1369 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1369 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Generic binary BCH encoding/decoding library | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify it | ||
|  |  * under the terms of the GNU General Public License version 2 as published by | ||
|  |  * the Free Software Foundation. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, but WITHOUT | ||
|  |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
|  |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | ||
|  |  * more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License along with | ||
|  |  * this program; if not, write to the Free Software Foundation, Inc., 51 | ||
|  |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | ||
|  |  * | ||
|  |  * Copyright © 2011 Parrot S.A. | ||
|  |  * | ||
|  |  * Author: Ivan Djelic <ivan.djelic@parrot.com> | ||
|  |  * | ||
|  |  * Description: | ||
|  |  * | ||
|  |  * This library provides runtime configurable encoding/decoding of binary | ||
|  |  * Bose-Chaudhuri-Hocquenghem (BCH) codes. | ||
|  |  * | ||
|  |  * Call init_bch to get a pointer to a newly allocated bch_control structure for | ||
|  |  * the given m (Galois field order), t (error correction capability) and | ||
|  |  * (optional) primitive polynomial parameters. | ||
|  |  * | ||
|  |  * Call encode_bch to compute and store ecc parity bytes to a given buffer. | ||
|  |  * Call decode_bch to detect and locate errors in received data. | ||
|  |  * | ||
|  |  * On systems supporting hw BCH features, intermediate results may be provided | ||
|  |  * to decode_bch in order to skip certain steps. See decode_bch() documentation | ||
|  |  * for details. | ||
|  |  * | ||
|  |  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | ||
|  |  * parameters m and t; thus allowing extra compiler optimizations and providing | ||
|  |  * better (up to 2x) encoding performance. Using this option makes sense when | ||
|  |  * (m,t) are fixed and known in advance, e.g. when using BCH error correction | ||
|  |  * on a particular NAND flash device. | ||
|  |  * | ||
|  |  * Algorithmic details: | ||
|  |  * | ||
|  |  * Encoding is performed by processing 32 input bits in parallel, using 4 | ||
|  |  * remainder lookup tables. | ||
|  |  * | ||
|  |  * The final stage of decoding involves the following internal steps: | ||
|  |  * a. Syndrome computation | ||
|  |  * b. Error locator polynomial computation using Berlekamp-Massey algorithm | ||
|  |  * c. Error locator root finding (by far the most expensive step) | ||
|  |  * | ||
|  |  * In this implementation, step c is not performed using the usual Chien search. | ||
|  |  * Instead, an alternative approach described in [1] is used. It consists in | ||
|  |  * factoring the error locator polynomial using the Berlekamp Trace algorithm | ||
|  |  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | ||
|  |  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | ||
|  |  * much better performance than Chien search for usual (m,t) values (typically | ||
|  |  * m >= 13, t < 32, see [1]). | ||
|  |  * | ||
|  |  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | ||
|  |  * of characteristic 2, in: Western European Workshop on Research in Cryptology | ||
|  |  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | ||
|  |  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | ||
|  |  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <linux/kernel.h>
 | ||
|  | #include <linux/errno.h>
 | ||
|  | #include <linux/init.h>
 | ||
|  | #include <linux/module.h>
 | ||
|  | #include <linux/slab.h>
 | ||
|  | #include <linux/bitops.h>
 | ||
|  | #include <asm/byteorder.h>
 | ||
|  | #include <linux/bch.h>
 | ||
|  | 
 | ||
|  | #if defined(CONFIG_BCH_CONST_PARAMS)
 | ||
|  | #define GF_M(_p)               (CONFIG_BCH_CONST_M)
 | ||
|  | #define GF_T(_p)               (CONFIG_BCH_CONST_T)
 | ||
|  | #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
 | ||
|  | #else
 | ||
|  | #define GF_M(_p)               ((_p)->m)
 | ||
|  | #define GF_T(_p)               ((_p)->t)
 | ||
|  | #define GF_N(_p)               ((_p)->n)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
 | ||
|  | #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
 | ||
|  | 
 | ||
|  | #ifndef dbg
 | ||
|  | #define dbg(_fmt, args...)     do {} while (0)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * represent a polynomial over GF(2^m) | ||
|  |  */ | ||
|  | struct gf_poly { | ||
|  | 	unsigned int deg;    /* polynomial degree */ | ||
|  | 	unsigned int c[0];   /* polynomial terms */ | ||
|  | }; | ||
|  | 
 | ||
|  | /* given its degree, compute a polynomial size in bytes */ | ||
|  | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 | ||
|  | 
 | ||
|  | /* polynomial of degree 1 */ | ||
|  | struct gf_poly_deg1 { | ||
|  | 	struct gf_poly poly; | ||
|  | 	unsigned int   c[2]; | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * same as encode_bch(), but process input data one byte at a time | ||
|  |  */ | ||
|  | static void encode_bch_unaligned(struct bch_control *bch, | ||
|  | 				 const unsigned char *data, unsigned int len, | ||
|  | 				 uint32_t *ecc) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	const uint32_t *p; | ||
|  | 	const int l = BCH_ECC_WORDS(bch)-1; | ||
|  | 
 | ||
|  | 	while (len--) { | ||
|  | 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | ||
|  | 
 | ||
|  | 		for (i = 0; i < l; i++) | ||
|  | 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | ||
|  | 
 | ||
|  | 		ecc[l] = (ecc[l] << 8)^(*p); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * convert ecc bytes to aligned, zero-padded 32-bit ecc words | ||
|  |  */ | ||
|  | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | ||
|  | 		      const uint8_t *src) | ||
|  | { | ||
|  | 	uint8_t pad[4] = {0, 0, 0, 0}; | ||
|  | 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | ||
|  | 
 | ||
|  | 	for (i = 0; i < nwords; i++, src += 4) | ||
