| 
									
										
										
										
											2009-12-11 19:24:15 +10:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * Copyright 1993-2003 NVIDIA, Corporation | 
					
						
							|  |  |  |  * Copyright 2007-2009 Stuart Bennett | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Permission is hereby granted, free of charge, to any person obtaining a | 
					
						
							|  |  |  |  * copy of this software and associated documentation files (the "Software"), | 
					
						
							|  |  |  |  * to deal in the Software without restriction, including without limitation | 
					
						
							|  |  |  |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
					
						
							|  |  |  |  * and/or sell copies of the Software, and to permit persons to whom the | 
					
						
							|  |  |  |  * Software is furnished to do so, subject to the following conditions: | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The above copyright notice and this permission notice shall be included in | 
					
						
							|  |  |  |  * all copies or substantial portions of the Software. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
					
						
							|  |  |  |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
					
						
							|  |  |  |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
					
						
							|  |  |  |  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | 
					
						
							|  |  |  |  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF | 
					
						
							|  |  |  |  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
					
						
							|  |  |  |  * SOFTWARE. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "drmP.h"
 | 
					
						
							|  |  |  | #include "nouveau_drv.h"
 | 
					
						
							|  |  |  | #include "nouveau_hw.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /****************************************************************************\
 | 
					
						
							|  |  |  | *                                                                            * | 
					
						
							|  |  |  | * The video arbitration routines calculate some "magic" numbers.  Fixes      * | 
					
						
							|  |  |  | * the snow seen when accessing the framebuffer without it.                   * | 
					
						
							|  |  |  | * It just works (I hope).                                                    * | 
					
						
							|  |  |  | *                                                                            * | 
					
						
							|  |  |  | \****************************************************************************/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct nv_fifo_info { | 
					
						
							|  |  |  | 	int lwm; | 
					
						
							|  |  |  | 	int burst; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct nv_sim_state { | 
					
						
							|  |  |  | 	int pclk_khz; | 
					
						
							|  |  |  | 	int mclk_khz; | 
					
						
							|  |  |  | 	int nvclk_khz; | 
					
						
							|  |  |  | 	int bpp; | 
					
						
							|  |  |  | 	int mem_page_miss; | 
					
						
							|  |  |  | 	int mem_latency; | 
					
						
							|  |  |  | 	int memory_type; | 
					
						
							|  |  |  | 	int memory_width; | 
					
						
							|  |  |  | 	int two_heads; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void | 
					
						
							|  |  |  | nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int pagemiss, cas, width, bpp; | 
					
						
							|  |  |  | 	int nvclks, mclks, pclks, crtpagemiss; | 
					
						
							|  |  |  | 	int found, mclk_extra, mclk_loop, cbs, m1, p1; | 
					
						
							|  |  |  | 	int mclk_freq, pclk_freq, nvclk_freq; | 
					
						
							|  |  |  | 	int us_m, us_n, us_p, crtc_drain_rate; | 
					
						
							|  |  |  | 	int cpm_us, us_crt, clwm; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	pclk_freq = arb->pclk_khz; | 
					
						
							|  |  |  | 	mclk_freq = arb->mclk_khz; | 
					
						
							|  |  |  | 	nvclk_freq = arb->nvclk_khz; | 
					
						
							|  |  |  | 	pagemiss = arb->mem_page_miss; | 
					
						
							|  |  |  | 	cas = arb->mem_latency; | 
					
						
							|  |  |  | 	width = arb->memory_width >> 6; | 
					
						
							|  |  |  | 	bpp = arb->bpp; | 
					
						
							|  |  |  | 	cbs = 128; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	pclks = 2; | 
					
						
							|  |  |  | 	nvclks = 10; | 
					
						
							|  |  |  | 	mclks = 13 + cas; | 
					
						
							|  |  |  | 	mclk_extra = 3; | 
					
						
							|  |  |  | 	found = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	while (!found) { | 
					
						
							|  |  |  | 		found = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		mclk_loop = mclks + mclk_extra; | 
					
