203 lines
		
	
	
	
		
			5.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			203 lines
		
	
	
	
		
			5.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (C) 2014 Broadcom Corporation
							 | 
						||
| 
								 | 
							
								 * Copyright 2014 Linaro Limited
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or
							 | 
						||
| 
								 | 
							
								 * modify it under the terms of the GNU General Public License as
							 | 
						||
| 
								 | 
							
								 * published by the Free Software Foundation version 2.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
							 | 
						||
| 
								 | 
							
								 * kind, whether express or implied; without even the implied warranty
							 | 
						||
| 
								 | 
							
								 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <linux/init.h>
							 | 
						||
| 
								 | 
							
								#include <linux/errno.h>
							 | 
						||
| 
								 | 
							
								#include <linux/io.h>
							 | 
						||
| 
								 | 
							
								#include <linux/of.h>
							 | 
						||
| 
								 | 
							
								#include <linux/sched.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <asm/smp.h>
							 | 
						||
| 
								 | 
							
								#include <asm/smp_plat.h>
							 | 
						||
| 
								 | 
							
								#include <asm/smp_scu.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Size of mapped Cortex A9 SCU address space */
							 | 
						||
| 
								 | 
							
								#define CORTEX_A9_SCU_SIZE	0x58
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
							 | 
						||
| 
								 | 
							
								#define BOOT_ADDR_CPUID_MASK	0x3
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Name of device node property defining secondary boot register location */
							 | 
						||
| 
								 | 
							
								#define OF_SECONDARY_BOOT	"secondary-boot-reg"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* I/O address of register used to coordinate secondary core startup */
							 | 
						||
| 
								 | 
							
								static u32	secondary_boot;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Enable the Cortex A9 Snoop Control Unit
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * By the time this is called we already know there are multiple
							 | 
						||
| 
								 | 
							
								 * cores present.  We assume we're running on a Cortex A9 processor,
							 | 
						||
| 
								 | 
							
								 * so any trouble getting the base address register or getting the
							 | 
						||
| 
								 | 
							
								 * SCU base is a problem.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Return 0 if successful or an error code otherwise.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								static int __init scu_a9_enable(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned long config_base;
							 | 
						||
| 
								 | 
							
									void __iomem *scu_base;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!scu_a9_has_base()) {
							 | 
						||
| 
								 | 
							
										pr_err("no configuration base address register!\n");
							 | 
						||
| 
								 | 
							
										return -ENXIO;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* Config base address register value is zero for uniprocessor */
							 | 
						||
| 
								 | 
							
									config_base = scu_a9_get_base();
							 | 
						||
| 
								 | 
							
									if (!config_base) {
							 | 
						||
| 
								 | 
							
										pr_err("hardware reports only one core\n");
							 | 
						||
| 
								 | 
							
										return -ENOENT;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
							 | 
						||
| 
								 | 
							
									if (!scu_base) {
							 | 
						||
| 
								 | 
							
										pr_err("failed to remap config base (%lu/%u) for SCU\n",
							 | 
						||
| 
								 | 
							
											config_base, CORTEX_A9_SCU_SIZE);
							 | 
						||
| 
								 | 
							
										return -ENOMEM;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									scu_enable(scu_base);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									iounmap(scu_base);	/* That's the last we'll need of this */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
							 | 
						||
| 
								 | 
							
									struct device_node *node;
							 | 
						||
| 
								 | 
							
									int ret;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									BUG_ON(secondary_boot);		/* We're called only once */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/*
							 | 
						||
| 
								 | 
							
									 * This function is only called via smp_ops->smp_prepare_cpu().
							 | 
						||
| 
								 | 
							
									 * That only happens if a "/cpus" device tree node exists
							 | 
						||
| 
								 | 
							
									 * and has an "enable-method" property that selects the SMP
							 | 
						||
| 
								 | 
							
									 * operations defined herein.
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									node = of_find_node_by_path("/cpus");
							 | 
						||
| 
								 | 
							
									BUG_ON(!node);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/*
							 | 
						||
| 
								 | 
							
									 * Our secondary enable method requires a "secondary-boot-reg"
							 | 
						||
| 
								 | 
							
									 * property to specify a register address used to request the
							 | 
						||
| 
								 | 
							
									 * ROM code boot a secondary code.  If we have any trouble
							 | 
						||
| 
								 | 
							
									 * getting this we fall back to uniprocessor mode.
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									if (of_property_read_u32(node, OF_SECONDARY_BOOT, &secondary_boot)) {
							 | 
						||
| 
								 | 
							
										pr_err("%s: missing/invalid " OF_SECONDARY_BOOT " property\n",
							 | 
						||
| 
								 | 
							
											node->name);
							 | 
						||
| 
								 | 
							
										ret = -ENOENT;		/* Arrange to disable SMP */
							 | 
						||
| 
								 | 
							
										goto out;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/*
							 | 
						||
| 
								 | 
							
									 * Enable the SCU on Cortex A9 based SoCs.  If -ENOENT is
							 | 
						||
| 
								 | 
							