|  | 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | ||
|  | 
 | ||
|  | 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | ||
|  | 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * convert 32-bit ecc words to ecc bytes | ||
|  |  */ | ||
|  | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | ||
|  | 		       const uint32_t *src) | ||
|  | { | ||
|  | 	uint8_t pad[4]; | ||
|  | 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | ||
|  | 
 | ||
|  | 	for (i = 0; i < nwords; i++) { | ||
|  | 		*dst++ = (src[i] >> 24); | ||
|  | 		*dst++ = (src[i] >> 16) & 0xff; | ||
|  | 		*dst++ = (src[i] >>  8) & 0xff; | ||
|  | 		*dst++ = (src[i] >>  0) & 0xff; | ||
|  | 	} | ||
|  | 	pad[0] = (src[nwords] >> 24); | ||
|  | 	pad[1] = (src[nwords] >> 16) & 0xff; | ||
|  | 	pad[2] = (src[nwords] >>  8) & 0xff; | ||
|  | 	pad[3] = (src[nwords] >>  0) & 0xff; | ||
|  | 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * encode_bch - calculate BCH ecc parity of data | ||
|  |  * @bch:   BCH control structure | ||
|  |  * @data:  data to encode | ||
|  |  * @len:   data length in bytes | ||
|  |  * @ecc:   ecc parity data, must be initialized by caller | ||
|  |  * | ||
|  |  * The @ecc parity array is used both as input and output parameter, in order to | ||
|  |  * allow incremental computations. It should be of the size indicated by member | ||
|  |  * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | ||
|  |  * | ||
|  |  * The exact number of computed ecc parity bits is given by member @ecc_bits of | ||
|  |  * @bch; it may be less than m*t for large values of t. | ||
|  |  */ | ||
|  | void encode_bch(struct bch_control *bch, const uint8_t *data, | ||
|  | 		unsigned int len, uint8_t *ecc) | ||
|  | { | ||
|  | 	const unsigned int l = BCH_ECC_WORDS(bch)-1; | ||
|  | 	unsigned int i, mlen; | ||
|  | 	unsigned long m; | ||
|  | 	uint32_t w, r[l+1]; | ||
|  | 	const uint32_t * const tab0 = bch->mod8_tab; | ||
|  | 	const uint32_t * const tab1 = tab0 + 256*(l+1); | ||
|  | 	const uint32_t * const tab2 = tab1 + 256*(l+1); | ||
|  | 	const uint32_t * const tab3 = tab2 + 256*(l+1); | ||
|  | 	const uint32_t *pdata, *p0, *p1, *p2, *p3; | ||
|  | 
 | ||
|  | 	if (ecc) { | ||
|  | 		/* load ecc parity bytes into internal 32-bit buffer */ | ||
|  | 		load_ecc8(bch, bch->ecc_buf, ecc); | ||
|  | 	} else { | ||
|  | 		memset(bch->ecc_buf, 0, sizeof(r)); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* process first unaligned data bytes */ | ||
|  | 	m = ((unsigned long)data) & 3; | ||
|  | 	if (m) { | ||
|  | 		mlen = (len < (4-m)) ? len : 4-m; | ||
|  | 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | ||
|  | 		data += mlen; | ||
|  | 		len  -= mlen; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* process 32-bit aligned data words */ | ||
|  | 	pdata = (uint32_t *)data; | ||
|  | 	mlen  = len/4; | ||
|  | 	data += 4*mlen; | ||
|  | 	len  -= 4*mlen; | ||
|  | 	memcpy(r, bch->ecc_buf, sizeof(r)); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * split each 32-bit word into 4 polynomials of weight 8 as follows: | ||
|  | 	 * | ||
|  | 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0 | ||
|  | 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt | ||
|  | 	 *                               tttttttt  mod g = r0 (precomputed) | ||
|  | 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed) | ||
|  | 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) | ||
|  | 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) | ||
|  | 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 | ||
|  | 	 */ | ||
|  | 	while (mlen--) { | ||
|  | 		/* input data is read in big-endian format */ | ||
|  | 		w = r[0]^cpu_to_be32(*pdata++); | ||
|  | 		p0 = tab0 + (l+1)*((w >>  0) & 0xff); | ||
|  | 		p1 = tab1 + (l+1)*((w >>  8) & 0xff); | ||
|  | 		p2 = tab2 + (l+1)*((w >> 16) & 0xff); | ||
|  | 		p3 = tab3 + (l+1)*((w >> 24) & 0xff); | ||
|  | 
 | ||
|  | 		for (i = 0; i < l; i++) | ||
|  | 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | ||
|  | 
 | ||
|  | 		r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | ||
|  | 	} | ||
|  | 	memcpy(bch->ecc_buf, r, sizeof(r)); | ||
|  | 
 | ||
|  | 	/* process last unaligned bytes */ | ||
|  | 	if (len) | ||
|  | 		encode_bch_unaligned(bch, data, len, bch->ecc_buf); | ||
|  | 
 | ||
|  | 	/* store ecc parity bytes into original parity buffer */ | ||
|  | 	if (ecc) | ||
|  | 		store_ecc8(bch, ecc, bch->ecc_buf); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(encode_bch); | ||
|  | 
 | ||
|  | static inline int modulo(struct bch_control *bch, unsigned int v) | ||
|  | { | ||
|  | 	const unsigned int n = GF_N(bch); | ||
|  | 	while (v >= n) { | ||
|  | 		v -= n; | ||
|  | 		v = (v & n) + (v >> GF_M(bch)); | ||
|  | 	} | ||
|  | 	return v; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * shorter and faster modulo function, only works when v < 2N. | ||
|  |  */ | ||
|  | static inline int mod_s(struct bch_control *bch, unsigned int v) | ||
|  | { | ||
|  | 	const unsigned int n = GF_N(bch); | ||
|  | 	return (v < n) ? v : v-n; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int deg(unsigned int poly) | ||
|  | { | ||
|  | 	/* polynomial degree is the most-significant bit index */ | ||
|  | 	return fls(poly)-1; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int parity(unsigned int x) | ||
|  | { | ||
|  | 	/*
 | ||
|  | 	 * public domain code snippet, lifted from | ||
|  | 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
 | ||
|  | 	 */ | ||
|  | 	x ^= x >> 1; | ||
|  | 	x ^= x >> 2; | ||
|  | 	x = (x & 0x11111111U) * 0x11111111U; | ||
|  | 	return (x >> 28) & 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* Galois field basic operations: multiply, divide, inverse, etc. */ | ||
|  | 
 | ||
|  | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | ||
|  | 				  unsigned int b) | ||
|  | { | ||
|  | 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | ||
|  | 					       bch->a_log_tab[b])] : 0; | ||
|  | } | ||
|  | 
 | ||
|  | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | ||