						
							|  |  |  | 		us_m = mclk_loop * 1000 * 1000 / mclk_freq; | 
					
						
							|  |  |  | 		us_n = nvclks * 1000 * 1000 / nvclk_freq; | 
					
						
							|  |  |  | 		us_p = nvclks * 1000 * 1000 / pclk_freq; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		crtc_drain_rate = pclk_freq * bpp / 8; | 
					
						
							|  |  |  | 		crtpagemiss = 2; | 
					
						
							|  |  |  | 		crtpagemiss += 1; | 
					
						
							|  |  |  | 		cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; | 
					
						
							|  |  |  | 		us_crt = cpm_us + us_m + us_n + us_p; | 
					
						
							|  |  |  | 		clwm = us_crt * crtc_drain_rate / (1000 * 1000); | 
					
						
							|  |  |  | 		clwm++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m1 = clwm + cbs - 512; | 
					
						
							|  |  |  | 		p1 = m1 * pclk_freq / mclk_freq; | 
					
						
							|  |  |  | 		p1 = p1 * bpp / 8; | 
					
						
							|  |  |  | 		if ((p1 < m1 && m1 > 0) || clwm > 519) { | 
					
						
							|  |  |  | 			found = !mclk_extra; | 
					
						
							|  |  |  | 			mclk_extra--; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		if (clwm < 384) | 
					
						
							|  |  |  | 			clwm = 384; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		fifo->lwm = clwm; | 
					
						
							|  |  |  | 		fifo->burst = cbs; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void | 
					
						
							|  |  |  | nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int fill_rate, drain_rate; | 
					
						
							|  |  |  | 	int pclks, nvclks, mclks, xclks; | 
					
						
							|  |  |  | 	int pclk_freq, nvclk_freq, mclk_freq; | 
					
						
							|  |  |  | 	int fill_lat, extra_lat; | 
					
						
							|  |  |  | 	int max_burst_o, max_burst_l; | 
					
						
							|  |  |  | 	int fifo_len, min_lwm, max_lwm; | 
					
						
							|  |  |  | 	const int burst_lat = 80; /* Maximum allowable latency due
 | 
					
						
							|  |  |  | 				   * to the CRTC FIFO burst. (ns) */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	pclk_freq = arb->pclk_khz; | 
					
						
							|  |  |  | 	nvclk_freq = arb->nvclk_khz; | 
					
						
							|  |  |  | 	mclk_freq = arb->mclk_khz; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ | 
					
						
							|  |  |  | 	drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fifo_len = arb->two_heads ? 1536 : 1024; /* B */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Fixed FIFO refill latency. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	pclks = 4;	/* lwm detect. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	nvclks = 3	/* lwm -> sync. */ | 
					
						
							|  |  |  | 		+ 2	/* fbi bus cycles (1 req + 1 busy) */ | 
					
						
							|  |  |  | 		+ 1	/* 2 edge sync.  may be very close to edge so
 | 
					
						
							|  |  |  | 			 * just put one. */ | 
					
						
							|  |  |  | 		+ 1	/* fbi_d_rdv_n */ | 
					
						
							|  |  |  | 		+ 1	/* Fbi_d_rdata */ | 
					
						
							|  |  |  | 		+ 1;	/* crtfifo load */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	mclks = 1	/* 2 edge sync.  may be very close to edge so
 | 
					
						
							|  |  |  | 			 * just put one. */ | 
					
						
							|  |  |  | 		+ 1	/* arb_hp_req */ | 
					
						
							|  |  |  | 		+ 5	/* tiling pipeline */ | 
					
						
							|  |  |  | 		+ 2	/* latency fifo */ | 
					
						
							|  |  |  | 		+ 2	/* memory request to fbio block */ | 
					
						
							|  |  |  | 		+ 7;	/* data returned from fbio block */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Need to accumulate 256 bits for read */ | 
					
