword loop | ||
|  | 	EXI( ldq_u $3,0($7) )	# .. L  .. ..	: Forward fetch for fallthrough code | ||
|  | 	beq $1,$quadaligned	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | /* | ||
|  |  * In the worst case, we've just executed an ldq_u here from 0($7) | ||
|  |  * and we'll repeat it once if we take the branch | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Misaligned quadword loop - not unrolled.  Leave it that way. */ | ||
|  | $misquad: | ||
|  | 	EXI( ldq_u $2,8($7) )	# .. .. .. L	: | ||
|  | 	subq $4,8,$4		# .. .. E  ..	: | ||
|  | 	extql $3,$7,$3		# .. U  .. ..	: | ||
|  | 	extqh $2,$7,$1		# U  .. .. ..	: U U L L | ||
|  | 
 | ||
|  | 	bis $3,$1,$1		# .. .. .. E	: | ||
|  | 	EXO( stq $1,0($6) )	# .. .. L  ..	: | ||
|  | 	addq $7,8,$7		# .. E  .. ..	: | ||
|  | 	subq $0,8,$0		# E  .. .. ..	: U L L U | ||
|  | 
 | ||
|  | 	addq $6,8,$6		# .. .. .. E	: | ||
|  | 	bis $2,$2,$3		# .. .. E  ..	: | ||
|  | 	nop			# .. E  .. ..	: | ||
|  | 	bne $4,$misquad		# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | 	nop			# .. .. .. E | ||
|  | 	nop			# .. .. E  .. | ||
|  | 	nop			# .. E  .. .. | ||
|  | 	beq $0,$zerolength	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | /* We know we have at least one trip through the byte loop */ | ||
|  | 	EXI ( ldbu $2,0($7) )	# .. .. .. L	: No loads in the same quad | ||
|  | 	addq $6,1,$6		# .. .. E  ..	: as the store (Section 3.8 in CWG) | ||
|  | 	nop			# .. E  .. ..	: | ||
|  | 	br $31, $dirtyentry	# L0 .. .. ..	: L U U L | ||
|  | /* Do the trailing byte loop load, then hop into the store part of the loop */ | ||
|  | 
 | ||
|  | /* | ||
|  |  * A minimum of (33 - 7) bytes to do a quad at a time. | ||
|  |  * Based upon the usage context, it's worth the effort to unroll this loop | ||
|  |  * $0 - number of bytes to be moved | ||
|  |  * $4 - number of bytes to move as quadwords | ||
|  |  * $6 is current destination address | ||
|  |  * $7 is current source address | ||
|  |  */ | ||
|  | $quadaligned: | ||
|  | 	subq	$4, 32, $2	# .. .. .. E	: do not unroll for small stuff | ||
|  | 	nop			# .. .. E  .. | ||
|  | 	nop			# .. E  .. .. | ||
|  | 	blt	$2, $onequad	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | /* | ||
|  |  * There is a significant assumption here that the source and destination | ||
|  |  * addresses differ by more than 32 bytes.  In this particular case, a | ||
|  |  * sparsity of registers further bounds this to be a minimum of 8 bytes. | ||
|  |  * But if this isn't met, then the output result will be incorrect. | ||
|  |  * Furthermore, due to a lack of available registers, we really can't | ||
|  |  * unroll this to be an 8x loop (which would enable us to use the wh64 | ||
|  |  * instruction memory hint instruction). | ||
|  |  */ | ||
|  | $unroll4: | ||
|  | 	EXI( ldq $1,0($7) )	# .. .. .. L | ||
|  | 	EXI( ldq $2,8($7) )	# .. .. L  .. | ||
|  | 	subq	$4,32,$4	# .. E  .. .. | ||
|  | 	nop			# E  .. .. ..	: U U L L | ||
|  | 
 | ||
|  | 	addq	$7,16,$7	# .. .. .. E | ||
|  | 	EXO( stq $1,0($6) )	# .. .. L  .. | ||