									 * returned, the SoC reported a uniprocessor configuration.
							 | 
						||
| 
								 | 
							
									 * We bail on any other error.
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									ret = scu_a9_enable();
							 | 
						||
| 
								 | 
							
								out:
							 | 
						||
| 
								 | 
							
									of_node_put(node);
							 | 
						||
| 
								 | 
							
									if (ret) {
							 | 
						||
| 
								 | 
							
										/* Update the CPU present map to reflect uniprocessor mode */
							 | 
						||
| 
								 | 
							
										BUG_ON(ret != -ENOENT);
							 | 
						||
| 
								 | 
							
										pr_warn("disabling SMP\n");
							 | 
						||
| 
								 | 
							
										init_cpu_present(&only_cpu_0);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * The ROM code has the secondary cores looping, waiting for an event.
							 | 
						||
| 
								 | 
							
								 * When an event occurs each core examines the bottom two bits of the
							 | 
						||
| 
								 | 
							
								 * secondary boot register.  When a core finds those bits contain its
							 | 
						||
| 
								 | 
							
								 * own core id, it performs initialization, including computing its boot
							 | 
						||
| 
								 | 
							
								 * address by clearing the boot register value's bottom two bits.  The
							 | 
						||
| 
								 | 
							
								 * core signals that it is beginning its execution by writing its boot
							 | 
						||
| 
								 | 
							
								 * address back to the secondary boot register, and finally jumps to
							 | 
						||
| 
								 | 
							
								 * that address.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * So to start a core executing we need to:
							 | 
						||
| 
								 | 
							
								 * - Encode the (hardware) CPU id with the bottom bits of the secondary
							 | 
						||
| 
								 | 
							
								 *   start address.
							 | 
						||
| 
								 | 
							
								 * - Write that value into the secondary boot register.
							 | 
						||
| 
								 | 
							
								 * - Generate an event to wake up the secondary CPU(s).
							 | 
						||
| 
								 | 
							
								 * - Wait for the secondary boot register to be re-written, which
							 | 
						||
| 
								 | 
							
								 *   indicates the secondary core has started.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								static int bcm_boot_secondary(unsigned int cpu, struct task_struct *idle)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									void __iomem *boot_reg;
							 | 
						||
| 
								 | 
							
									phys_addr_t boot_func;
							 | 
						||
| 
								 | 
							
									u64 start_clock;
							 | 
						||
| 
								 | 
							
									u32 cpu_id;
							 | 
						||
| 
								 | 
							
									u32 boot_val;
							 | 
						||
| 
								 | 
							
									bool timeout = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									cpu_id = cpu_logical_map(cpu);
							 | 
						||
| 
								 | 
							
									if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
							 | 
						||
| 
								 | 
							
										pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
							 | 
						||
| 
								 | 
							
										return -EINVAL;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!secondary_boot) {
							 | 
						||
| 
								 | 
							
										pr_err("required secondary boot register not specified\n");
							 | 
						||
| 
								 | 
							
										return -EINVAL;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									boot_reg = ioremap_nocache((phys_addr_t)secondary_boot, sizeof(u32));
							 | 
						||
| 
								 | 
							
									if (!boot_reg) {
							 | 
						||
| 
								 | 
							
										pr_err("unable to map boot register for cpu %u\n", cpu_id);
							 | 
						||
| 
								 | 
							
										return -ENOSYS;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/*
							 | 
						||
| 
								 | 
							
									 * Secondary cores will start in secondary_startup(),
							 | 
						||
| 
								 | 
							
									 * defined in "arch/arm/kernel/head.S"
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									boot_func = virt_to_phys(secondary_startup);
							 | 
						||
| 
								 | 
							
									BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
							 | 
						||
| 
								 | 
							
									BUG_ON(boot_func > (phys_addr_t)U32_MAX);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* The core to start is encoded in the low bits */
							 | 
						||
| 
								 | 
							
									boot_val = (u32)boot_func | cpu_id;
							 | 
						||
| 
								 | 
							
									writel_relaxed(boot_val, boot_reg);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									sev();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* The low bits will be cleared once the core has started */
							 | 
						||
| 
								 | 
							
									start_clock = local_clock();
							 | 
						||
| 
								 | 
							
									while (!timeout && readl_relaxed(boot_reg) == boot_val)
							 | 
						||
| 
								 | 
							
										timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									iounmap(boot_reg);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!timeout)
							 | 
						||
| 
								 | 
							
										return 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									pr_err("timeout waiting for cpu %u to start\n", cpu_id);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return -ENOSYS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static struct smp_operations bcm_smp_ops __initdata = {
							 | 
						||
| 
								 | 
							
									.smp_prepare_cpus	= bcm_smp_prepare_cpus,
							 | 
						||
| 
								 | 
							
									.smp_boot_secondary	= bcm_boot_secondary,
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
							 | 
						||
| 
								 | 
							
											&bcm_smp_ops);
							 |