						
							|  |  |  | 	mclks += (arb->memory_type == 0 ? 2 : 1) | 
					
						
							|  |  |  | 		* arb->memory_width / 32; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fill_lat = mclks * 1000 * 1000 / mclk_freq   /* minimum mclk latency */ | 
					
						
							|  |  |  | 		+ nvclks * 1000 * 1000 / nvclk_freq  /* nvclk latency */ | 
					
						
							|  |  |  | 		+ pclks * 1000 * 1000 / pclk_freq;   /* pclk latency */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Conditional FIFO refill latency. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
 | 
					
						
							|  |  |  | 						* the overlay. */ | 
					
						
							|  |  |  | 		+ 2 * arb->mem_page_miss       /* Extra pagemiss latency. */ | 
					
						
							|  |  |  | 		+ (arb->bpp == 32 ? 8 : 4);    /* Margin of error. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	extra_lat = xclks * 1000 * 1000 / mclk_freq; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (arb->two_heads) | 
					
						
							|  |  |  | 		/* Account for another CRTC. */ | 
					
						
							|  |  |  | 		extra_lat += fill_lat + extra_lat + burst_lat; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* FIFO burst */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Max burst not leading to overflows. */ | 
					
						
							|  |  |  | 	max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) | 
					
						
							|  |  |  | 		* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); | 
					
						
							|  |  |  | 	fifo->burst = min(max_burst_o, 1024); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Max burst value with an acceptable latency. */ | 
					
						
							|  |  |  | 	max_burst_l = burst_lat * fill_rate / (1000 * 1000); | 
					
						
							|  |  |  | 	fifo->burst = min(max_burst_l, fifo->burst); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fifo->burst = rounddown_pow_of_two(fifo->burst); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* FIFO low watermark */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; | 
					
						
							|  |  |  | 	max_lwm = fifo_len - fifo->burst | 
					
						
							|  |  |  | 		+ fill_lat * drain_rate / (1000 * 1000) | 
					
						
							|  |  |  | 		+ fifo->burst * drain_rate / fill_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void | 
					
						
							|  |  |  | nv04_update_arb(struct drm_device *dev, int VClk, int bpp, | 
					
						
							|  |  |  | 		int *burst, int *lwm) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct drm_nouveau_private *dev_priv = dev->dev_private; | 
					
						
							|  |  |  | 	struct nv_fifo_info fifo_data; | 
					
						
							|  |  |  | 	struct nv_sim_state sim_data; | 
					
						
							|  |  |  | 	int MClk = nouveau_hw_get_clock(dev, MPLL); | 
					
						
							|  |  |  | 	int NVClk = nouveau_hw_get_clock(dev, NVPLL); | 
					
						
							|  |  |  | 	uint32_t cfg1 = nvReadFB(dev, NV_PFB_CFG1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	sim_data.pclk_khz = VClk; | 
					
						
							|  |  |  | 	sim_data.mclk_khz = MClk; | 
					
						
							|  |  |  | 	sim_data.nvclk_khz = NVClk; | 
					
						
							|  |  |  | 	sim_data.bpp = bpp; | 
					
						
							|  |  |  | 	sim_data.two_heads = nv_two_heads(dev); | 
					
						
							|  |  |  | 	if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || | 
					
						
							|  |  |  | 	    (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { | 
					
						
							|  |  |  | 		uint32_t type; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		sim_data.memory_type = (type >> 12) & 1; | 
					
						
							|  |  |  | 		sim_data.memory_width = 64; | 
					
						
							|  |  |  | 		sim_data.mem_latency = 3; | 
					
						
							|  |  |  | 		sim_data.mem_page_miss = 10; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		sim_data.memory_type = nvReadFB(dev, NV_PFB_CFG0) & 0x1; | 
					
						
							|  |  |  | 		sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; | 
					
						
							|  |  |  | 		sim_data.mem_latency = cfg1 & 0xf; | 
					
						
							|  |  |  | 		sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (dev_priv->card_type == NV_04) | 
					