|  | 	EXO( stq $2,8($6) )	# .. L  .. .. | ||
|  | 	subq	$0,16,$0	# E  .. .. ..	: U L L U | ||
|  | 
 | ||
|  | 	addq	$6,16,$6	# .. .. .. E | ||
|  | 	EXI( ldq $1,0($7) )	# .. .. L  .. | ||
|  | 	EXI( ldq $2,8($7) )	# .. L  .. .. | ||
|  | 	subq	$4, 32, $3	# E  .. .. ..	: U U L L : is there enough for another trip? | ||
|  | 
 | ||
|  | 	EXO( stq $1,0($6) )	# .. .. .. L | ||
|  | 	EXO( stq $2,8($6) )	# .. .. L  .. | ||
|  | 	subq	$0,16,$0	# .. E  .. .. | ||
|  | 	addq	$7,16,$7	# E  .. .. ..	: U L L U | ||
|  | 
 | ||
|  | 	nop			# .. .. .. E | ||
|  | 	nop			# .. .. E  .. | ||
|  | 	addq	$6,16,$6	# .. E  .. .. | ||
|  | 	bgt	$3,$unroll4	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	beq	$4, $noquads | ||
|  | 
 | ||
|  | $onequad: | ||
|  | 	EXI( ldq $1,0($7) ) | ||
|  | 	subq	$4,8,$4 | ||
|  | 	addq	$7,8,$7 | ||
|  | 	nop | ||
|  | 
 | ||
|  | 	EXO( stq $1,0($6) ) | ||
|  | 	subq	$0,8,$0 | ||
|  | 	addq	$6,8,$6 | ||
|  | 	bne	$4,$onequad | ||
|  | 
 | ||
|  | $noquads: | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	beq $0,$zerolength | ||
|  | 
 | ||
|  | /* | ||
|  |  * For small copies (or the tail of a larger copy), do a very simple byte loop. | ||
|  |  * There's no point in doing a lot of complex alignment calculations to try to | ||
|  |  * to quadword stuff for a small amount of data. | ||
|  |  *	$0 - remaining number of bytes left to copy | ||
|  |  *	$6 - current dest addr | ||
|  |  *	$7 - current source addr | ||
|  |  */ | ||
|  | 
 | ||
|  | $onebyteloop: | ||
|  | 	EXI ( ldbu $2,0($7) )	# .. .. .. L	: No loads in the same quad | ||
|  | 	addq $6,1,$6		# .. .. E  ..	: as the store (Section 3.8 in CWG) | ||
|  | 	nop			# .. E  .. ..	: | ||
|  | 	nop			# E  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | $dirtyentry: | ||
|  | /* | ||
|  |  * the -1 is to compensate for the inc($6) done in a previous quadpack | ||
|  |  * which allows us zero dependencies within either quadpack in the loop | ||
|  |  */ | ||
|  | 	EXO ( stb $2,-1($6) )	# .. .. .. L	: | ||
|  | 	addq $7,1,$7		# .. .. E  ..	: quadpack as the load | ||
|  | 	subq $0,1,$0		# .. E  .. ..	: change count _after_ copy | ||
|  | 	bgt $0,$onebyteloop	# U  .. .. ..	: U L U L | ||
|  | 
 | ||
|  | $zerolength: | ||
|  | $exitout:			# Destination for exception recovery(?) | ||
|  | 	nop			# .. .. .. E | ||
|  | 	nop			# .. .. E  .. | ||
|  | 	nop			# .. E  .. .. | ||
|  | 	ret $31,($28),1		# L0 .. .. ..	: L U L U | ||
|  | 
 | ||
|  | $exitin: | ||
|  | 
 | ||
|  | 	/* A stupid byte-by-byte zeroing of the rest of the output | ||
|  | 	   buffer.  This cures security holes by never leaving  | ||
|  | 	   random kernel data around to be copied elsewhere.  */ | ||
|  | 
 | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	mov	$0,$1 | ||
|  | 
 | ||
|  | $101: | ||
|  | 	EXO ( stb $31,0($6) )	# L | ||
|  | 	subq $1,1,$1		# E | ||
|  | 	addq $6,1,$6		# E | ||
|  | 	bgt $1,$101		# U | ||
|  | 
 | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	nop | ||
|  | 	ret $31,($28),1		# L0 | ||
|  | 
 | ||
|  | 	.end __copy_user
 | ||
|  | 
 |