|  | { | ||
|  | 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | ||
|  | } | ||
|  | 
 | ||
|  | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | ||
|  | 				  unsigned int b) | ||
|  | { | ||
|  | 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | ||
|  | 					GF_N(bch)-bch->a_log_tab[b])] : 0; | ||
|  | } | ||
|  | 
 | ||
|  | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | ||
|  | { | ||
|  | 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | ||
|  | } | ||
|  | 
 | ||
|  | static inline unsigned int a_pow(struct bch_control *bch, int i) | ||
|  | { | ||
|  | 	return bch->a_pow_tab[modulo(bch, i)]; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int a_log(struct bch_control *bch, unsigned int x) | ||
|  | { | ||
|  | 	return bch->a_log_tab[x]; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int a_ilog(struct bch_control *bch, unsigned int x) | ||
|  | { | ||
|  | 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | ||
|  |  */ | ||
|  | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | ||
|  | 			      unsigned int *syn) | ||
|  | { | ||
|  | 	int i, j, s; | ||
|  | 	unsigned int m; | ||
|  | 	uint32_t poly; | ||
|  | 	const int t = GF_T(bch); | ||
|  | 
 | ||
|  | 	s = bch->ecc_bits; | ||
|  | 
 | ||
|  | 	/* make sure extra bits in last ecc word are cleared */ | ||
|  | 	m = ((unsigned int)s) & 31; | ||
|  | 	if (m) | ||
|  | 		ecc[s/32] &= ~((1u << (32-m))-1); | ||
|  | 	memset(syn, 0, 2*t*sizeof(*syn)); | ||
|  | 
 | ||
|  | 	/* compute v(a^j) for j=1 .. 2t-1 */ | ||
|  | 	do { | ||
|  | 		poly = *ecc++; | ||
|  | 		s -= 32; | ||
|  | 		while (poly) { | ||
|  | 			i = deg(poly); | ||
|  | 			for (j = 0; j < 2*t; j += 2) | ||
|  | 				syn[j] ^= a_pow(bch, (j+1)*(i+s)); | ||
|  | 
 | ||
|  | 			poly ^= (1 << i); | ||
|  | 		} | ||
|  | 	} while (s > 0); | ||
|  | 
 | ||
|  | 	/* v(a^(2j)) = v(a^j)^2 */ | ||
|  | 	for (j = 0; j < t; j++) | ||
|  | 		syn[2*j+1] = gf_sqr(bch, syn[j]); | ||
|  | } | ||
|  | 
 | ||
|  | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | ||
|  | { | ||
|  | 	memcpy(dst, src, GF_POLY_SZ(src->deg)); | ||
|  | } | ||
|  | 
 | ||
|  | static int compute_error_locator_polynomial(struct bch_control *bch, | ||
|  | 					    const unsigned int *syn) | ||
|  | { | ||
|  | 	const unsigned int t = GF_T(bch); | ||
|  | 	const unsigned int n = GF_N(bch); | ||
|  | 	unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | ||
|  | 	struct gf_poly *elp = bch->elp; | ||
|  | 	struct gf_poly *pelp = bch->poly_2t[0]; | ||
|  | 	struct gf_poly *elp_copy = bch->poly_2t[1]; | ||
|  | 	int k, pp = -1; | ||
|  | 
 | ||
|  | 	memset(pelp, 0, GF_POLY_SZ(2*t)); | ||
|  | 	memset(elp, 0, GF_POLY_SZ(2*t)); | ||
|  | 
 | ||
|  | 	pelp->deg = 0; | ||
|  | 	pelp->c[0] = 1; | ||
|  | 	elp->deg = 0; | ||
|  | 	elp->c[0] = 1; | ||
|  | 
 | ||
|  | 	/* use simplified binary Berlekamp-Massey algorithm */ | ||
|  | 	for (i = 0; (i < t) && (elp->deg <= t); i++) { | ||
|  | 		if (d) { | ||
|  | 			k = 2*i-pp; | ||
|  | 			gf_poly_copy(elp_copy, elp); | ||
|  | 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | ||
|  | 			tmp = a_log(bch, d)+n-a_log(bch, pd); | ||
|  | 			for (j = 0; j <= pelp->deg; j++) { | ||
|  | 				if (pelp->c[j]) { | ||
|  | 					l = a_log(bch, pelp->c[j]); | ||
|  | 					elp->c[j+k] ^= a_pow(bch, tmp+l); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | ||
|  | 			tmp = pelp->deg+k; | ||
|  | 			if (tmp > elp->deg) { | ||
|  | 				elp->deg = tmp; | ||
|  | 				gf_poly_copy(pelp, elp_copy); | ||
|  | 				pd = d; | ||
|  | 				pp = 2*i; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | ||
|  | 		if (i < t-1) { | ||
|  | 			d = syn[2*i+2]; | ||
|  | 			for (j = 1; j <= elp->deg; j++) | ||
|  | 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	dbg("elp=%s\n", gf_poly_str(elp)); | ||
|  | 	return (elp->deg > t) ? -1 : (int)elp->deg; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * solve a m x m linear system in GF(2) with an expected number of solutions, | ||
|  |  * and return the number of found solutions | ||
|  |  */ | ||
|  | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | ||
|  | 			       unsigned int *sol, int nsol) | ||
|  | { | ||
|  | 	const int m = GF_M(bch); | ||
|  | 	unsigned int tmp, mask; | ||
|  | 	int rem, c, r, p, k, param[m]; | ||
|  | 
 | ||
|  | 	k = 0; | ||
|  | 	mask = 1 << m; | ||
|  | 
 | ||
|  | 	/* Gaussian elimination */ | ||
|  | 	for (c = 0; c < m; c++) { | ||
|  | 		rem = 0; | ||
|  | 		p = c-k; | ||
|  | 		/* find suitable row for elimination */ | ||
|  | 		for (r = p; r < m; r++) { | ||
|  | 			if (rows[r] & mask) { | ||
|  | 				if (r != p) { | ||
|  | 					tmp = rows[r]; | ||
|  | 					rows[r] = rows[p]; | ||
|  | 					rows[p] = tmp; | ||
|  | 				} | ||
|  | 				rem = r+1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		if (rem) { | ||
|  | 			/* perform elimination on remaining rows */ | ||
|  | 			tmp = rows[p]; | ||
|  | 			for (r = rem; r < m; r++) { | ||
|  | 				if (rows[r] & mask) | ||
|  | 					rows[r] ^= tmp; | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			/* elimination not needed, store defective row index */ | ||
|  | 			param[k++] = c; | ||
|  | 		} | ||
|  | 		mask >>= 1; | ||
|  | 	} | ||
|  | 	/* rewrite system, inserting fake parameter rows */ | ||
|  | 	if (k > 0) { | ||
|  | 		p = k; | ||
|  | 		for (r = m-1; r >= 0; r--) { | ||
|  | 			if ((r > m-1-k) && rows[r]) | ||
|  | 				/* system has no solution */ | ||
|  | 				return 0; | ||
|  | 
 | ||
|  | 			rows[r] = (p && (r == param[p-1])) ? | ||
|  | 				p--, 1u << (m-r) : rows[r-p]; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (nsol != (1 << k)) | ||
|  | 		/* unexpected number of solutions */ | ||
|  | 		return 0; | ||
|  | 
 | ||
|  | 	for (p = 0; p < nsol; p++) { | ||
|  | 		/* set parameters for p-th solution */ | ||
|  | 		for (c = 0; c < k; c++) | ||
|  | 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | ||
|  | 
 | ||
|  | 		/* compute unique solution */ | ||
|  | 		tmp = 0; | ||