						
							|  |  |  | 		nv04_calc_arb(&fifo_data, &sim_data); | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		nv10_calc_arb(&fifo_data, &sim_data); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	*burst = ilog2(fifo_data.burst >> 4); | 
					
						
							|  |  |  | 	*lwm = fifo_data.lwm >> 3; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void | 
					
						
							|  |  |  | nv30_update_arb(int *burst, int *lwm) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned int fifo_size, burst_size, graphics_lwm; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	fifo_size = 2048; | 
					
						
							|  |  |  | 	burst_size = 512; | 
					
						
							|  |  |  | 	graphics_lwm = fifo_size - burst_size; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	*burst = ilog2(burst_size >> 5); | 
					
						
							|  |  |  | 	*lwm = graphics_lwm >> 3; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void | 
					
						
							|  |  |  | nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	struct drm_nouveau_private *dev_priv = dev->dev_private; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (dev_priv->card_type < NV_30) | 
					
						
							|  |  |  | 		nv04_update_arb(dev, vclk, bpp, burst, lwm); | 
					
						
							|  |  |  | 	else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || | 
					
						
							|  |  |  | 		 (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { | 
					
						
							|  |  |  | 		*burst = 128; | 
					
						
							|  |  |  | 		*lwm = 0x0480; | 
					
						
							|  |  |  | 	} else | 
					
						
							|  |  |  | 		nv30_update_arb(burst, lwm); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int | 
					
						
							|  |  |  | getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | 
					
						
							|  |  |  | 	      struct nouveau_pll_vals *bestpv) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* Find M, N and P for a single stage PLL
 | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * Note that some bioses (NV3x) have lookup tables of precomputed MNP | 
					
						
							|  |  |  | 	 * values, but we're too lazy to use those atm | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * "clk" parameter in kHz | 
					
						
							|  |  |  | 	 * returns calculated clock | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	struct drm_nouveau_private *dev_priv = dev->dev_private; | 
					
						
							| 
									
										
										
										
											2010-02-24 10:03:05 +10:00
										 |  |  | 	int cv = dev_priv->vbios.chip_version; | 
					
						
							| 
									
										
										
										
											2009-12-11 19:24:15 +10:00
										 |  |  | 	int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq; | 
					
						
							|  |  |  | 	int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m; | 
					
						
							|  |  |  | 	int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n; | 
					
						
							|  |  |  | 	int minU = pll_lim->vco1.min_inputfreq; | 
					
						
							|  |  |  | 	int maxU = pll_lim->vco1.max_inputfreq; | 
					
						
							|  |  |  | 	int minP = pll_lim->max_p ? pll_lim->min_p : 0; | 
					
						
							|  |  |  | 	int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p; | 
					
						
							|  |  |  | 	int crystal = pll_lim->refclk; | 
					
						
							|  |  |  | 	int M, N, thisP, P; | 
					
						
							|  |  |  | 	int clkP, calcclk; | 
					
						
							|  |  |  | 	int delta, bestdelta = INT_MAX; | 
					
						
							|  |  |  | 	int bestclk = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */ | 
					
						
							|  |  |  | 	/* possibly correlated with introduction of 27MHz crystal */ | 
					
						
							|  |  |  | 	if (dev_priv->card_type < NV_50) { | 
					
						
							|  |  |  | 		if (cv < 0x17 || cv == 0x1a || cv == 0x20) { | 
					
						
							|  |  |  | 			if (clk > 250000) | 
					
						
							|  |  |  | 				maxM = 6; | 
					
						
							|  |  |  | 			if (clk > 340000) | 
					
						
							|  |  |  | 				maxM = 2; | 
					
						
							|  |  |  | 		} else if (cv < 0x40) { | 
					
						
							|  |  |  | 			if (clk > 150000) | 
					
						
							|  |  |  | 				maxM = 6; | 
					
						
							|  |  |  | 			if (clk > 200000) | 
					
						
							|  |  |  | 				maxM = 4; | 
					
						
							|  |  |  | 			if (clk > 340000) | 
					
						
							|  |  |  | 				maxM = 2; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	P = pll_lim->max_p ? maxP : (1 << maxP); | 
					