|  | 		for (r = m-1; r >= 0; r--) { | ||
|  | 			mask = rows[r] & (tmp|1); | ||
|  | 			tmp |= parity(mask) << (m-r); | ||
|  | 		} | ||
|  | 		sol[p] = tmp >> 1; | ||
|  | 	} | ||
|  | 	return nsol; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * this function builds and solves a linear system for finding roots of a degree | ||
|  |  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | ||
|  |  */ | ||
|  | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | ||
|  | 			      unsigned int b, unsigned int c, | ||
|  | 			      unsigned int *roots) | ||
|  | { | ||
|  | 	int i, j, k; | ||
|  | 	const int m = GF_M(bch); | ||
|  | 	unsigned int mask = 0xff, t, rows[16] = {0,}; | ||
|  | 
 | ||
|  | 	j = a_log(bch, b); | ||
|  | 	k = a_log(bch, a); | ||
|  | 	rows[0] = c; | ||
|  | 
 | ||
|  | 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */ | ||
|  | 	for (i = 0; i < m; i++) { | ||
|  | 		rows[i+1] = bch->a_pow_tab[4*i]^ | ||
|  | 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | ||
|  | 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | ||
|  | 		j++; | ||
|  | 		k += 2; | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * transpose 16x16 matrix before passing it to linear solver | ||
|  | 	 * warning: this code assumes m < 16 | ||
|  | 	 */ | ||
|  | 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | ||
|  | 		for (k = 0; k < 16; k = (k+j+1) & ~j) { | ||
|  | 			t = ((rows[k] >> j)^rows[k+j]) & mask; | ||
|  | 			rows[k] ^= (t << j); | ||
|  | 			rows[k+j] ^= t; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return solve_linear_system(bch, rows, roots, 4); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | ||
|  |  */ | ||
|  | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | ||
|  | 				unsigned int *roots) | ||
|  | { | ||
|  | 	int n = 0; | ||
|  | 
 | ||
|  | 	if (poly->c[0]) | ||
|  | 		/* poly[X] = bX+c with c!=0, root=c/b */ | ||
|  | 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | ||
|  | 				   bch->a_log_tab[poly->c[1]]); | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute roots of a degree 2 polynomial over GF(2^m) | ||
|  |  */ | ||
|  | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | ||
|  | 				unsigned int *roots) | ||
|  | { | ||
|  | 	int n = 0, i, l0, l1, l2; | ||
|  | 	unsigned int u, v, r; | ||
|  | 
 | ||
|  | 	if (poly->c[0] && poly->c[1]) { | ||
|  | 
 | ||
|  | 		l0 = bch->a_log_tab[poly->c[0]]; | ||
|  | 		l1 = bch->a_log_tab[poly->c[1]]; | ||
|  | 		l2 = bch->a_log_tab[poly->c[2]]; | ||
|  | 
 | ||
|  | 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | ||
|  | 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | ||
|  | 		/*
 | ||
|  | 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | ||
|  | 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | ||
|  | 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | ||
|  | 		 * i.e. r and r+1 are roots iff Tr(u)=0 | ||
|  | 		 */ | ||
|  | 		r = 0; | ||
|  | 		v = u; | ||
|  | 		while (v) { | ||
|  | 			i = deg(v); | ||
|  | 			r ^= bch->xi_tab[i]; | ||
|  | 			v ^= (1 << i); | ||
|  | 		} | ||
|  | 		/* verify root */ | ||
|  | 		if ((gf_sqr(bch, r)^r) == u) { | ||
|  | 			/* reverse z=a/bX transformation and compute log(1/r) */ | ||
|  | 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | ||
|  | 					    bch->a_log_tab[r]+l2); | ||
|  | 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | ||
|  | 					    bch->a_log_tab[r^1]+l2); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute roots of a degree 3 polynomial over GF(2^m) | ||
|  |  */ | ||
|  | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | ||
|  | 				unsigned int *roots) | ||
|  | { | ||
|  | 	int i, n = 0; | ||
|  | 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | ||
|  | 
 | ||
|  | 	if (poly->c[0]) { | ||
|  | 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | ||
|  | 		e3 = poly->c[3]; | ||
|  | 		c2 = gf_div(bch, poly->c[0], e3); | ||
|  | 		b2 = gf_div(bch, poly->c[1], e3); | ||
|  | 		a2 = gf_div(bch, poly->c[2], e3); | ||
|  | 
 | ||
|  | 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | ||
|  | 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */ | ||
|  | 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ | ||
|  | 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ | ||
|  | 
 | ||
|  | 		/* find the 4 roots of this affine polynomial */ | ||
|  | 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | ||
|  | 			/* remove a2 from final list of roots */ | ||
|  | 			for (i = 0; i < 4; i++) { | ||
|  | 				if (tmp[i] != a2) | ||
|  | 					roots[n++] = a_ilog(bch, tmp[i]); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute roots of a degree 4 polynomial over GF(2^m) | ||
|  |  */ | ||
|  | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | ||
|  | 				unsigned int *roots) | ||
|  | { | ||
|  | 	int i, l, n = 0; | ||
|  | 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | ||
|  | 
 | ||
|  | 	if (poly->c[0] == 0) | ||
|  | 		return 0; | ||
|  | 
 | ||
|  | 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | ||
|  | 	e4 = poly->c[4]; | ||
|  | 	d = gf_div(bch, poly->c[0], e4); | ||
|  | 	c = gf_div(bch, poly->c[1], e4); | ||
|  | 	b = gf_div(bch, poly->c[2], e4); | ||
|  | 	a = gf_div(bch, poly->c[3], e4); | ||
|  | 
 | ||
|  | 	/* use Y=1/X transformation to get an affine polynomial */ | ||
|  | 	if (a) { | ||
|  | 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */ | ||
|  | 		if (c) { | ||
|  | 			/* compute e such that e^2 = c/a */ | ||
|  | 			f = gf_div(bch, c, a); | ||
|  | 			l = a_log(bch, f); | ||
|  | 			l += (l & 1) ? GF_N(bch) : 0; | ||
|  | 			e = a_pow(bch, l/2); | ||
|  | 			/*
 | ||
|  | 			 * use transformation z=X+e: | ||
|  | 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | ||
|  | 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | ||
|  | 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | ||
|  | 			 * z^4 + az^3 +     b'z^2 + d' | ||
|  | 			 */ | ||
|  | 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | ||
|  | 			b = gf_mul(bch, a, e)^b; | ||
|  | 		} | ||
|  | 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | ||
|  | 		if (d == 0) | ||
|  | 			/* assume all roots have multiplicity 1 */ | ||
|  | 			return 0; | ||
|  | 
 | ||
|  | 		c2 = gf_inv(bch, d); | ||
|  | 		b2 = gf_div(bch, a, d); | ||
|  | 		a2 = gf_div(bch, b, d); | ||
|  | 	} else { | ||
|  | 		/* polynomial is already affine */ | ||
|  | 		c2 = d; | ||
|  | 		b2 = c; | ||
|  | 		a2 = b; | ||
|  | 	} | ||
|  | 	/* find the 4 roots of this affine polynomial */ | ||
|  | 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | ||
|  | 		for (i = 0; i < 4; i++) { | ||
|  | 			/* post-process roots (reverse transformations) */ | ||
|  | 			f = a ? gf_inv(bch, roots[i]) : roots[i]; | ||
|  | 			roots[i] = a_ilog(bch, f^e); | ||
|  | 		} | ||
|  | 		n = 4; | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * build monic, log-based representation of a polynomial | ||
|  |  */ | ||
|  | static void gf_poly_logrep(struct bch_control *bch, | ||
|  | 			   const struct gf_poly *a, int *rep) | ||
|  | { | ||
|  | 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | ||
|  | 
 | ||
|  | 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */ | ||
|  | 	for (i = 0; i < d; i++) | ||
|  | 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute polynomial Euclidean division remainder in GF(2^m)[X] | ||
|  |  */ | ||
|  | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | ||
|  | 			const struct gf_poly *b, int *rep) | ||
|  | { | ||
|  | 	int la, p, m; | ||
|  | 	unsigned int i, j, *c = a->c; | ||
|  | 	const unsigned int d = b->deg; | ||
|  | 
 | ||
|  | 	if (a->deg < d) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	/* reuse or compute log representation of denominator */ | ||
|  | 	if (!rep) { | ||
|  | 		rep = bch->cache; | ||
|  | 		gf_poly_logrep(bch, b, rep); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (j = a->deg; j >= d; j--) { | ||
|  | 		if (c[j]) { | ||
|  | 			la = a_log(bch, c[j]); | ||
|  | 			p = j-d; | ||
|  | 			for (i = 0; i < d; i++, p++) { | ||
|  | 				m = rep[i]; | ||
|  | 				if (m >= 0) | ||
|  | 					c[p] ^= bch->a_pow_tab[mod_s(bch, | ||
|  | 								     m+la)]; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	a->deg = d-1; | ||
|  | 	while (!c[a->deg] && a->deg) | ||
|  | 		a->deg--; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute polynomial Euclidean division quotient in GF(2^m)[X] | ||
|  |  */ | ||
|  | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | ||
|  | 			const struct gf_poly *b, struct gf_poly *q) | ||
|  | { | ||
|  | 	if (a->deg >= b->deg) { | ||
|  | 		q->deg = a->deg-b->deg; | ||
|  | 		/* compute a mod b (modifies a) */ | ||
|  | 		gf_poly_mod(bch, a, b, NULL); | ||
|  | 		/* quotient is stored in upper part of polynomial a */ | ||
|  | 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | ||
|  | 	} else { | ||
|  | 		q->deg = 0; | ||
|  | 		q->c[0] = 0; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | ||
|  |  */ | ||
|  | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | ||
|  | 				   struct gf_poly *b) | ||
|  | { | ||
|  | 	struct gf_poly *tmp; | ||
|  | 
 | ||
|  | 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | ||
|  | 
 | ||
|  | 	if (a->deg < b->deg) { | ||
|  | 		tmp = b; | ||
|  | 		b = a; | ||
|  | 		a = tmp; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	while (b->deg > 0) { | ||
|  | 		gf_poly_mod(bch, a, b, NULL); | ||
|  | 		tmp = b; | ||
|  | 		b = a; | ||
|  | 		a = tmp; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	dbg("%s\n", gf_poly_str(a)); | ||
|  | 
 | ||
|  | 	return a; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | ||
|  |  * This is used in Berlekamp Trace algorithm for splitting polynomials | ||
|  |  */ | ||
|  | static void compute_trace_bk_mod(struct bch_control *bch, int k, | ||
|  | 				 const struct gf_poly *f, struct gf_poly *z, | ||
|  | 				 struct gf_poly *out) | ||
|  | { | ||
|  | 	const int m = GF_M(bch); | ||
|  | 	int i, j; | ||
|  | 
 | ||
|  | 	/* z contains z^2j mod f */ | ||
|  | 	z->deg = 1; | ||
|  | 	z->c[0] = 0; | ||
|  | 	z->c[1] = bch->a_pow_tab[k]; | ||
|  | 
 | ||
|  | 	out->deg = 0; | ||
|  | 	memset(out, 0, GF_POLY_SZ(f->deg)); | ||
|  | 
 | ||
|  | 	/* compute f log representation only once */ | ||
|  | 	gf_poly_logrep(bch, f, bch->cache); | ||
|  | 
 | ||
|  | 	for (i = 0; i < m; i++) { | ||
|  | 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | ||
|  | 		for (j = z->deg; j >= 0; j--) { | ||
|  | 			out->c[j] ^= z->c[j]; | ||
|  | 			z->c[2*j] = gf_sqr(bch, z->c[j]); | ||
|  | 			z->c[2*j+1] = 0; | ||
|  | 		} | ||
|  | 		if (z->deg > out->deg) | ||
|  | 			out->deg = z->deg; | ||
|  | 
 | ||
|  | 		if (i < m-1) { | ||
|  | 			z->deg *= 2; | ||
|  | 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | ||
|  | 			gf_poly_mod(bch, z, f, bch->cache); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	while (!out->c[out->deg] && out->deg) | ||
|  | 		out->deg--; | ||
|  | 
 | ||
|  | 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * factor a polynomial using Berlekamp Trace algorithm (BTA) | ||
|  |  */ | ||
|  | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | ||
|  | 			      struct gf_poly **g, struct gf_poly **h) | ||
|  | { | ||
|  | 	struct gf_poly *f2 = bch->poly_2t[0]; | ||
|  | 	struct gf_poly *q  = bch->poly_2t[1]; | ||
|  | 	struct gf_poly *tk = bch->poly_2t[2]; | ||
|  | 	struct gf_poly *z  = bch->poly_2t[3]; | ||
|  | 	struct gf_poly *gcd; | ||
|  | 
 | ||
|  | 	dbg("factoring %s...\n", gf_poly_str(f)); | ||
|  | 
 | ||
|  | 	*g = f; | ||
|  | 	*h = NULL; | ||
|  | 
 | ||
|  | 	/* tk = Tr(a^k.X) mod f */ | ||
|  | 	compute_trace_bk_mod(bch, k, f, z, tk); | ||
|  | 
 | ||
|  | 	if (tk->deg > 0) { | ||
|  | 		/* compute g = gcd(f, tk) (destructive operation) */ | ||
|  | 		gf_poly_copy(f2, f); | ||
|  | 		gcd = gf_poly_gcd(bch, f2, tk); | ||
|  | 		if (gcd->deg < f->deg) { | ||
|  | 			/* compute h=f/gcd(f,tk); this will modify f and q */ | ||
|  | 			gf_poly_div(bch, f, gcd, q); | ||
|  | 			/* store g and h in-place (clobbering f) */ | ||