						
							|  |  |  | 	if ((clk * P) < minvco) { | 
					
						
							|  |  |  | 		minvco = clk * maxP; | 
					
						
							|  |  |  | 		maxvco = minvco * 2; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (clk + clk/200 > maxvco)	/* +0.5% */ | 
					
						
							|  |  |  | 		maxvco = clk + clk/200; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */ | 
					
						
							|  |  |  | 	for (thisP = minP; thisP <= maxP; thisP++) { | 
					
						
							|  |  |  | 		P = pll_lim->max_p ? thisP : (1 << thisP); | 
					
						
							|  |  |  | 		clkP = clk * P; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (clkP < minvco) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 		if (clkP > maxvco) | 
					
						
							|  |  |  | 			return bestclk; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (M = minM; M <= maxM; M++) { | 
					
						
							|  |  |  | 			if (crystal/M < minU) | 
					
						
							|  |  |  | 				return bestclk; | 
					
						
							|  |  |  | 			if (crystal/M > maxU) | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/* add crystal/2 to round better */ | 
					
						
							|  |  |  | 			N = (clkP * M + crystal/2) / crystal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (N < minN) | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			if (N > maxN) | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/* more rounding additions */ | 
					
						
							|  |  |  | 			calcclk = ((N * crystal + P/2) / P + M/2) / M; | 
					
						
							|  |  |  | 			delta = abs(calcclk - clk); | 
					
						
							|  |  |  | 			/* we do an exhaustive search rather than terminating
 | 
					
						
							|  |  |  | 			 * on an optimality condition... | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			if (delta < bestdelta) { | 
					
						
							|  |  |  | 				bestdelta = delta; | 
					
						
							|  |  |  | 				bestclk = calcclk; | 
					
						
							|  |  |  | 				bestpv->N1 = N; | 
					
						
							|  |  |  | 				bestpv->M1 = M; | 
					
						
							|  |  |  | 				bestpv->log2P = thisP; | 
					
						
							|  |  |  | 				if (delta == 0)	/* except this one */ | 
					
						
							|  |  |  | 					return bestclk; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return bestclk; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int | 
					
						
							|  |  |  | getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | 
					
						
							|  |  |  | 	      struct nouveau_pll_vals *bestpv) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* Find M, N and P for a two stage PLL
 | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * Note that some bioses (NV30+) have lookup tables of precomputed MNP | 
					
						
							|  |  |  | 	 * values, but we're too lazy to use those atm | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * "clk" parameter in kHz | 
					
						
							|  |  |  | 	 * returns calculated clock | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	struct drm_nouveau_private *dev_priv = dev->dev_private; | 
					
						
							| 
									
										
										
										
											2010-02-24 10:03:05 +10:00
										 |  |  | 	int chip_version = dev_priv->vbios.chip_version; | 
					
						
							| 
									
										
										
										
											2009-12-11 19:24:15 +10:00
										 |  |  | 	int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq; | 
					
						
							|  |  |  | 	int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq; | 
					
						
							|  |  |  | 	int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq; | 
					
						
							|  |  |  | 	int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq; | 
					
						
							|  |  |  | 	int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m; | 
					
						
							|  |  |  | 	int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n; | 
					
						
							|  |  |  | 	int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m; | 
					
						
							|  |  |  | 	int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n; | 
					
						
							|  |  |  | 	int maxlog2P = pll_lim->max_usable_log2p; | 
					
						
							|  |  |  | 	int crystal = pll_lim->refclk; | 
					
						
							|  |  |  | 	bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2); | 
					
						
							|  |  |  | 	int M1, N1, M2, N2, log2P; | 
					
						
							|  |  |  | 	int clkP, calcclk1, calcclk2, calcclkout; | 
					
						
							|  |  |  | 	int delta, bestdelta = INT_MAX; | 
					
						
							|  |  |  | 	int bestclk = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	int vco2 = (maxvco2 - maxvco2/200) / 2; | 
					