|  | 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | ||
|  | 			gf_poly_copy(*g, gcd); | ||
|  | 			gf_poly_copy(*h, q); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * find roots of a polynomial, using BTZ algorithm; see the beginning of this | ||
|  |  * file for details | ||
|  |  */ | ||
|  | static int find_poly_roots(struct bch_control *bch, unsigned int k, | ||
|  | 			   struct gf_poly *poly, unsigned int *roots) | ||
|  | { | ||
|  | 	int cnt; | ||
|  | 	struct gf_poly *f1, *f2; | ||
|  | 
 | ||
|  | 	switch (poly->deg) { | ||
|  | 		/* handle low degree polynomials with ad hoc techniques */ | ||
|  | 	case 1: | ||
|  | 		cnt = find_poly_deg1_roots(bch, poly, roots); | ||
|  | 		break; | ||
|  | 	case 2: | ||
|  | 		cnt = find_poly_deg2_roots(bch, poly, roots); | ||
|  | 		break; | ||
|  | 	case 3: | ||
|  | 		cnt = find_poly_deg3_roots(bch, poly, roots); | ||
|  | 		break; | ||
|  | 	case 4: | ||
|  | 		cnt = find_poly_deg4_roots(bch, poly, roots); | ||
|  | 		break; | ||
|  | 	default: | ||
|  | 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | ||
|  | 		cnt = 0; | ||
|  | 		if (poly->deg && (k <= GF_M(bch))) { | ||
|  | 			factor_polynomial(bch, k, poly, &f1, &f2); | ||
|  | 			if (f1) | ||
|  | 				cnt += find_poly_roots(bch, k+1, f1, roots); | ||
|  | 			if (f2) | ||
|  | 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | ||
|  | 		} | ||
|  | 		break; | ||
|  | 	} | ||
|  | 	return cnt; | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(USE_CHIEN_SEARCH)
 | ||
|  | /*
 | ||
|  |  * exhaustive root search (Chien) implementation - not used, included only for | ||
|  |  * reference/comparison tests | ||
|  |  */ | ||
|  | static int chien_search(struct bch_control *bch, unsigned int len, | ||
|  | 			struct gf_poly *p, unsigned int *roots) | ||
|  | { | ||
|  | 	int m; | ||
|  | 	unsigned int i, j, syn, syn0, count = 0; | ||
|  | 	const unsigned int k = 8*len+bch->ecc_bits; | ||
|  | 
 | ||
|  | 	/* use a log-based representation of polynomial */ | ||
|  | 	gf_poly_logrep(bch, p, bch->cache); | ||
|  | 	bch->cache[p->deg] = 0; | ||
|  | 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | ||
|  | 
 | ||
|  | 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | ||
|  | 		/* compute elp(a^i) */ | ||
|  | 		for (j = 1, syn = syn0; j <= p->deg; j++) { | ||
|  | 			m = bch->cache[j]; | ||
|  | 			if (m >= 0) | ||
|  | 				syn ^= a_pow(bch, m+j*i); | ||
|  | 		} | ||
|  | 		if (syn == 0) { | ||
|  | 			roots[count++] = GF_N(bch)-i; | ||
|  | 			if (count == p->deg) | ||
|  | 				break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return (count == p->deg) ? count : 0; | ||
|  | } | ||
|  | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 | ||
|  | #endif /* USE_CHIEN_SEARCH */
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * decode_bch - decode received codeword and find bit error locations | ||
|  |  * @bch:      BCH control structure | ||
|  |  * @data:     received data, ignored if @calc_ecc is provided | ||
|  |  * @len:      data length in bytes, must always be provided | ||
|  |  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | ||
|  |  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | ||
|  |  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) | ||
|  |  * @errloc:   output array of error locations | ||
|  |  * | ||
|  |  * Returns: | ||
|  |  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | ||
|  |  *  invalid parameters were provided | ||
|  |  * | ||
|  |  * Depending on the available hw BCH support and the need to compute @calc_ecc | ||
|  |  * separately (using encode_bch()), this function should be called with one of | ||
|  |  * the following parameter configurations - | ||
|  |  * | ||
|  |  * by providing @data and @recv_ecc only: | ||
|  |  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | ||
|  |  * | ||
|  |  * by providing @recv_ecc and @calc_ecc: | ||
|  |  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | ||
|  |  * | ||
|  |  * by providing ecc = recv_ecc XOR calc_ecc: | ||
|  |  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | ||
|  |  * | ||
|  |  * by providing syndrome results @syn: | ||
|  |  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | ||
|  |  * | ||
|  |  * Once decode_bch() has successfully returned with a positive value, error | ||
|  |  * locations returned in array @errloc should be interpreted as follows - | ||
|  |  * | ||
|  |  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | ||
|  |  * data correction) | ||
|  |  * | ||
|  |  * if (errloc[n] < 8*len), then n-th error is located in data and can be | ||
|  |  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | ||
|  |  * | ||
|  |  * Note that this function does not perform any data correction by itself, it | ||
|  |  * merely indicates error locations. | ||
|  |  */ | ||
|  | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | ||
|  | 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc, | ||
|  | 	       const unsigned int *syn, unsigned int *errloc) | ||
|  | { | ||
|  | 	const unsigned int ecc_words = BCH_ECC_WORDS(bch); | ||
|  | 	unsigned int nbits; | ||
|  | 	int i, err, nroots; | ||
|  | 	uint32_t sum; | ||
|  | 
 | ||
|  | 	/* sanity check: make sure data length can be handled */ | ||
|  | 	if (8*len > (bch->n-bch->ecc_bits)) | ||
|  | 		return -EINVAL; | ||
|  | 
 | ||
|  | 	/* if caller does not provide syndromes, compute them */ | ||
|  | 	if (!syn) { | ||
|  | 		if (!calc_ecc) { | ||
|  | 			/* compute received data ecc into an internal buffer */ | ||
|  | 			if (!data || !recv_ecc) | ||
|  | 				return -EINVAL; | ||
|  | 			encode_bch(bch, data, len, NULL); | ||
|  | 		} else { | ||
|  | 			/* load provided calculated ecc */ | ||
|  | 			load_ecc8(bch, bch->ecc_buf, calc_ecc); | ||
|  | 		} | ||
|  | 		/* load received ecc or assume it was XORed in calc_ecc */ | ||
|  | 		if (recv_ecc) { | ||
|  | 			load_ecc8(bch, bch->ecc_buf2, recv_ecc); | ||
|  | 			/* XOR received and calculated ecc */ | ||
|  | 			for (i = 0, sum = 0; i < (int)ecc_words; i++) { | ||
|  | 				bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | ||
|  | 				sum |= bch->ecc_buf[i]; | ||
|  | 			} | ||
|  | 			if (!sum) | ||
|  | 				/* no error found */ | ||
|  | 				return 0; | ||
|  | 		} | ||
|  | 		compute_syndromes(bch, bch->ecc_buf, bch->syn); | ||
|  | 		syn = bch->syn; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	err = compute_error_locator_polynomial(bch, syn); | ||
|  | 	if (err > 0) { | ||
|  | 		nroots = find_poly_roots(bch, 1, bch->elp, errloc); | ||
|  | 		if (err != nroots) | ||
|  | 			err = -1; | ||
|  | 	} | ||
|  | 	if (err > 0) { | ||
|  | 		/* post-process raw error locations for easier correction */ | ||
|  | 		nbits = (len*8)+bch->ecc_bits; | ||
|  | 		for (i = 0; i < err; i++) { | ||
|  | 			if (errloc[i] >= nbits) { | ||
|  | 				err = -1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 			errloc[i] = nbits-1-errloc[i]; | ||
|  | 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return (err >= 0) ? err : -EBADMSG; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(decode_bch); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * generate Galois field lookup tables | ||
|  |  */ | ||
|  | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | ||
|  | { | ||
|  | 	unsigned int i, x = 1; | ||
|  | 	const unsigned int k = 1 << deg(poly); | ||
|  | 
 | ||
|  | 	/* primitive polynomial must be of degree m */ | ||
|  | 	if (k != (1u << GF_M(bch))) | ||
|  | 		return -1; | ||
|  | 
 | ||
|  | 	for (i = 0; i < GF_N(bch); i++) { | ||
|  | 		bch->a_pow_tab[i] = x; | ||
|  | 		bch->a_log_tab[x] = i; | ||
|  | 		if (i && (x == 1)) | ||
|  | 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | ||
|  | 			return -1; | ||
|  | 		x <<= 1; | ||
|  | 		if (x & k) | ||
|  | 			x ^= poly; | ||
|  | 	} | ||
|  | 	bch->a_pow_tab[GF_N(bch)] = 1; | ||
|  | 	bch->a_log_tab[0] = 0; | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute generator polynomial remainder tables for fast encoding | ||
|  |  */ | ||
|  | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | ||
|  | { | ||
|  | 	int i, j, b, d; | ||
|  | 	uint32_t data, hi, lo, *tab; | ||
|  | 	const int l = BCH_ECC_WORDS(bch); | ||
|  | 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | ||
|  | 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | ||
|  | 
 | ||
|  | 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | ||
|  | 
 | ||
|  | 	for (i = 0; i < 256; i++) { | ||
|  | 		/* p(X)=i is a small polynomial of weight <= 8 */ | ||
|  | 		for (b = 0; b < 4; b++) { | ||
|  | 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | ||
|  | 			tab = bch->mod8_tab + (b*256+i)*l; | ||
|  | 			data = i << (8*b); | ||
|  | 			while (data) { | ||
|  | 				d = deg(data); | ||
|  | 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | ||
|  | 				data ^= g[0] >> (31-d); | ||
|  | 				for (j = 0; j < ecclen; j++) { | ||
|  | 					hi = (d < 31) ? g[j] << (d+1) : 0; | ||
|  | 					lo = (j+1 < plen) ? | ||
|  | 						g[j+1] >> (31-d) : 0; | ||
|  | 					tab[j] ^= hi|lo; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * build a base for factoring degree 2 polynomials | ||
|  |  */ | ||
|  | static int build_deg2_base(struct bch_control *bch) | ||
|  | { | ||
|  | 	const int m = GF_M(bch); | ||
|  | 	int i, j, r; | ||
|  | 	unsigned int sum, x, y, remaining, ak = 0, xi[m]; | ||
|  | 
 | ||
|  | 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | ||
|  | 	for (i = 0; i < m; i++) { | ||
|  | 		for (j = 0, sum = 0; j < m; j++) | ||
|  | 			sum ^= a_pow(bch, i*(1 << j)); | ||
|  | 
 | ||
|  | 		if (sum) { | ||
|  | 			ak = bch->a_pow_tab[i]; | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | ||
|  | 	remaining = m; | ||
|  | 	memset(xi, 0, sizeof(xi)); | ||
|  | 
 | ||
|  | 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | ||
|  | 		y = gf_sqr(bch, x)^x; | ||
|  | 		for (i = 0; i < 2; i++) { | ||
|  | 			r = a_log(bch, y); | ||
|  | 			if (y && (r < m) && !xi[r]) { | ||
|  | 				bch->xi_tab[r] = x; | ||
|  | 				xi[r] = 1; | ||
|  | 				remaining--; | ||
|  | 				dbg("x%d = %x\n", r, x); | ||
|  | 				break; | ||
|  | 			} | ||
|  | 			y ^= ak; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	/* should not happen but check anyway */ | ||
|  | 	return remaining ? -1 : 0; | ||
|  | } | ||
|  | 
 | ||
|  | static void *bch_alloc(size_t size, int *err) | ||
|  | { | ||
|  | 	void *ptr; | ||
|  | 
 | ||
|  | 	ptr = kmalloc(size, GFP_KERNEL); | ||
|  | 	if (ptr == NULL) | ||
|  | 		*err = 1; | ||
|  | 	return ptr; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * compute generator polynomial for given (m,t) parameters. | ||
|  |  */ | ||
|  | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | ||
|  | { | ||
|  | 	const unsigned int m = GF_M(bch); | ||
|  | 	const unsigned int t = GF_T(bch); | ||
|  | 	int n, err = 0; | ||
|  | 	unsigned int i, j, nbits, r, word, *roots; | ||
|  | 	struct gf_poly *g; | ||
|  | 	uint32_t *genpoly; | ||
|  | 
 | ||
|  | 	g = bch_alloc(GF_POLY_SZ(m*t), &err); | ||
|  | 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | ||
|  | 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | ||
|  | 
 | ||
|  | 	if (err) { | ||
|  | 		kfree(genpoly); | ||
|  | 		genpoly = NULL; | ||
|  | 		goto finish; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* enumerate all roots of g(X) */ | ||
|  | 	memset(roots , 0, (bch->n+1)*sizeof(*roots)); | ||
|  | 	for (i = 0; i < t; i++) { | ||
|  | 		for (j = 0, r = 2*i+1; j < m; j++) { | ||
|  | 			roots[r] = 1; | ||
|  | 			r = mod_s(bch, 2*r); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	/* build generator polynomial g(X) */ | ||
|  | 	g->deg = 0; | ||
|  | 	g->c[0] = 1; | ||
|  | 	for (i = 0; i < GF_N(bch); i++) { | ||
|  | 		if (roots[i]) { | ||
|  | 			/* multiply g(X) by (X+root) */ | ||
|  | 			r = bch->a_pow_tab[i]; | ||
|  | 			g->c[g->deg+1] = 1; | ||
|  | 			for (j = g->deg; j > 0; j--) | ||
|  | 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | ||
|  | 
 | ||
|  | 			g->c[0] = gf_mul(bch, g->c[0], r); | ||