						
							|  |  |  | 	for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++) | 
					
						
							|  |  |  | 		; | 
					
						
							|  |  |  | 	clkP = clk << log2P; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (maxvco2 < clk + clk/200)	/* +0.5% */ | 
					
						
							|  |  |  | 		maxvco2 = clk + clk/200; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (M1 = minM1; M1 <= maxM1; M1++) { | 
					
						
							|  |  |  | 		if (crystal/M1 < minU1) | 
					
						
							|  |  |  | 			return bestclk; | 
					
						
							|  |  |  | 		if (crystal/M1 > maxU1) | 
					
						
							|  |  |  | 			continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (N1 = minN1; N1 <= maxN1; N1++) { | 
					
						
							|  |  |  | 			calcclk1 = crystal * N1 / M1; | 
					
						
							|  |  |  | 			if (calcclk1 < minvco1) | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			if (calcclk1 > maxvco1) | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (M2 = minM2; M2 <= maxM2; M2++) { | 
					
						
							|  |  |  | 				if (calcclk1/M2 < minU2) | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 				if (calcclk1/M2 > maxU2) | 
					
						
							|  |  |  | 					continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				/* add calcclk1/2 to round better */ | 
					
						
							|  |  |  | 				N2 = (clkP * M2 + calcclk1/2) / calcclk1; | 
					
						
							|  |  |  | 				if (N2 < minN2) | 
					
						
							|  |  |  | 					continue; | 
					
						
							|  |  |  | 				if (N2 > maxN2) | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (!fixedgain2) { | 
					
						
							|  |  |  | 					if (chip_version < 0x60) | 
					
						
							|  |  |  | 						if (N2/M2 < 4 || N2/M2 > 10) | 
					
						
							|  |  |  | 							continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					calcclk2 = calcclk1 * N2 / M2; | 
					
						
							|  |  |  | 					if (calcclk2 < minvco2) | 
					
						
							|  |  |  | 						break; | 
					
						
							|  |  |  | 					if (calcclk2 > maxvco2) | 
					
						
							|  |  |  | 						continue; | 
					
						
							|  |  |  | 				} else | 
					
						
							|  |  |  | 					calcclk2 = calcclk1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				calcclkout = calcclk2 >> log2P; | 
					
						
							|  |  |  | 				delta = abs(calcclkout - clk); | 
					
						
							|  |  |  | 				/* we do an exhaustive search rather than terminating
 | 
					
						
							|  |  |  | 				 * on an optimality condition... | 
					
						
							|  |  |  | 				 */ | 
					
						
							|  |  |  | 				if (delta < bestdelta) { | 
					
						
							|  |  |  | 					bestdelta = delta; | 
					
						
							|  |  |  | 					bestclk = calcclkout; | 
					
						
							|  |  |  | 					bestpv->N1 = N1; | 
					
						
							|  |  |  | 					bestpv->M1 = M1; | 
					
						
							|  |  |  | 					bestpv->N2 = N2; | 
					
						
							|  |  |  | 					bestpv->M2 = M2; | 
					
						
							|  |  |  | 					bestpv->log2P = log2P; | 
					
						
							|  |  |  | 					if (delta == 0)	/* except this one */ | 
					
						
							|  |  |  | 						return bestclk; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return bestclk; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int | 
					
						
							|  |  |  | nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | 
					
						
							|  |  |  | 		     struct nouveau_pll_vals *pv) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int outclk; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!pll_lim->vco2.maxfreq) | 
					
						
							|  |  |  | 		outclk = getMNP_single(dev, pll_lim, clk, pv); | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		outclk = getMNP_double(dev, pll_lim, clk, pv); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!outclk) | 
					
						
							|  |  |  | 		NV_ERROR(dev, "Could not find a compatible set of PLL values\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return outclk; | 
					
						
							|  |  |  | } |