|  | 			g->deg++; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	/* store left-justified binary representation of g(X) */ | ||
|  | 	n = g->deg+1; | ||
|  | 	i = 0; | ||
|  | 
 | ||
|  | 	while (n > 0) { | ||
|  | 		nbits = (n > 32) ? 32 : n; | ||
|  | 		for (j = 0, word = 0; j < nbits; j++) { | ||
|  | 			if (g->c[n-1-j]) | ||
|  | 				word |= 1u << (31-j); | ||
|  | 		} | ||
|  | 		genpoly[i++] = word; | ||
|  | 		n -= nbits; | ||
|  | 	} | ||
|  | 	bch->ecc_bits = g->deg; | ||
|  | 
 | ||
|  | finish: | ||
|  | 	kfree(g); | ||
|  | 	kfree(roots); | ||
|  | 
 | ||
|  | 	return genpoly; | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * init_bch - initialize a BCH encoder/decoder | ||
|  |  * @m:          Galois field order, should be in the range 5-15 | ||
|  |  * @t:          maximum error correction capability, in bits | ||
|  |  * @prim_poly:  user-provided primitive polynomial (or 0 to use default) | ||
|  |  * | ||
|  |  * Returns: | ||
|  |  *  a newly allocated BCH control structure if successful, NULL otherwise | ||
|  |  * | ||
|  |  * This initialization can take some time, as lookup tables are built for fast | ||
|  |  * encoding/decoding; make sure not to call this function from a time critical | ||
|  |  * path. Usually, init_bch() should be called on module/driver init and | ||
|  |  * free_bch() should be called to release memory on exit. | ||
|  |  * | ||
|  |  * You may provide your own primitive polynomial of degree @m in argument | ||
|  |  * @prim_poly, or let init_bch() use its default polynomial. | ||
|  |  * | ||
|  |  * Once init_bch() has successfully returned a pointer to a newly allocated | ||
|  |  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | ||
|  |  * the structure. | ||
|  |  */ | ||
|  | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | ||
|  | { | ||
|  | 	int err = 0; | ||
|  | 	unsigned int i, words; | ||
|  | 	uint32_t *genpoly; | ||
|  | 	struct bch_control *bch = NULL; | ||
|  | 
 | ||
|  | 	const int min_m = 5; | ||
|  | 	const int max_m = 15; | ||
|  | 
 | ||
|  | 	/* default primitive polynomials */ | ||
|  | 	static const unsigned int prim_poly_tab[] = { | ||
|  | 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | ||
|  | 		0x402b, 0x8003, | ||
|  | 	}; | ||
|  | 
 | ||
|  | #if defined(CONFIG_BCH_CONST_PARAMS)
 | ||
|  | 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | ||
|  | 		printk(KERN_ERR "bch encoder/decoder was configured to support " | ||
|  | 		       "parameters m=%d, t=%d only!\n", | ||
|  | 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | ||
|  | 		goto fail; | ||
|  | 	} | ||
|  | #endif
 | ||
|  | 	if ((m < min_m) || (m > max_m)) | ||
|  | 		/*
 | ||
|  | 		 * values of m greater than 15 are not currently supported; | ||
|  | 		 * supporting m > 15 would require changing table base type | ||
|  | 		 * (uint16_t) and a small patch in matrix transposition | ||
|  | 		 */ | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	/* sanity checks */ | ||
|  | 	if ((t < 1) || (m*t >= ((1 << m)-1))) | ||
|  | 		/* invalid t value */ | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	/* select a primitive polynomial for generating GF(2^m) */ | ||
|  | 	if (prim_poly == 0) | ||
|  | 		prim_poly = prim_poly_tab[m-min_m]; | ||
|  | 
 | ||
|  | 	bch = kzalloc(sizeof(*bch), GFP_KERNEL); | ||
|  | 	if (bch == NULL) | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	bch->m = m; | ||
|  | 	bch->t = t; | ||
|  | 	bch->n = (1 << m)-1; | ||
|  | 	words  = DIV_ROUND_UP(m*t, 32); | ||
|  | 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | ||
|  | 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | ||
|  | 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | ||
|  | 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | ||
|  | 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | ||
|  | 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | ||
|  | 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); | ||
|  | 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); | ||
|  | 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); | ||
|  | 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | ||
|  | 
 | ||
|  | 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | ||
|  | 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | ||
|  | 
 | ||
|  | 	if (err) | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	err = build_gf_tables(bch, prim_poly); | ||
|  | 	if (err) | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	/* use generator polynomial for computing encoding tables */ | ||
|  | 	genpoly = compute_generator_polynomial(bch); | ||
|  | 	if (genpoly == NULL) | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	build_mod8_tables(bch, genpoly); | ||
|  | 	kfree(genpoly); | ||
|  | 
 | ||
|  | 	err = build_deg2_base(bch); | ||
|  | 	if (err) | ||
|  | 		goto fail; | ||
|  | 
 | ||
|  | 	return bch; | ||
|  | 
 | ||
|  | fail: | ||
|  | 	free_bch(bch); | ||
|  | 	return NULL; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(init_bch); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  *  free_bch - free the BCH control structure | ||
|  |  *  @bch:    BCH control structure to release | ||
|  |  */ | ||
|  | void free_bch(struct bch_control *bch) | ||
|  | { | ||
|  | 	unsigned int i; | ||
|  | 
 | ||
|  | 	if (bch) { | ||
|  | 		kfree(bch->a_pow_tab); | ||
|  | 		kfree(bch->a_log_tab); | ||
|  | 		kfree(bch->mod8_tab); | ||
|  | 		kfree(bch->ecc_buf); | ||
|  | 		kfree(bch->ecc_buf2); | ||
|  | 		kfree(bch->xi_tab); | ||
|  | 		kfree(bch->syn); | ||
|  | 		kfree(bch->cache); | ||
|  | 		kfree(bch->elp); | ||
|  | 
 | ||
|  | 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | ||
|  | 			kfree(bch->poly_2t[i]); | ||
|  | 
 | ||
|  | 		kfree(bch); | ||
|  | 	} | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(free_bch); | ||
|  | 
 | ||
|  | MODULE_LICENSE("GPL"); | ||
|  | MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); | ||
|  | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |